Sur les domaines pseudoconvexes.

Par Kiyosi OKA. (Comm. by M. Fujiwara, M.I.A, Jan. 13, 1941.)

Au commencement du progrès récent de la théorie des fonctions analytiques de plusieurs variables, *F. Hartogs* a découvert que tout domaine d'holomorphie¹ est un domaine psudoconvexe. Ces 2 notions sont devenues extrêmement importantes d'après le développement de la théorie; le problème réciproque reste cependant à peu près libre même aujourd'hui. Nous traiterons ce problème dans la présente Note; où nous placerons pour la simplicité à l'espace de 2 variables complexes, mais la conclusion s'appliquera, je crois, à un nombre quelconque de variables.

1. Dans l'espace des 2 variables complexes x,y, considérons un domaine univalent et fini D. Nous l'appellerons pseudoconvexe, si l'ensemble complémentaire E de D satisfait au $th\'eor\`eme$ de la continuit'e au voisinage d'un point fini quelconque P, et encore si ceci admet toute transformation pseudoconforme biunivoque au voisinage de P; dont la première condition veut dire que: lorsque l'on trace une hypersphère suffisamment petite autour de P, et prend arbitrairement dans la hypersphère un point (a,b) et une circonférence de la forme, x=a,|y-b|=r, si (a,b) appartient à E, sans l'être pour aucun point de la circonférence, on peut trouver un nombre positif d de façon que, à tout x' dans |x-a| < d, corresponde dans |y-b| < r au moins un y' tel que (x',y') appartienne à E. Alors :

Théorème. Dans l'espace de 2 variables complexes, tout domaine pseudoconvexe univalent et fini est un domaine d'holomorphie.

La démonstration sera donnée dans un Mémoire ultérieur. Dans ce qui suit, nous en exposerons tout rapidement la partie essentielle.

2. Nous allons construire un domaine pseudoconvexe Δ satisfaisant aux conditions un peu compliquées, à partir de 2 domaines d'holomorphie empiétant l'un sur l'autre. Considérons dans l'espace (x,y) un domaine univalent et borné D et 3 hyperplans de la forme $x_1 = a$, $x_1 = a_1$, $x_1 = a_2$, que nous désigneron par L, L_1, L_2 , respectivement, où x_1 représente la partie réelle de x et $a_2 < a < a_1$. Supposons D traversé par chacun des hyperplans, et désignons les parties de D au côté gauche de L_1 ,

¹Un domaine est appelé domaine d'holomorphie, s'il l'est pour une au moins des fonctions.

au cêté droit de L_2 et entre L_1 et L_2 par D_1, D_2 et D_3 , respectivement. Supposons d'abord que toute composante continue des ensembles D_1, D_2 soit un domaine d'holomorphie. Ensuite, pour les fonctions holomorphes $X_j(x,y)$ $(j=1,2,\ldots,\nu)$ dans D_3 :

 1° . Supposons que l'ensemble des points de D_3 satisfaisant à

$$|X_j(x,y)| \le 1$$
 $(j = 1, 2, \dots, \nu)$

n'ait pas de point au voisinage de l'intersection de la frontière de D avec L.

- 2°. Supposons que, pour un nombre positif ε suffisamment petit et pour tout j de $1, 2, \ldots, \nu$, l'enemble des points de D_3 satisfaisant à $|X_j(x,y)| > 1 \varepsilon$ n'ait pas de point au voisinage de L_1 , ni de L_2 .
- 3° . Les points de D qui n'appartiennent pas à D_3 , ou bien satisfont à $|X_j(x,y)| < 1$ $(j=1,2,\ldots,\nu)$ constituent un ensemble ouvert, d'après l'hypothèse précédente. Supposons que cet ensemble admette une composante continue Δ s'étendant du côté gauche de L_2 au côté droit de L_1 .

4°. Supposons que l'on ait identiquement

à

$$(X_j - X_j^0)R = (x - x_0)P_j + (y - y_0)Q_j$$
 $(j = 1, 2, \dots, \nu)$

quaud $(x, y) \in D_3$, $(x_0, y_0) \in D_3$, où X_j^o exprime $X_j(x_0, y_0)$, P_j, Q_j et R sont les fonctions holomorphes des variables x, y, x_0, y_0 et spécialement, R se réduit à 1 pour $x = x_0$, $y = y_0$.

