1953ǯ

1 ¡ÊÏÀʸIX¤ÎʩʸÁð¹ÆÃÇÊÒ¡Ë
1953?¡¡¡¡½Ä30.5cm²£21cm¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ2Ëç¡£
¿ô³Ø (Ê©¸ì)¡£¡¡ÏÀʸÁð¹Æ¤ÎÃÇÊÒ¡£
È÷¹Í¡§Î¢¤Ë¤â½ñ¤­¹þ¤ß¤¬¤¢¤ë¡£
À°ÍýÈֹ桧423

2 ¡Ê±é½¬¡¢Hadamard¤ÎÉÔÅù¼°¡Ë
1953?¡¡¡¡½Ä35.5£ã£í²£25.2£ã£í¤Î»æ1Ëç¡£
¿ô³ØÅªÆâÍÆ¡£Ex.III Hadamard¤ÎÉÔÅù¼°¡£
È÷¹Í¡§¥¯¥ê¥Ã¥×¤¬¤Ä¤¤¤¿½Ä37£ã£í²£26.3£ã£í¤Î¥ì¥Ý¡¼¥ÈÍѻ椬1Ëç¶´¤Þ¤Ã¤Æ¤¤¤ë¡£¡¡½Ä31.7cm²£24.8cm¤ÎCLEAR BOOK¤ËÆþ¤Ã¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧422(=403)

3 Domaines,Domaines pseudoconvexes,et un Problème d'existence.¡¡£Á-Domaines finis sans points de ramification
1953?¡¡¡¡½Ä26£ã£í²£36.5£ã£í¤Î»æ3Ëç¤ò2¤ÄÀÞ¤ê¤Ë¤·¤Æ»È¤Ã¤Æ¤¤¤ë¡£
¿ô³ØÅªÆâÍÆ¡ÊÆüËÜʸ¡Ë¡£1-6¡£¡¡ÂèIXÏÀʸ¤ÎÏÂʸÁð¹Æ¤Î°ìÉô¡£
È÷¹Í¡§º¸¾å¤Ë¡ÉÃÇÊҡɤȽñ¤«¤ì¤¿ÉõÅûÆþ¤ê¡£
À°ÍýÈֹ桧425

4 (»æ1Ëç)
1953¡¡¡¡½Ä28.2cm²£21.5cm¤Î»æ£±Ë礬ÊÌ»æ¤ÇÊñ¤Þ¤ì¤Æ¤¤¤ë¡£
André Weil ¤È Carl Ludwig Siegel ¤ÎÍ¹ÊØ°¸Àè¡£¡Ê狼¤¬Ä´¤Ù¤Æ¤¯¤ì¤¿¤â¤Î¡Ë¡¡ÏÀʸVIII¤ÎÊ̺þ¤ê¤òÁ÷¤ë¤¿¤á¤Ë½»½ê¤òÄ´¤Ù¤Æ¤â¤é¤Ã¤¿¤Î¤Ç¤¢¤í¤¦¡£
À°ÍýÈֹ桧424

5 40 ̵¸Â¾èÀÑ
19530128¡¡¡¡Æó¤ÄÀÞ¤ê¤Î¡Ê¡ÖÈ¡¿ôÏÀ¡¡åÁÏÀ¡¡1952¡×¤È½ñ¤«¤ì¤¿¡Ë»æ¤Ë¶´¤Þ¤ì¤¿½Ä29.7cm²£21cm¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ7Ëç¡£
¿ô³ØÅª¡ÊÆüËÜʸ¡Ë¡£26-32¡£27,28¤Î΢¤Ë½ñ¤­¹þ¤ß¤¢¤ê¡£
È÷¹Í¡§¡ÉÈ¡¿ôÏÀ ¹ÖµÁ¡É¡¢º¸¾å¤Ë¡É24¡É¤È½ñ¤¤¤¿½Ä32cm²£23.5cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£2¤ÄÀÞ¤ê¤Î»æ¤Ï¤Ü¤í¤Ü¤í¡£
À°ÍýÈֹ桧427[2]

