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1 Introduction

Theory of foliations is originated from studies of global behavior of solutions

of differential equations. The development of the theory was provoked by the

following question; “Does there exist a two dimensional foliation on the three

sphere S3?”which had been proposed by H.Hopf in a different form in about

1935. This question was answered affirmatively by G.Reeb, and this is regarded

as the initiation of the research field “foliation”. In 1970’s two new concepts on

foliations were introduced. In [16], D.Sullivan called a foliation on a Riemannian

manifold geometrically taut if every leaf is a minimal surface with respect to

the Riemannian metric, and showed that codimension one foliation is geomet-

rically taut if and only if each compact leaf admits a closed transversal curve.

This geometric property is simply called taut, and turned out to be very use-

ful in three dimensional topology via the theory of Thurston norm defined by

W.P.Thurston [17]. The other notion, depth of codimension one foliation was

introduced by Nishimori in 1977 [12]. The original definition of the depth of F ,

denoted by d(F), is as follows.

For leaves F1, F2 of F , we say F1 ≤ F2 if and only if F1 ⊂ F2. F1 < F2

if and only if F1 ≤ F2 and F1 6= F2. For a leaf F of F , d(F ) is the

supremum of k such that there are k leaves F1, . . . , Fk such that

F1 < · · · < Fk = F . The depth of F , d(F) is the supremum of d(F )

for the leaves F of F .

(Note that the value d(F) given by this definition differs by one from the value of

the depth given in Definition 2.1.8 of this paper.) It can be regarded that depth

is a quantity which describes how far from a fiber bundle structure the foliation

is. Nishimori described some fundamental properties of the depth and several

authors studied the invariant afterwards.

In 1980’s D.Gabai developed the theory of codimension one foliations on three

manifolds. He gave a powerful method which is called sutured manifold theory,

for constructing taut foliations on three dimensional manifolds [5]. Particularly

in [6], he showed that for any knot K in S3, there exists a codimension one,

transversely oriented, taut C0 foliation F of finite depth on the knot exterior

E(K) such that F|∂E(K) is a foliation by circles. (As a consequence of this

theorem, Property R Conjecture, which was one of the most important problem

in knot theory, follows immediately.) Inspired by this result, Cantwell-Conlon

[2] introduced an invariant for knots called depth of knots which is the minimal
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depth of the foliations on the knot exterior and studied the invariant in a sequence

of papers ([2, 3], etc.). (For example, in [2], they showed that for each n (≥ 0),

there exists a knot at depth n.) The purpose of this paper is, as a sequal of these

researches, to propose more delicate treatments of depth. In the first result,

we pay our attension to the number of depth 0 leaves of the foliation under

consideration. Here, we note that Cantwell-Conlon often assumed that each of

the foliations under consideration has exactly one depth 0 leaf. The motivation

of the first research is the following question.

Question. For the finite depth foliations on a given 3-manifold M , is there a

difference between the minimal value of the depths of the foliations on M each

of which admits exactly one depth 0 leaf and the minimal value of the depths of

the foliations on M without such an assumption?

In this paper, we discuss this question for Σ(n)(K, 0), the n-fold cyclic covering

space of S3(K, 0), where S3(K, 0) denotes the manifold obtained from S3 by

performing 0-surgery on a knot K. The main result is as follows.

Theorem 1.0.1 Let Σ(n)(K, 0) be as above. Suppose that K is a 0-twisted double

of a non-cable knot. Then for each n, we have

depth0
1,α(Σ(n)(K, 0)) ≥ 1 +

[n

2

]
,

where depth0
1,α(Σ(n)(K, 0)) denotes the minimal depth of codimension one, trans-

versely oriented, taut C0 foliations on Σ(n)(K, 0) each of which admits exactly

one depth 0 leaf representing the homology class corresponding to a generator α

of H1(S
3(K, 0)) and [x] denotes the greatest integer among the integers which are

not greater than x.

Let k be the minimal depth of the codimension one, transversely oriented,

taut C0 foliation on S3(K, 0) (note that by Gabai [6], k is always finite). Suppose

n > 1. Then, by lifting the depth k foliation on S3(K, 0), we see that Σ(n)(K, 0)

admits a codimension one, transversely oriented, taut C0 foliation of depth k

with more than one (in fact, at least n) depth 0 leaves. This together with

Theorem 1.0.1 gives an affirmative answer to Question.

In the second research, we introduce a quantity called “gap” of the foliation

to deal with behaviors of depths of leaves of foliations of finite depth. We know

by the definition of depth of leaves (see Section 2.1.2) that each depth k(≥ 1)
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leaf of F is adjacent to a depth k − 1 leaf. Note that if k does not represent the

maximal depth in F , it is not necessary the case that there exists a depth k + 1

leaf which is adjacent to the leaf. However even if there does not exist such a leaf,

there could be a leaf with depth more than k+1 which is adjacent to the depth k

leaf. We phrase this situation “There is a gap between the depths of the leaves.”

More precisely, for a leaf L, we consider the minimum value of the differences

between the depth of L and the depths of leaves which are adjacent to L and

of depth greater than that of L. Then the gap of the foliation is the maximum

of such values among the leaves of the foliation. For the formal definition of

gap, see Section 2.1.2. By using this invariant, we give an estimation of depth of

foliations on Σ(n)(K, 0) above.