 5° . Supposons pour toute X_{j} que le nombre des points satisfaisant

$$\frac{\partial X_j}{\partial y} = 0, \qquad x_1 = a, \qquad |X_j(x, y)| = 1$$

³Pour cette hypothèse, voici la proposition: Soit D un domaine d'holomorphie univalent et fini à l'espace (x,y). Etant donnés un nombre positif ε et un domaine univalent et borné D_0 contenu avec sa frontière dans D, on peut trouver une fonction holomorphe R des variables x, y, x_0, y_0 dans $(x,y) \in D_0, (x_0,y_0) \in D_0$, se réduisant à 1 pour $x = x_0, y = y_0$, de façon que, à toute fonction holomorphe f(x,y) dans D, corresponde une fonction holomorphe $\varphi(x,y)$ satisfaisant toujours à

$$|f - \varphi| < \varepsilon, \qquad (\varphi - \varphi_0)R = (x - x_0)P + (y - y_0)Q$$

dans D_0 , dont φ_0 signifie $\varphi(x_0,y_0)$, et P et Q sont des fonctions holomorphes des variables x,y,x_0,y_0 . —On peut le démontrer en vertu du théorème précédent de H. Cartan—P. Thullen, d'un théorème de A. Weil et d'un théorème de l'auteur. Pour les 2 derniers théorèmes, voir: K. Qka, J. Sci. Hirosima Univ., 1936, No.4; et 1937, Théorème I.

²Ces 3 hypothèses s'appuient sur le théorème de H. Cartan-P. Thullen que tout domaine d'holomorphie fini est convexe par rapport aux fonctions holomorphes dans le domaine. Voir: H. Cartan et P. Thullen, Math. Ann., 1932.

soit fini au plus à l'intérieur de D₃.

 6° . Nous désignerons la variété analytique $x_1 = a, |X_j(x,y)| = 1$ définie dans D_3 par Σ_j . D'après l'hypothèse précédente, toute Σ_j est à 2 dimensions au plus. Supposons que toutes les intersections des variétés Σ_j et Σ_k $(j \neq k)$ soient à 1 dimension au plus.

Le domaine Δ ainsi construit est pseudoconvexe. Nous désignerons les parties de Δ au côté gauche de L, au côté droit de L et entre L_1 et L_2 par Δ_1, Δ_2 et Δ_3 , respectivement. Toute composante continue des ensembles $\Delta_1, \Delta_2, \Delta_3$ est un domaine d'holomorphie.

3. Soit S l'ensemble de points consistant de la partie de L dans Δ et des points d'accumulation; S est contenu dans D_3 , d'après l'hypothèse 1. Soit σ la frontière de S (considéré comme ensemble sur L); σ se situe sur la somme de Σ_j ($j=1,2,\ldots,\nu$); la partie de σ sur Σ_j sera désignée par σ_j . Les σ_j sont à 2 dimensions au plus; les intersections des variétés σ_j et σ_k ($j \neq k$) sont à 1 dimension au plus, d'après l'hypothèse 6.

Dans cette circonstance, $\varphi(x,y)$ étant une fonction holomorphe quelconque dans un certain ensemble ouvert contenant S, considérons l'intégrale double, étendue sur la partie à 2 dimensions de σ ,

$$I(x_0, y_0) = \frac{-1}{4\pi^2} \sum_{j} \int_{\sigma_j} \psi_j(x, y; x_0, y_0) \varphi(x, y) dx dy \quad (j = 1, 2, \dots, \nu),$$
$$\psi_j(x, y; x_0, y_0) = \frac{Q_j}{(x - x_0)(X_j - X_j^0)}.^4$$

Quand $(x,y) \in \sigma_j$, ψ_j étant holomorphe dans $(x_0,y_0) \in \Delta_3$ excepté à L, il en est de même pour $I(x_0,y_0)$. Soit $I_1(x_0,y_0)$ la partie de $I(x_0,y_0)$ au côté gauche de L, et I_2 celle du côté droit; on trouve facilement, d'après

$$\int_{\sigma_j} \psi_j \varphi dx dy = \int \int \psi_j \varphi \frac{\partial(x,y)}{\partial(u,v)} du dv$$

au voisinage du point P, le deuxième membre étant une intégrale double étendue sur la partie du plan (u, v) correspondant à la partie à 2 dimension de σ_j .

⁴Nous en expliquerons quelques points. Sur chaque σ_j , $\partial X_j/\partial y$ ne s'annule pas, sauf peut-être à un nombre fini de points, d'après l'hypothèse 5. Prenons un point quelconque P sur σ_j , en dehors des points exceptionnels. Au voisinage de P, nous pouvons représenter la variété Σ_j à l'aide des paramètres réels u,v, sous la forme x=x(u,v),y=y(u,v), où les deuxièmes membres sont des séries entières des variables u,v; et cela de telle façon que (x,y) et (u,v) soient en correspondance biunivoque; dont (u,v) sera considére pour point du plan, au moyen des axes réctangulaires usuels. A la frontière de σ_j correspondent des arcs analytiques d'un nombre fini sur le plan. Soit x_2 la partie imaginaire de x, θ_j l'argument de $X_j(x,y)$; choisissons (u,v) de façon que $\partial(x_2,\theta_j)/\partial(u,v) > 0$; et nous aurons par définition

l'hypothèse 6, que I_1 et I_2 peuvent se prolonger analytiquement un peu, passant par L dans Δ_3 , de façon que $I_1 - I_2 = \varphi$.