6 ÏÀʸIX¤ÎÆüËÜʸÁð¹Æ¤ÎÃÇÊÒ¤ÈÆâʬ´ô°è¤Î¸¦µæ Problème frontière
19530227-19530312,19531109-19531111¡¡¡¡½Ä30cm²£21cm ¥ì¥Ý¡¼¥ÈÍÑ»æ14Ëç¡£¡¡¡ÊÆó¤ÄÀÞ¤ê¤Î»æ¤Ë¶´¤Þ¤ì¤¿¿ôÊǤΥì¥Ý¡¼¥ÈÍÑ»æ¤ò´Þ¤à 6Ëç¡Ë
¿ô³Ø¡ÊÆüËÜʸ¡Ë¡¡¿ô³Ø¡ÊÆüËÜʸ¡Ë1-4¡¡Çò»æ 4Ëç
È÷¹Í¡§10Ëç¤Ï¤º¤ì¤Æ¤¤¤ë¡£¿ôËç¤Ï΢¤Ë¤â½ñ¤¤¤Æ¤¢¤ë¡£
À°ÍýÈֹ桧440

7 ½ñ´Ê¡Ê¢«P.Lelong¡Ë
19530415¡¡¡¡Éõ½ñ
Ê̺þ¤òÁ÷¤Ã¤¿¤³¤È¡£Ê̺þ¤Ï¤Ê¤¤¡£
À°ÍýÈֹ桧643[655,644,645,646,647,648,649,650,651,663,652,653,654,656,657,658,659,660,661,662]

8 ÏÀʸ IX ¤Î¼ê½ñ¤­¸¶¹Æ (1953)
19530504,06¡¡¡¡½Ä30.5cm²£21.5cm ¥ê¥Ý¡¼¥Æ¥£¥ó¥°¥Ú¡¼¥Ñ¡¼£³Ë礬Æó¤ÄÀÞ¤ê¤Î»æ¤Ë¶´¤Þ¤ì¤Æ¤¤¤ë¡¢¥¯¥ê¥Ã¥×»ß¤á¡£¡¡¤³¤ì¤é¤¬²«¿§¤¤ÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤ë¡£
ÂèIXÏÀʸ¤ÎÆüËܸ츶¹Æ¡£½øÊ¸¤Î¤ß¡£
È÷¹Í¡§£²¤ÄÀÞ¤ê¤Î»æ¤¬¥Ü¥í¥Ü¥í¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£(53-14,53-15)¡£
À°ÍýÈֹ桧428[435,436]

9 ½ñ´Ê¡Ê¢«P.Lelong¡Ë
19530608¡¡¡¡Éõ½ñ
ÊØäµ3Ëç¡£¿ô³Ø¡£
À°ÍýÈֹ桧644(=643)

10 ÏÀʸIX¤ÎʩʸÁð¹ÆÃÇÊÒ
19530609-19530622,19530909-19530910¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¡£¡¡£²¤ÄÀÞ¤ê¤Î»æ¤Ç¾®Ê¬¤±¤·¤Æ¤¤¤ë¡£
­¡¿ô³ØÅªÆâÍÆ¡ÊÊ©¸ì¡Ë 6Ëç¡£¡¡­¢Sur les fonctions analytiques de plusieurs variables, IX-Domaines finis sans point critique intérieur (Ê©¸ì) 2Ëç¡£1-2¡£¿ô³ØÅªÆâÍÆ¡ÊÊ©¸ì¡Ë4Ëç¡£1-4¡£­£¿ô³ØÅªÆâÍÆ¡ÊÊ©¸ì¡Ë 4Ëç¡£
È÷¹Í¡§¡ÉÄɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£¡¡2¤ÄÀÞ¤ê¤Î»æ¤Ë¤â½ñ¤­¹þ¤ß¤¢¤ê¡£¡¡
À°ÍýÈֹ桧429