Theorem 1.0.2 Let F be a codimension one, transversely oriented, taut, C0

foliation with C∞ leaves on Σ(n)(K, 0) with exactly one depth 0 leaf representing

[α], where α is corresponding to a generator of H1(S
3(K, 0)) ∼= Z. Suppose Ĝ(F̂)

is a tree. Then for each n, we have:

depth(F) ≥ n + gap(F̃)

2
.

For the notations Ĝ(F̂) and gap(F̃), see Section 2.1.2.

This paper is organized as follows. In Section 2.1, we give definitions con-

cerning about foliations and describe some facts related to the concepts. We also

introduce Semistability Theorem given by Dippolito [4, ] ☆ (Theorem 2.1.1). In

Section 2.1.1, we give definition of depth of foliations and show some facts related

to the concepts. In Section 2.1.2, we give the definition of gap of foliations. For

the definition, we define eauivalence relation on leaves and introduce graph of

foliations. In Section 2.2, we give some definitions concerning topology of three

dimensional manifolds (Thurston norm, knots and links, sutured manifolds, etc.).

We also introduce a theorem given by Gabai [6, ] (Theorem 2.2.1) and give def-

inition of depth of knots. Let F be a codimension one, transversely oriented

C0 foliation of finite depth with C∞ leaves on a compact, orientable manifold.

In Section 3, we give a means of modifying F to obtain a “good” foliation to

which we can define the gap in Section 2.1.2. In Section 4, we give the proofs

of Theorems 1.0.1 and 1.0.2. In Section 4.1, for a q-twisted doubled knot Kq

with companion K ′, and standard Seifert surface Sq (for the definition of these

terms, see Section 2.2), we show that the manifold MSq obtained from the com-
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plementary sutured manifold of Sq by attaching a 2-handle along its suture is

homeomorphic to the exterior of a 2-component link obtained from K ′ by taking

parallel copies with linking number q (Proposition 4.1.1). This implies that MSq

admits a decomposition MSq = E(K ′) ∪ Q, where E(K ′) is the exterior of K ′,
and Q is the manifold homeomorphic to (disk with two holes)×S1. Note that

Σ(n)(K, 0) is a union of n copies of MSq , say Σ(n)(K, 0) = M1 ∪ · · · ∪Mn, where

each Mi is homeomorphic to MSq (moreover, according to the above decomposi-

tion of MSq , each Mi admits a decomposition Mi = E(K ′)i∪Qi). Let M (n) be the

manifold obtained from Σ(n)(K, 0) by cutting along a torus obtained from a lift

of Sq by capping off the boundary by a meridian disk of the solid torus (for the 0-

sugered manifold S3(K, 0)). Let F be a codimension one, transversely oriented,

taut C0 foliation of finite depth on M (n) such that the union of the compact

leaves of F coincides with ∂M (n). In Section 4.2, for the proof of Theorem 1.0.1,

we study the depth of F . In Section 4.2.1, for a doubled knot K, we show

that there exists a submanifold M (n)′ which is obtained from M (n) by removing

a regular neighbourhood of ∂M (n) such that F is transverse to ∂M (n)′, hence

F |M(n)′ (: F ′, say) is a foliation on M (n)′ transverse to ∂M (n)′. Then we show

that depth(F ′) ≤ depth(F) − 1. These imply that our research can be reduced

to the study of the depth of F ′. Since M (n)′ is homeomorphic to M (n), we abuse

notation by denoting M (n)′ = M1∪· · ·∪Mn = (E(K ′)1∪Q1)∪· · ·∪(E(K ′)n∪Qn).

In Section 4.2.2, we mimic the arguments of Cantwell-Conlon [2, Section 2] to

show that if K ′ is a non-cable knot, then via an ambient isotopy, we can put

F ′ in a position which is nice with respect to the submanifolds E(K ′)i. Let di

be the minimal value of the depths of the leaves of F ′ which meet M(K)i. In

Section 4.2.3, we show with adding condition q = 0 that via an amibient isotopy,

we can put F ′ in a position which is nice with respect to Qi. In Section 4.2.4,

we analyze the behaviors of di’s by using arguments introduced in Section 4.2.3

(for example, we give the inequalities d1 < · · · < dk ≤ dk+1 > · · · > dn), which

imply a lower bound of F ′ (Corollary 4.2.1). In Section 4.3, we give the proof

of Theorem 1.0.1 by showing that the depth 0 leaf of each foliation treated in

Theorem 1.0.1 is isotopic to a lift of a torus which is obtained from Sq by capping

off the boundary by a meridian disk. In Section 4.4, we give the proof of Theo-

rem 1.0.2. For a given foliation with exactly one depth 0 leaf on Σ(n)(K, 0) above,

we can apply the modification in Section 3 to obtain the foliation to which we

can define the gap. By applying the arguments as in Section 4.3, we can obtain

a foliation treated in Section 4.2. For such a foliation, we show some properties
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about the graph Ĝ(F̂) (Lemmas 4.4.1～4.4.3). Then by considering positions

of leaves representing vertices on the unique path joining the depth 0 vertices

of Ĝ(F̂) when it is a tree, we give estimations of depths of F . By using these

arguments, we obtain Theorem 1.0.2.
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2 Preliminaries

2.1 Codimension one foliations

Let M be a Riemannian manifold of dimension n. In this subsection, we suppose

that M is compact and orientable.