Nous allons modifier ψ_j . Soit Σ_j' la partie de Σ_j sur $|X_p(x,y)| \le 1$ $(p=1,2,\ldots,\nu; p \ne j); \Sigma_j'$ contient σ_j . Construisons un ensemble ouvert V_j contenant Σ_j' , suffisamment voisin de Σ_j' et tel que toutes ses composantes continues soient des domaines d'holomorphie. V_j exists certainement, puisque Σ_j' est contenu dans D_3 d'après l'hypothèse 1.

Comme le premier problème de Cousin est toujours résoluble dans un domaine d'holomorphie univalent et fini⁵, nous pouvons trouver, d'après l'hypothèse 2, une fonction méromorphe $\Phi_j(x,y;x_0,y_0)$ dans $(x,y) \in V_j$, $(x_0,y_0) \in D_1$ de façon qu'elle admette les même pôles que ψ_j quand $(x_0,y_0) \in D_3$ et soit holomorphe quand $(x_0,y_0) \notin D_3$.

 $\Phi_j - \psi_j$ est holomorphe dans $(x,y) \in V_j$, $(x_0,y_0) \in D_3$. D_3 étant convexe par rapport aux fonctions holomorphes dans D_1 , pour un nombre positif donné ε , nous pouvons trouver une fonction holomorphe $\Psi_j(x,y;x_0,y_0)$ dans $(x,y) \in V_j$, $(x_0,y_0) \in D_1$, telle que $|\Phi_j - \psi_j - \Psi_j| < \varepsilon$ dans $(x,y) \in V_j'$, $(x_0,y_0) \in D_3'$, dont V_j' est un ensemble ouvert suffisamment voisin de V_j , contenu avec sa frontière dans V_j et donné à priori, et D_3' celui de D_3^6 .

Nous avons ainsi acquis les fonctions Φ_j et Ψ_j par rapport à D_1 . Posons $A_j = \Phi_j - \Psi_j - \psi_j$. Construisons pareillement des fonctions B_j pour D_2 ; et considérons, au lieu de $I(x_0, y_0)$, les intégrales suivantes :

$$J_1(x_0, y_0) = \frac{-1}{4\pi^2} \sum_j \int_{\sigma_j} (\psi_j + A_j) \varphi(x, y) dx dy,$$

$$J_2(x_0, y_0) = \frac{-1}{4\pi^2} \sum_j \int_{\sigma_j} (\psi_j + B_j) \varphi(x, y) dx dy \quad (j = 1, \dots, \nu).$$

 $J_1(x_0, y_0)$ est holomorphe dans Δ_1 , puisqu'il en est ainsi pour toute $\psi_j + A_j$ quand $(x, y) \in \sigma_j$; et pareillement, $J_2(x_0, y_0)$ est holomorphe dans Δ_2 . Ces fonctions peuvent se prolonger analytiquement un peu, passant par L dans Δ et satisfont alors à la relation

$$J_1(x_0, y_0) - J_2(x_0, y_0) = \varphi(x_0, y_0) - \frac{1}{4\pi^2} \sum_j \int_{\sigma_j} (A_j - B_j) \varphi(x, y) dx dy$$

$$(j = 1, \dots, \nu).$$

Posons $f = J_1 - J_2$; de la relation, il s'ensuit que f est holomorphe en tout point de S.

⁵Voir: K. Oka, J. Sci. Hirosima Univ., 1937, No. 5.

⁶Voir:K.Oka, cité plus haut.

Considérons maintenant f comme donnée et φ comme inconnue dans la relation, et nous aurons une équation intégrale de Fredholm de seconde espèce. En choisissant le nombre ε suffisamment petit, nous trouvons donc $\varphi(x,y)$ demandée, holomorphe en tout point de S. D'où, il en résulte que :

Dans la condition de No.2, étant donnée une fonction uniforme f(x,y) holomorphe en tout point de la frontière commune S des ensembles Δ_1 et Δ_2 , on peut trouver 2 fonctions holomorphes $F_1(x,y), F_2(x,y)$ dans Δ_1 et dans Δ_2 , respectivement, telles qu'on puisse les prolonger analytiquement un peu, passant par L dans Δ et que l'on ait alors, identiquemant: $F_1(x,y) - F_2(x,y) = f(x,y)$.—Ceci nous donne le point de départ.