11 ¡Ê¹ÖµÁÁð¹Æ¡¢²òÀϳؤÈÈ¡¿ôÏÀ¡Ë
19530611¡¡¡¡½Ä36.5cm²£25.5cm¤Î»æ3Ëç¡¢½Ä30cm²£21cm¤Î»æ1Ëç¡£
¿ô³Ø (ÆüËÜʸ)¡£1-2 ¡¢9¡£¡¡¹ÖµÁÁð¹Æ¡£
È÷¹Í¡§2¤ÄÀÞ¤ê¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£Î¢¤Ë¤â½ñ¤­¹þ¤ß¤¢¤ê¡£
À°ÍýÈֹ桧430

12 ÏÀʸIX¤ÎʩʸÁð¹Æ¤Î°ìÉô
19530622-19530717¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¤Î¤¦¤Á¡£
¿ô³ØÅªÆâÍÆ¡ÊÊ©¸ì¡Ë 12Ëç¡£11-20,14',11¡¡¡¡
È÷¹Í¡§¡ÉÄɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£¡¡Î¢¤Ë¤â½ñ¤­¹þ¤ß¤¢¤ê¡£(54-2,00-8)¡£
À°ÍýÈֹ桧431[443]

13 ­¡½÷»Ò¤ÎÂç³Ø¡£¡¡­¢¿ô³Ø¤Ë±÷¤±¤ë¼ç´ÑŪÆâÍÆ¤ÈµÒ´ÑŪ·Á¼°¤È¤Ë¤Ä¤¤¤Æ¡£¡¡­£ÆàÎɽ÷»ÒÂç³ØÚ˳زʤ˸ÞǯÀ©Âç³Ø±¡ÀßÃÖ¤ò´õ˾¤¹¤ë¼ñ»ÝµÚ¤Ó¶¤Î¶ñÂΰơ£
195307?¡¡¡¡½Ä36£ã£í²£25.2£ã£í¤Î¥¶¥é»æ8Ëç¡£
¡ÖËܳؿô³Ø²Ê¤Î²¬·é¶µ¼ø¤¬¡¢ÀÞ¤Ë¤Õ¤ì¤Æ¡¢¡¡»ä¤É¤â¤Î½è̳¾å¤Î»²¹Í¤Î¤¿¤á¤Ë½ñ¤¤¤Æ²¼¤µ¤Ã¤¿¤â¤Î¤ò¡¢¤Þ¤È¤á¤Æ¥×¥ê¥ó¥È¤·¤Þ¤·¤¿¡£¡¡¾¼ÏÂ28ǯ7·î ÆàÎɽ÷»ÒÂç³Ø»ö̳¶É¡×
È÷¹Í¡§¥Û¥Ã¥Á¥­¥¹¤¬»¬¤Ó¤Æ¡¢²¿Ë礫¤Ï¤º¤ì¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧432

14 ¿ô³Ø¤Ë±÷¤±¤ë¼ç´ÑŪÆâÍÆ¤ÈµÒ´ÑŪ·Á¼°¤È¤Ë¤Ä¤¤¤Æ¡ÊÁð°Æ¡Ë
19530701¡¡¡¡½Ä30.5£ã£í²£21.5£ã£í¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ3Ëç¡£
¿ô³Ø¤Ë±÷¤±¤ë¼ç´ÑŪÆâÍÆ¤ÈµÒ´ÑŪ·Á¼°¤È¤Ë¤Ä¤¤¤Æ¡ÊÁð°Æ¡Ë
È÷¹Í¡§¥¯¥ê¥Ã¥×¤¬¤Ä¤¤¤¿½Ä37£ã£í²£26.3£ã£í¤Î¥ì¥Ý¡¼¥ÈÍѻ椬1Ëç¶´¤Þ¤Ã¤Æ¤¤¤ë¡£¡¡½Ä31.7cm²£24.8cm¤ÎCLEAR BOOK¤ËÆþ¤Ã¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧433(=403)