Definition 2.1.1 A codimension q (or dimension n−q) Cr(0 ≤ r ≤ ∞) foliation

on M is a Cr atlas F on M with the following properties.

1. If (U,ϕ) ∈ F , then ϕ(U) = U1×U2 ⊂ Rn−q ×Rq where U1 (U2 resp.) is an

open disk in Rn−q (Rq resp.).

2. If (U,ϕ) and (V, ψ) ∈ F are such that U ∩ V 6= ∅, then the change of

coordinates map ψ◦ϕ−1 : ϕ(U∩V ) → ψ(U∩V ) is of the form ψ◦ϕ−1(x, y) =

(h1(x, y), h2(y)).

The charts (U,ϕ) ∈ F will be called foliation charts. We call the pair (M,F) a

foliated manifold.

For the basic terminologies concerning foliations (holonomy, etc.), see [1]. Let

F be a codimension q Cr(0 ≤ r ≤ ∞) foliation on M . Let (U,ϕ) be a foliation

chart. The sets of the form ϕ−1(U1×{c}), c ∈ U2 are called plaques of U , or else

plaques of F .

Definition 2.1.2 A path of plaques of F is a sequence of plaques P1, . . . , Pk of

F such that Pj ∩ Pj+1 6= ∅ for all j ∈ {1, . . . , k − 1}. Since M is covered by

plaques of F , we can define on M the following equivalence relation: p1
∼= p2 if

there exists a path of plaques P1, . . . , Pk with p1 ∈ P1, p2 ∈ Pk. The equivalence

classes of the relation are called leaves of F .

In the remainder of this section, suppose q = 1, i.e., F is a codimension one

foliation.

Definition 2.1.3 We say that a leaf of F is proper if its topology as a manifold

coincides with the topology induced from that of M . A foliation F is called

proper if every leaf of F is proper.

Definition 2.1.4 We say that F is taut if for any leaf L of F , there is a properly

embedded (possibly, closed) transverse curve which meets L.
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Definition 2.1.5 Let F be a Cr foliation. We say that F is a Cr foliation with

C∞ leaves on M if each leaf is a C∞ immersed manifold.

By using a partition of unity argument, we can show that any codimension

one, transversely oriented foliation with C∞ leaves has a one dimensional C∞

foliation which is transverse to F . Let F⊥ be a one dimensional C∞ foliation

which is transverse to F .

Let (M,F) be a foliated manifold. A subset U of M is called saturated if U

is a union of leaves of F . It is clear that closed leaves are always proper, and it

is easy to see that each proper leaf L has an open saturated neighbourhood U in

which it is relatively closed (L ∩ U = L).

Notation 2.1.1 Let U be an open saturated set, and ι : U −→ M be the

inclusion. There is an induced Riemannian metric on U ⊂ M . Then Û denotes

the metric completion of U , and ι̂ : Û −→ M denotes the extended isometric

immersion. Let F̂ = ι̂−1(F), and F̂⊥ = ι̂−1(F⊥) be the induced foliations on Û .

The set δU = ι̂(∂Û) is called the border of U .

In the remainder of this section, we suppose F is transversely oriented.

Definition 2.1.6 An (F ,F⊥) coordinate atlas is a locally finite collection of Cr

embeddings ϕi : Dn−1 × [0, 1] → M such that the interior of the images cover

M , and the restriction of ϕi to each Dn−1 × {t} (to each {x} × [0, 1] resp.) is a

C∞(Cr resp.) embedding into a leaf of F(F⊥ resp.).

The unit tangent bundle q : M̃ −→ M of F⊥ is a C∞ double covering of

M . Since F is transversely oriented, for each leaf L of F , q−1(L) consists of two

components. Each component of q−1(L) is called a side of L.

Definition 2.1.7 A side L̃ of q(L̃) = L is proper if there are a transverse curve

τ : [0, 1] −→ M starting from L in the direction of L̃ and ε(> 0) such that

τ(t) /∈ L for 0 < t < ε. Let L̃ be a proper side of L. The leaf L has unbounded

holonomy on the side L̃ if there are a transverse curve γ : [0, 1] −→ M starting

from L in the direction of L̃ and a sequence h1, h2, . . . of holonomy pseudogroup

elements with domain containing im(γ) such that

hi(im(γ)) = γ([0, εi]), εi ↘ 0.

The leaf L is semistable on the side L̃ if there is a sequence e1, e2, . . . of C∞

immersions of L̃× [0, 1] (with its manifold structure) into M such that ei(x, 0) =
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q(x) for all x and i, ei∗( ∂
∂t

)|t=0 points in the direction L̃, ei∗( ∂
∂t

) is always tangent

to F⊥, each ei(L̃× {1}) is a leaf of F , and
⋂

i ei(L̃× [0, 1]) = L.

In [4], Dippolito showed the following.

Theorem 2.1.1 (Semistability Theorem [4, ☆]) Let F be a codimension one

foliation with C∞ leaves on a closed manifold. If L̃ is a proper side of a leaf L

of F , then L either is semistable or has unbounded holonomy on the side L̃.