15 ²ÆµÙ¤ß¤È»ä¤Î´õ˾
19530707¡¡¡¡½Ä30.5£ã£í²£21.5£ã£í¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ1Ëç¡£
²ÆµÙ¤ß¤È»ä¤Î´õ˾
È÷¹Í¡§¥¯¥ê¥Ã¥×¤¬¤Ä¤¤¤¿½Ä37£ã£í²£26.3£ã£í¤Î¥ì¥Ý¡¼¥ÈÍѻ椬1Ëç¶´¤Þ¤Ã¤Æ¤¤¤ë¡£¡¡½Ä31.7cm²£24.8cm¤ÎCLEAR BOOK¤ËÆþ¤Ã¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧434(=403)

16 Mémoire Appendice ¤ÎÐÇʸ¼ê½ñ¸¶¹Æ ¡Ê1953.7.30¡Ë
19530727,28,29¡¡¡¡½Ä30.5cm²£21.5cm ¥ê¥Ý¡¼¥Æ¥£¥ó¥°¥Ú¡¼¥Ñ¡¼£´Ë礬Æó¤ÄÀÞ¤ê¤Î»æ¤Ë¶´¤Þ¤ì¤Æ¤¤¤ë¡¢¥¯¥ê¥Ã¥×»ß¤á¡£
436 ¤Î²¼½ñ¤­¡£
È÷¹Í¡§£²¤ÄÀÞ¤ê¤Î»æ¤¬¥Ü¥í¥Ü¥í¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧435(=428)

17 Mém.VII Appendice ÐÇʸ¼ê½ñ¸¶¹Æ ¡Ê1953.7.30¡Ë
19530730¡¡¡¡½Ä30.5cm²£21.5cm ¥ê¥Ý¡¼¥Æ¥£¥ó¥°¥Ú¡¼¥Ñ¡¼£´Ë礬Æó¤ÄÀÞ¤ê¤Î»æ¤Ë¶´¤Þ¤ì¤Æ¤¤¤ë¡£
ÐÇʸ¡£¡Ö¿ô³Ø¤Ë±÷¤±¤ëµÒ´ÑŪ·Á¼°¤È¼ç´ÑŪÆâÍÆ¡×¤Îʩʸ¸¶¹Æ¡£
È÷¹Í¡§£²¤ÄÀÞ¤ê¤Î»æ¤¬¥Ü¥í¥Ü¥í¤Ë¤Ê¤Ã¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧436(=428)

18 ¡ÊÏÀʸIX¤ÎʩʸÁð¹Æ¤ÎÃÇÊÒ¡Ë
19530816,19530907¾¡¡¡¡½Ä30.5cm²£21cm¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ12Ëç¡£
¿ô³Ø (Ê©¸ì)¡£
È÷¹Í¡§°ìÉô΢¤Ë¤â½ñ¤­¹þ¤ß¤¬¤¢¤ë¡£¡ÖÆüËÜʸ¸¶¹Æ¤Ïº¡¤Îµª¸µÀá¤Ë¤«¤«¤ì¤¿¤â¤Î¡×¤È¤¤¤¦µ­½Ò¤¬¤¢¤ë¡£
À°ÍýÈֹ桧426

19 ÏÀʸIX¤ÎʩʸÁð¹Æ¤Î°ìÉô¡£Chapitre III Problème principeaux pour les domaines pseudoconvexes
19530817-19530908¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¡£¡¡£²¤ÄÀÞ¤ê¤Î»æ¤Ç¾®Ê¬¤±¤·¤Æ¤¤¤ë¡£
¿ô³ØÅªÆâÍÆ (Ê©¸ì)¡£ 28Ëç¡£42-69¡£
È÷¹Í¡§¡ÉÄɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£
À°ÍýÈֹ桧437