Remark 2.1.1 Any side of a proper leaf is proper.

2.1.1 Depth of foliations

Definition 2.1.8 A leaf L of F is at depth 0 if it is compact. Inductively, when

leaves of at depth less than k are defined, L is at depth k ≥ 1 if L \ L consists

of leaves at strictly less than k, and at least one of which is at depth k − 1. If L

is at depth k, we use the notation depth(L) = k, and call L a depth k leaf. The

foliation F is of depth k < ∞ if every leaf of F is at depth at most k and k is

the least integer for which this is true. If F is of depth k, we use the notation

depth(F) = k. If there is no integer k < ∞ which satisfies the above condition,

the foliation F is of infinite depth.

In the remainder of this section, we suppose F is of finite depth.

Remark 2.1.2 Let L, L′ be leaves of F . By Definition 2.1.8, we see that if

L \ L ⊂ L′ \ L′, then depth(L) ≤ depth(L′).

Remark 2.1.3 It is known that any leaf of F is proper.

Lemma 2.1.1 For any leaf L of F , there exists a depth 0 leaf of F in L.

Proof. By the definition of depth of leaves (Definition 2.1.8), there exists a leaf

L1 of F such that L1 ⊂ L \ L, and depth(L1) < depth(L). If depth(L1) = 0,

then the lemma holds. Suppose depth(L1) > 0. We claim that L ⊃ L1. Let x be

a point in L1. Since M is a complete metric space, there is a Cauchy sequence

{xi}i=1,2,... (xi ∈ L1) such that xi converges to x. Since xi ∈ L, there exists yi

in L such that d(xi, yi) ≤ 1
i
. Clearly, yi converges to x, i.e., x ∈ L. By the

definition of depth of leaves (Definition 2.1.8), there exists a leaf L2 in L1 such

that depth(L2) < depth(L1). If depth(L2) = 0, then the lemma holds. Suppose

that depth(L2) > 0. Since L ⊃ L1 ⊃ L2, we apply the above argument to L2 to
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show that L ⊃ L2. Then by applying the above arguments repeatedly, we see

that the lemma holds. ¤

Lemma 2.1.2 Let L be a leaf of F . Suppose L has unbounded holonomy on the

side L̃ and let γ be as in Definition 2.1.7. Then for any leaf L′ of F such that

L′ ∩ γ 6= ∅, we have depth(L) < depth(L′).

Proof. Let h1, h2, . . . be as in Definition 2.1.7. Fix a point x0 ∈ L′ ∩ γ. Let

xi = hi(x0) (i = 1, 2, . . . ). Then xi ∈ L′, and xi converges to the point γ(0) ∈ L.

This shows that L ⊂ L′. Since L 6= L′, this implies depth(L) < depth(L′). ¤

Lemma 2.1.3 Let L, L′ be leaves of F . Suppose L is semistable on the side

L̃ and let e1, e2, . . . be as in Definition 2.1.7. Suppose there exists i such that

ei(L̃× [0, 1]) ⊃ L′. Then we have depth(L) ≤ depth(L′).

Proof. If L is compact, then obviously the lemma holds. Suppose L is non-

compact. Then L \ L 6= ∅. Let L∗ be a leaf contained in L \ L. Fix a point

x∗ in L∗. Let P be a plaque of F⊥ through x∗. Let P ′ be the closure of a

component of P \ x∗ such that x∗ ∈ P ′ ∩ L. Then we can take points x1, x2, . . .

in P ′ ∩ L such that xi monotonously converges to x∗. Let x̃j be the points in

L̃ such that ei(x̃j × {0}) = xj. Let Pj = ei(x̃j × [0, 1]). Then P2, P3, . . . are

mutually disjoint arcs embedded in P ′. Since L′ ⊂ ei(L̃ × [0, 1]), L′ ∩ Pj 6= ∅
(j = 2, 3, . . . ) Fix a point x′j ∈ L′ ∩ Pj. Then {x′j}j=2,3,... converges to x∗. Hence

L∗ ⊂ L′. Since L∗ 6= L′, this implies that L \ L ⊂ L′ \ L′. By Remark 2.1.2, we

have depth(L) ≤ depth(L′). ¤

Lemma 2.1.4 Let {L(d)
i } be a set of depth d leaves of F , U a component of

M \ ∪L
(d)
i , and F a component of ∂Û . Then depth(L) ≤ d, where L denotes the

leaf ι̂(F ) of F .

Proof. Fix a point x in L. Let P be a plaque of F⊥ through x. Let P1, P2

be the closures of the components of P \ x. We may suppose P2 is contained

in ι̂(Û). If there exists a subarc P ′
1 of P1 with x ∈ ∂P ′

1 such that P ′
1 ⊂ ι̂(Û),

then obviously L ∈ {L(d)
i }. Hence we may suppose for any subarc P ′

1 of P1 with

x ∈ ∂P ′
1, we have P ′

1 ⊂6 ι̂(Û). If there exists a subarc P ′ of P1 with x ∈ ∂P ′ such

that P ′ does not intersect ∪L
(d)
i , then L ∈ {L(d)

i }, hence depth(L) = d.

Suppose for any subarc P ′ of P1 with x ∈ ∂P ′, there exists L′ ∈ {L(d)
i } such

that L′ ∩ P ′
1 6= ∅. Then the situation is divided into the following two cases.

Case 1 L is semistable on the side L̃ which contains P1.
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Let e1, e2, . . . be as in Definition 2.1.7. Take a subarc P ′′ of P1 with x ∈ ∂P ′′

and P ′′ ⊂ im(e1). Let L′′ be an element of {L(d)
i } such that L′′ ∩ P ′′ 6= ∅. By

Lemma 2.1.3, we have depth(L) ≤ depth(L′′) = d.

Case 2 L has unbounded holonomy on the side L̃ which contains P1.

Take a subarc γ′′ of P1 with x ∈ ∂γ′′ and satisfies the condition of γ in

Definition 2.1.7. By Lemma 2.1.2, we have depth(L) < depth(L′) = d. ¤

Lemma 2.1.5 Let {L(d)
i }, U be as in Lemma 2.1.4. Suppose there exists a pair

of components of ∂Û representing the same leaf L of F . Then L is an element

of {L(d)
i }.

Proof. Let x, P1 be as in the proof of Lemma 2.1.4. It is clear that there exists

a subarc P ′
1 of P1 with x ∈ ∂P ′

1 such that P ′
1 ⊂ ι̂(Û). This implies L ∈ {L(d)

i }. ¤

2.1.2 Gap of foliations

Definition 2.1.9 For leaves L1 and L2 of F , we say that L1 is equivalent to L2

if L1 = L2 or there exisits an embedding φ : L1 × [0, 1] −→ M such that the

image of L1 × {0} (L1 × {1} resp.) coincides with L1 (L2 resp.), and the image

of {x} × [0, 1] is contained in a leaf of F⊥ for each x ∈ L1. Moreover, if L̃ is the

side of L such that φ∗( ∂
∂t

)|t=0/||φ∗( ∂
∂t

)|t=0|| is contained in L̃, then we say that L

is equivalent to L′ through the side L̃.

Remark 2.1.4 Let L be a leaf of F . Suppose that L is semistable on the proper

side L̃ and let ei : L̃× [0, 1] −→ M be as in Definition 2.1.7. It is clear that for

each i, L is equivalent to ei(L̃× {1}) through the side L̃.

Suppose further M is closed. Let F̃ be a codimension one, transversely

oriented Cr foliation of finite depth with C∞ leaves on M which satisfies the

following conditions:

1. the number of equivalence classes of the leaves of F̃ is finite;

2. let L1, L2 be leaves of F̃ . If L1 is equivalent to L2 through the side L̃1,

then the restriction of F̃ to the region between L1 and L2 containing the

side L̃1 is a product foliation with each leaf is homeomorphic to L1.

Let [L0
i ] be the equivalence classes of the depth 0 leaves of F̃ . Let M̂ be the

union of the metric completions of the components of M \ (
⋃

i L
0
i ). Let F̂ be the

10



foliation on M̂ induced from F̃ . By the definition of depth, we immediately have

the following.

Lemma 2.1.6 Under the above notations, we have depth(F̂) = depth(F̃).

Let [Lj] be the equivalence classes of the leaves of F̂ .

Definition 2.1.10 The graph of F̂ denoted by Ĝ(F̂) = {V, E} is the directed

graph with the vertex set V = {vj} and the edge set E = {ek`} such that each

vj corresponds to the equivalence class [Lj] of the leaves of F̂ and there is an

edge ek` from vk to v` if L` ⊂ Lk \Lk, and there does not exist a leaf L such that

L ⊂ Lk \ Lk and L` ⊂ L \ L.

By the construction, the foliated manifold (M, F̃) is recovered from (M̂, F̂)

by identifying pairs of depth 0 leaves L0+
i and L0−

i , each corresponding to L0
i .

Then we define the graph of F̃ as follows.

Definition 2.1.11 The graph of F̃ denoted by G(F̃) is the graph obtained from

Ĝ(F̂) by identifying pairs of vertices corresponding to L0+
i and L0−

i for each depth

0 leaf L0
i .

By the definition, we immediately have the following.

Lemma 2.1.7 The following three conditions are equivalent to each other.

1. Ĝ(F̂) is the graph consisting of exactly one vertex.

2. F̃ is a foliation given by a fiber bundle structure over S1.

3. There exists a leaf L0
i of F̃ such that L0+

i and L0−
i corresponding to the

same vertex of Ĝ(F̂).

Definition 2.1.12 Let v be a vertex of Ĝ(F̂) or G(F̃). We say that v is at

depth k if v represents a leaf at depth k. If v is at depth k, we use the notation

depth(v) = k, and call v a depth k vertex.

Definition 2.1.13 Let e be an edge of Ĝ(F̂) or G(F̃). Let v be the initial point

and v′ the terminal point of e. Then, we define the length of e as follows:

length(e) = depth(v)− depth(v′).

11



Remark 2.1.5 Let v be a vertex of Ĝ(F̂) or G(F̃). If depth(v) 6= 0, then by the

definition of the depth, we see that there exists a directed path Γ = e1 ∪ · · · ∪ en

from v to a depth 0 vertex such that length(ei) = 1 (i = 1, . . . , n)

Definition 2.1.14 We define the gap of the foliation F̃ as follows:

gap(F̃) =

{
0 if G(F̃) has no edges,

maxe:edges of G( eF){length(e)} if G(F̃) has an edge.