20 Sur les fonctions analytiques de plusieurs variables¡¡ IX-Domaines finis sans point critique intérieur
19531012¡¡¡¡½Ä30.5£ã£í²£21£ã£í¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ70Ëç ¡ÊÆâ1Ëçɽ»æ¡Ë¡£
ÂèIXÏÀʸ¤Î¼ê½ñ¤­´°À®¹Æ ¡£P 1-69¡£¡¡¥¿¥¤¥È¥ë¤Î²¼¤Ë¡Ê12.23-27 ¤ªÊÌ»ö30¹»Î»¡Ë¡Ê3.30 ¥¿¥¤¥×¤òBehnke·¯¤ËÁ÷¤ë¡Ë¡¡¤È¤¢¤ë¡£
È÷¹Í¡§ÅìµþÄë¹ñÂç³ØÍý³ØÉô¿ô³Ø¶µ¼¼¤Î×½±Ê¾»µÈ»á¤«¤é¤Î½Ä32cm²£24cm¤ÎÉõÅûÉÕ¤­¡£¡Ê¤è¤¯¸«¤ë¤È·×»»ÍÑ»æ¤È¤·¤Æ»ÈÍѤ·¤Æ¤¤¤ë¡£¡Ë¡¡º¸¾å¤Ë¡ÉMémoire IX ¤ÎÁð¹Æ¡É¤È½ñ¤«¤ì¤Æ¤¤¤ë½Ä33.5£ã£í²£24£ã£í¤ÎÉõÅûÆþ¤ê¡£
À°ÍýÈֹ桧439

21 ½ñ´Ê¡Ê¢«H.Cartan¡Ë
19531016¡¡¡¡Éõ½ñ
¥«¥ë¥¿¥ó¡¦¥»¥ß¥Ê¡¼¤ò¤ª¤¯¤ë¤³¤È¡£
À°ÍýÈֹ桧645(=643)

22 ÊÐÆ³´Ø¿ô £±¡Ý£´¡¡
19531125¡¡¡¡½Ä29.7£ã£í²£20.8£ã£í¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ4Ëç¡£
ÊÐÆ³´Ø¿ô £±¡Ý£´¡¡
È÷¹Í¡§¥¯¥ê¥Ã¥×¤¬¤Ä¤¤¤¿½Ä37£ã£í²£26.3£ã£í¤Î¥ì¥Ý¡¼¥ÈÍѻ椬1Ëç¶´¤Þ¤Ã¤Æ¤¤¤ë¡£¡¡½Ä31.7cm²£24.8cm¤ÎCLEAR BOOK¤ËÆþ¤Ã¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧441(=403)

23 ½ñ´Ê¡Ê¢«Behnke¡Ë
19531214¡¡¡¡Éõ½ñ
ÆàÎɤ¢¤Æ¡£
À°ÍýÈֹ桧641(=639)

1954ǯ

1 µ­Ï¿ 1954.1.11¤è¤ê
19540111-19540202¡¡¡¡ÉõÅû(½Ä31.5cm²£24cm¡ËÆþ¤ê¥ì¥Ý¡¼¥ÈÍÑ»æ19Ëç
¿ô¼°Â¿¤¤¡£19540111-19540202:1-18,1Ëç¤Ï19531220
À°ÍýÈֹ桧442

2 ½ñ´Ê¡Ê¢«Behnke¡Ë
19540208¡¡¡¡Éõ½ñ
IX¤Î¤³¤È¡£
À°ÍýÈֹ桧646(=643)

3 Æâʬ´ô°è¤Î¸¦µæ
19540211¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¡£
Îΰè¤Ë±÷¤±¤ëϢ³ÄêÍý 1954.2.11- ¡ÊÆüËÜʸ¡Ë3Ëç¡£1-3¡£
È÷¹Í¡§¡ÉÄɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£
À°ÍýÈֹ桧443(=431)

4 1954ǯ¤Î¸¦µæ¥á¥â
19540224 ¡Ê°ìÉô¤Ëµ­ºÜ¤¢¤ê¡Ë¡¡¡¡½Ä30.5cm²£21cm¤Î¥ì¥Ý¡¼¥ÈÍÑ»æ5Ëç¡ÊÆâ1Ëçɽ»æ¡Ë¡£
1954ǯ¤Î¸¦µæ¥á¥â1Ë硢¾¤Î4Ëç¤ÏIX¤Îʩʸ¸¶¹ÆÃÇÊÒ
À°ÍýÈֹ桧444