2.2 Topology of three dimensional manifolds

In this subsection, we introduce some basic terminologies concerning three di-

mensional manifolds. Throughout this subsection, we suppose submanifolds are

differentiable, hence each submanifolds admits a regular neighbourhood. For a

submanifold G of a manifold M , N(G,M) denotes a regular neighbourhood of

G in M . When M is clear from the context, we often abbreviate N(G,M) by

denoting N(G). Let β be a simple closed curve embedded in a surface. We say

that β is inessential if there exists a disk D in the surface such that ∂D = β.

The simple closed curve β is essential if it is not inessential.

In the remainder of this subsection, M denotes a three dimensional manifold.

We say that M is irreducible if for any two-sphere S2 embedded in M , there

exists a three-ball B3 in M such that ∂B3 = S2. Let F be a surface properly

embedded in M . We say that F is compressible if there is a disk D in M such

that D ∩ F = ∂D and ∂D is essential in F . The disk D is called a compression

disk. The surface F is incompressible if it is not compressible. Let F1, F2 be

surfaces embedded in M such that ∂F1 = ∂F2 or ∂F1 ∩ ∂F2 = ∅. We say that

F1 and F2 are parallel (or F2 is parallel to F1 ) if there is a submanifold N in M

such that N is homeomorphic to F1 × [0, 1] where we have the following.

1. If ∂F1 = ∂F2, then F1(F2 resp.) corresponds to the closure of the com-

ponent of ∂(F1 × [0, 1]) \ (∂F1 × {1/2}) that contains F1 × {0}(F1 × {1}
resp.).

2. If ∂F1∩∂F2 = ∅, then F1(F2 resp.) corresponds to F1×{0}(F1×{1} resp.)

and N ∩ ∂M corresponds to ∂F1 × [0, 1].

Suppose F is connected. We say that F is ∂-parallel if F is parallel to a subsurface

of ∂M . We say that F is essential if F is incompressible and not ∂-parallel.

12



2.2.1 Thurston norm

Let F be a surface in ∂M . Then, for a connected surface S properly embedded in

(M, F ), let χ−(S) = max{0,−χ(S)}. In general, for a surface S , let χ−(S ) =

Σn
i=1χ−(Si) (S1, . . . , Sn are the components of S ). For a nontrivial homology

class a ∈ H2(M, F ;Q), we define x(a) = min{χ−(S ) | S is a surface properly

embedded in (M,F ) which represents a ∈ H2(M,F ;Q)}. Let G be a surface

properly embedded in (M, F ). We say that G is norm minimizing if χ−(G) =

x([G]), where [G] is the element of H2(M, F ;Q) represented by G. Let S be a

surface properly embedded in M . We say that S is taut if S is incompressible

and norm minimizing in H2(M,N(∂S, ∂M)).

Let V be a solid torus in M . A simple closed curve m in ∂V is called a

meridian of V if m is essential in ∂V and there exists a disk D properly embedded

in V such that ∂D = m. A simple closed curve ` is called a longitude of V if it

is null-homologous in M \ V .

Remark 2.2.1 For a taut foliation, it is known that any compact leaf is norm

minimizing [17, Corollary 2]. We can show that any leaf of a taut foliation is

incompressible by the arguments in the proof of Lemma 7 of [15], hence any

compact leaf of a taut foliation is taut.

2.2.2 Knots and links

The union of finite number of mutually disjoint oriented simple closed curves in

a 3-manifold M is called a link. For a link L in M , E(L) denotes M \N(L,M).

We call E(L) an exterior of L. A link which consists of one component is called

a knot. Let K1, K2 be knots in M . We say that K1 and K2 are equivalent (or

K2 is equivalent to K1) if there exists a homeomorphism h : M −→ M such

that h(K2) = K1. A Seifert surface for K is an oriented connected surface S

embedded in M such that ∂S = K. Note that N(K) is a solid torus. Then a

meridian (longitude resp.) of N(K) is called a meridian (longitude resp.) of K.

It is known that for any knot K in the 3-sphere S3, there exists a Seifert surface

for K. This implies that there exists a longitude of K intersecting a meridian of

K transversely in one point. If a Seifert surface for K has minimal genus among

all Seifert surfaces for K, it is called a minimal genus Seifert surface for K and

the genus is called the genus of K. A knot K in S3 is called a trivial knot if

there exists a disk D2 embedded in S3 such that ∂D2 = K, otherwise K is called

a non-trivial knot.
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Definition 2.2.1 Let R,R1, R2 be oriented surfaces in S3. We say that R is

obtained by plumbing R1 and R2 if they satisfy the following.

1. R = R1 ∪R2, where R1 ∩R2 is a rectangle D with edges a1, b1, a2, b2 as in

Figure 2.1 such that a1, a2 ⊂ ∂R1 and b1, b2 ⊂ ∂R2, a1 and a2 (b1 and b2

resp.) are arcs properly embedded in R2 (R1 resp.).

2. There exist 3-balls B1, B2 in S3 which satisfy the following.

(a) B1 ∪B2 = S3.

(b) B1 ∩B2 = ∂B1 = ∂B2.

(c) Bi ⊃ Ri (i = 1, 2).