5 ¶­³¦ÌäÂê¤Î¸¦µæ 1954.3.9-1954.4.14
19540309¡¡¡¡¥ì¥Ý¡¼¥È»æ1ºý¡Ê½Ä29.8cm²£21.1cm¡Ë
¿ô³Ø
È÷¹Í¡§ ¥ê¥Ü¥ó¤ÇÄÖ¤¸¤Æ¤¢¤ë
À°ÍýÈֹ桧445

6 ¶­³¦ÌäÂê¤Îµ­Ï¿ 1954.4.17-1954.6.29
19540417¡¡¡¡¥ì¥Ý¡¼¥È»æ1ºý¡Ê½Ä29.8cm²£21.1cm¡Ë¡¢¡¡Áޤ߹þ¤ß¤Î¥¹¥±¥Ã¥Á¡Ê»æ1Ëç¡Ë
¿ô³Ø¡¢¥¹¥±¥Ã¥Á¤ÏĹ½÷¤¹¤¬¤Í¤µ¤ó¤¬ÉÁ¤¤¤¿²¬Çî»Î¤Î¾ÓÁü
À°ÍýÈֹ桧446

7 ½ñ´Ê¡Ê¢«Norguet¡Ë
19540515¡¡¡¡Éõ½ñ
IX¤Î¤³¤È¡£
À°ÍýÈֹ桧647(=643)

8 ¡©
19540705¡¡¡¡¥ì¥Ý¡¼¥È»æ1ºý¡Ê½Ä29.8cm²£21.1cm¡Ë¡¢È¾Ê¬°Ê¾åÇò»æ¡¢Æó¤ÄÀÞ¤ê¤Î»æ9Ë礬¶´¤ß¹þ¤ó¤Ç¤¢¤ë
¥ì¥Ý¡¼¥ÈÍÑ»æÉôʬ¤Ï¿ô³Ø
À°ÍýÈֹ桧447[2]

9 Problème frontière
19540728-19540815¡¡¡¡½Ä30cm²£21cm ¥ì¥Ý¡¼¥ÈÍÑ»æ30Ëç¡£
Æüµ­¤ò´Þ¤à¿ô³ØÅªÆâÍÆ¡ÊÆüËÜʸ¡Ë¡£1-3,2-3,1-8,8-23,1
È÷¹Í¡§ÉÔ½çÈÖ¡£¤¹¤Ù¤Æ¤Ï¤º¤ì¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧448

10 ½ñ´Ê¡Ê¢«P.Lelong¡Ë
19540805¡¡¡¡Éõ½ñ
IX¤Î¤³¤È¡£
À°ÍýÈֹ桧648(=643)

11 Problème frontière
19540816-19540819¡¡¡¡½Ä30cm²£21cm ¥ì¥Ý¡¼¥ÈÍÑ»æ17Ëç¡£
¿ô³Ø¡ÊÆüËÜʸ¡Ë¡£¥³¥á¥ó¥È¤â´Þ¤à¡£24-33,3-9¡¥448¤Î³¤­¡£
È÷¹Í¡§¤Ð¤é¤Ð¤é¤Ë¤Ï¤º¤·¤Æ¤¢¤ë¡£
À°ÍýÈֹ桧449

12 Problème frontière
19540820-19540824¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¡£
¿ô³ØÅªÆâÍÆ¡ÊÆüËÜʸ¡Ë29Ëç¡£10, 1-19. 1-4 ,6-10¡£
È÷¹Í¡§Äɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£
À°ÍýÈֹ桧450

13 Problème frontière
19540824-19540901¡¡¡¡½Ä29.5cm²£21cm ¥ì¥Ý¡¼¥ÈÍÑ»æ30Ëç¡£
¿ô³Ø¡Ê11-37¡Ë ÆüËÜʸ¡¡ÃÇÁÛ¡Ê28-30¡Ë ÆüËÜʸ
È÷¹Í¡§¤Ð¤é¤Ð¤é¡£
À°ÍýÈֹ桧451