(d) ∂B1 ∩R1 = ∂B2 ∩R2 = D.

a1
a1

b1
b1

b2

b2
a2

a2

R1

R2

Figure 2.1

Let K ′ be a knot in S3, and V = D2 × S1 an unknotted solid torus in

S3. Let L be a link in V such that L is not contained in any 3-ball in V , and

h : V −→ N(K ′) a homeomorphism. Then the link h(L) is called a satellite

for K ′, and K ′ is called a companion for h(L). Let ` (m resp.) be a longitude

(a meridian resp.) of V . If L is a knot in ∂V representing a homology class

p[m] + q[`](∈ H1(∂V,Z)) (with |q| ≥ 2) then h(L) is called a cable of K ′. We say

that a knot K is a cable knot if there exists a knot K ′′ such that K is a cable

of K ′′. Let C be the knot in V as in Figure 2.2 and `′ (m′ resp.) (⊂ ∂N(K ′)) a

longitude (a meridian resp.) of N(K ′). For an integer q, let hq : V −→ N(K ′)
be a homeomorphism with (hq)∗([m]) = [m′], (hq)∗([`]) = [`′] + q[m′]. Then, we

14



call the satellite hq(C) a q-twisted double of K ′ (or simply, we say that hq(C) is

a q-twisted doubled knot). Let S be the genus one surface in V , as in Figure

2.3. Clearly hq(S) is a Seifert surface for hq(C). We often use the notation Sq

for denoting this Seifert surface. Note that if K ′ is a non-trivial knot, then for

any q ∈ Z , hq(C) is a non-trivial knot [13, IV.10]. Since Sq is of genus one,

this implies that if K ′ is a non-trivial knot, then Sq is a minimal genus Seifert

surface for hq(C). We call Sq a standard Seifert surface for hq(C). An unknotted

annulus in S3 with positive or negative one full twist is called a Hopf annulus

(see Figure 2.4). Let A be the annulus embedded in V as in Figure 2.3, and let

Aq = hq(A). Then by Figure 2.3 , we see that Sq is obtained by plumbing Aq

and a Hopf annulus.

V C

`

      m                     

Figure 2.2���������������yyyyyyyyyyyyyyy ���������������yyyyyyyyyyyyyyy��yy��yy��yy SV              V A

Figure 2.3���yyy���yyy���yyy����yyyy��yy������������������yyyyyyyyyyyyyyyyyy������yyyyyy
Figure 2.4
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2.2.3 Depth of knots

Recall that M denotes a 3-manifold. In this subsection, we suppose that M is

compact and oriented.

D. Gabai showed the following in [6].

Theorem 2.2.1 ([6, Theorem☆]) Let K be a knot in S3, and S a minimal

genus Seifert surface for K. Then there exists a codimension one, transversely

oriented, taut C0 foliation F of finite depth on E(K) such that S ∩ E(K) is a

compact leaf of F , and that F |∂E(K) is a foliation by circles.

Cantwell-Conlon [3] proposed the following.

Definition 2.2.2 Let K be a knot in S3. For an integer r (0 ≤ r ≤ ∞), K

is of Cr-depth at most k if the knot exterior E(K) admits a codimension one,

transversely oriented, taut Cr foliation which is transverse to ∂E(K) and of

depth at most k. If k is the least integer for which this is true, then K is of

Cr-depth k. If such an integer does not exist, the knot K is of infinite Cr-depth.

The following definition which gives a variation of depth is required for the

statement of Theorem 1.0.1.

Definition 2.2.3 Suppose a nontrivial element α of H2(M,Q) is represented by

a connected, taut surface F . Then, we define Cr 1-depth of M associated to α

which is denoted by depthr
1,α(M) as follows.

depthr
1,α(M) = min{depth(F) | F is a codimension one, transversely oriented,

taut Cr foliation with exactly one depth 0 leaf, which represents α}

2.2.4 Sutured manifolds

In this subsection, we quickly recall the definition of sutured manifold introduced

by Gabai [6] and some related concepts.

Definition 2.2.4 Let M be a compact, oriented 3-manifold. The pair (M,γ) is

a sutured manifold if γ is a union of mutually disjoint annuli in ∂M satisfying

the following conditions.

1. Each component of γ contains an oriented simple closed curve which is

homologically non-trivial in γ. The simple closed curve is called a suture,

and s(γ) denotes the union of the sutures of γ.
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2. Let R(γ) = ∂M \ intγ. Then R(γ) is oriented as follows. For each com-

ponent δ of ∂R(γ) and each component A1 of γ such that A1 ∩ δ 6= ∅, we

have the following. If s1 is the suture in A1, then δ and s1 are homologous

in A1.

Then R+(γ) (R−(γ) resp.) denotes the union of the components of R(γ) with

its normal vectors point outward (inward resp.).

Note that in the original definition of sutured manifold, γ may have torus

components. However in our setting this situation does not occur. Hence we

gave a definition for the restricted case.

Let S be a compact surface with ∂S 6= ∅, M = S× [0, 1], and γ = ∂S× [0, 1].

It is easy to see that (M, γ) admits a sutured manifold structure with R+(γ) =

S×{0} (see Figure 2.5). We call the sutured manifold a product sutured manifold.������������������yyyyyyyyyyyyyyyyyyR+

R

(γ)

(γ)-

Figure 2.5

Let (M, γ) be a sutured manifold and D a disk properly embedded in M .