14 Problem of bounded branches
19540908-19540911¡¡¡¡½Ä29.5cm²£21cm ¥ì¥Ý¡¼¥ÈÍÑ»æ30Ëç¡£
Æüµ­¤ò´Þ¤à¿ô³ØÅªÆâÍÆ¡ÊÆüËÜʸ¡Ë1-7¡¤1-22¡¡Çò»æ 1Ëç
È÷¹Í¡§¤Ð¤é¤Ð¤é¤Ë¤Ï¤º¤·¤Æ¤¢¤ë¡£ÇØÉ½»æ¤¬¤ä¤Ö¤ì¤Æ¤¤¤ë¡£
À°ÍýÈֹ桧452

15 ½ñ´Ê¡Ê¢«Norguet¡Ë
19540913¡¡¡¡Éõ½ñ
C.R.¤ÎÊ̺þ¡£¼ê»æ¤Ê¤·¡£
À°ÍýÈֹ桧649(=643)

16 ¶­³¦ÌäÂê
19540914-19540924¡¡¡¡½Ä29.5cm²£21cm ¥ì¥Ý¡¼¥ÈÍÑ»æ30Ëç¡£
Æüµ­¤ò´Þ¤à¿ô³ØÅªÆâÍÆ¡ÊÆüËÜʸ¡Ë1-14¡¤1-2¡¡Çò»æ 1Ëç¡¡Æüµ­¤ò´Þ¤à¿ô³ØÅªÆâÍÆ¡ÊÆüËÜʸ¡Ë1-4¡¤1-3¡¤1-4¡¤1-2
È÷¹Í¡§¤Ð¤é¤Ð¤é¡£
À°ÍýÈֹ桧453

17 ¶­³¦ÌäÂê
19540925-19541004¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¡£
Æüµ­ÉÕ¤­¡¢¿ô³ØÅªÆâÍÆÅù¡ÊÆüËÜʸ¡Ë30Ëç¡£1-2¡¤1-14¡¤1¡¤15-27¡£Çò»æ£±Ëç¡£
È÷¹Í¡§¡ÉÄɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£
À°ÍýÈֹ桧454

18 ½ñ´Ê¡Ê¢«T.R.Bachiller¡Ë
19540927¡¡¡¡Éõ½ñ
¥×¥¨¥ë¥È¥ê¥³¡¢Ê̺þÀÁµá¡£
À°ÍýÈֹ桧650(=643)

19 ¶­³¦ÌäÂê
19541005-19541015¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¡£
Æüµ­ÉÕ¤­¡¢¿ô³ØÅªÆâÍÆÅù¡ÊÆüËÜʸ¡Ë27Ëç¡£4¡¤ 1-9¡¤.9-15¡¤1-2¡¤3-6¡¤1-3¡£Çò»æ3Ëç¡£
È÷¹Í¡§¡ÉÄɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£
À°ÍýÈֹ桧455

20 ½ñ´Ê¡Ê¢«Norguet¡Ë
19541007¡¡¡¡Éõ½ñ
C.R.¤ÎÊ̺þ¤È¼ê»æ¡£
À°ÍýÈֹ桧651(=643)

21 ¶­³¦ÌäÂê
19541015-19541021¡¡¡¡¥ì¥Ý¡¼¥È¥Ñ¥Ã¥É1ºý¡£
Æüµ­ÉÕ¤­¿ô³ØÅªÆâÍÆ ¡ÊÆüËÜʸ¡Ë¡£29Ëç¡Ê1ËçÇò»æ ¡Ë¡£
È÷¹Í¡§¡ÉÄɲáɺ¸¾å¤Ë­¡¤È½ñ¤«¤ì¤¿½Ä38cm²£27cm¤ÎÉõÅû¤ËÆþ¤Ã¤Æ¤¤¤¿¡£¥Ð¥é¥Ð¥é¡£
À°ÍýÈֹ桧456