We call D a product disk for (M,γ), if D ∩ R+(γ) consists of an arc properly

embedded in R+(γ), and D ∩ R−(γ) consists of an arc properly embedded in

R−(γ). Let M ′ be the manifold obtained from M by cutting along D, γ̂ the

image of γ in M ′, D+ and D− the copies of D in M ′. Then let γ′ = γ̂∪D+∪D−.

It is easy to see that (M ′, γ′) inherits a sutured manifold structure from (M, γ).

We say that the sutured manifold (M ′, γ′) is obtained from (M, γ) by the product

decomposition along the product disk D (Figure 2.6).

Let K be a knot in an oriented 3-manifold and S a Seifert surface for K.

We may suppose that S ∩ E(K) = S \N(∂S, S) and S ∩ E(K) is properly

embedded in E(K). Then SE denotes the surface S ∩ E(K). Let M1 be a

regular neighbourhood of SE in E(K) and γ1 = M1 ∩ ∂E(K). Clearly, (M1, γ1)
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M 0

0γ

γ������������yyyyyyyyyyyy�������������������������yyyyyyyyyyyyyyyyyyyyyyyyy����yyyyD
M

Figure 2.6

is a product sutured manifold. Let XS = E(K) \M1, γS = ∂E(K) \ γ1 (=

XS∩∂E(K)). It is easy to see that (XS, γS) admits a sutured manifold structure

with R±(γS) = R∓(γ1). We call the sutured manifold (XS, γS) the complementary

sutured manifold of S.
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3 Modifying foliations

Let M be a compact, oriented n dimensional manifold and F a codimension

one, transversely oriented Cr foliation of finite depth with C∞ leaves on M . We

further suppose depth(F) 6= 0. In this section, we show that for any foliation

as above, we can modify F to obtain a foliation with the condition soon after

Remark 2.1.4 in Section 2.1.2. Let F⊥ be a one dimensional C∞ foliation on M

which is transverse to F . Since M is compact, we can take an (F ,F⊥)-coordinate

atlas {ϕi} of m(< ∞) components.

3.1 First step of Modification

In this subsection, we describe a procedure for modifying F by using depth 0

leaves of F .

Lemma 3.1.1 Under the equivalence relation of Definition 2.1.9, the number

of the equivalence classes represented by the depth 0 leaves is at most 2m +

rank H1(M,R)− 1.

Proof. Let {L(0)
j } be representatives of the equivalence classes of the depth 0

leaves of F . We assume that {L(0)
j } has 2m+rank H1(M,R) elements. By slightly

modifying the (F ,F⊥)-coodinate atlas {ϕi} if necessary, we may suppose that

(∪L
(0)
j )∩(∪ϕi(D

n−1×∂[0, 1])) = ∅. Note that if we take any subset of {L(0)
j } con-

sisting of at least rank H1(M,R) + 1 elements, then the union of them separates

M . Hence the number of the components of M\∪L
(0)
j is at least 2m+1. Hence we

can find U , a component of M \∪L
(0)
j such that U∩(

⋃m
i=1 ϕi(D

n−1×∂[0, 1])) = ∅.
Note that U is a saturated set. Hence we use notations in Notation 2.1.1 in Sec-

tion 2.1. For any point x in ∂Û , let τ̂x be the leaf of F̂⊥ which meets x. Since

U ∩ (
⋃m

i=1 ϕi(D
n−1× ∂[0, 1])) = ∅, τ̂x is a proper subarc of ϕi(c× [0, 1]) for some

i and c ∈ Dn−1. Hence τ̂x is an arc properly embedded in Û with endpoints x

and y, say. Since F is transversely oriented, x and y are contained in different

components of ∂Û . If ι̂(x) and ι̂(y) are contained in the same leaf of F , this

implies that {L(0)
j } consists of one element, contradicting the assumption that

{L(0)
j } has 2m + rank H1(M,R) elements. Thus ι̂(x) and ι̂(y) are contained in

different leaves, say Fx and Fy of F . Obviously, we can take an embedding

φ : Fx × [0, 1] → M which gives equivalence relation between Fx and Fy, this

contradicts the assumption that each pair of elements of {L(0)
j } is not mutually

equivalent. ¤
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For an equivalence class [L] represented by a depth 0 leaf L, ∪Lα denotes the

union of the leaves of F representing [L].

Claim Under the above notations, ∪Lα is closed.

Proof of Claim. Let {xi}i=1,2,... be a Cauchy sequence in M such that each

xi is contained in ∪Lα and converges to x∞. We show that x∞ ∈ ∪Lα. Let L∞
be the leaf of F which contains x∞. Let P be a plaque of F⊥ through x∞. We

may suppose each xi is contained in P . Let P+, P− be the components of P \x∞.

Then, by retaking xi if necessary, we may suppose that each xi is contained in

P+. Let Li be the leaf of F which contains xi. Since Li is compact, Li intersects

P finitely many times. Thus we may suppose that xi is the nearest to x∞ among

all the points of Li∩P . Suppose L∞ has unbounded holonomy. Let γ, h1, h2, . . .

be as in Definition 2.1.7. Since xi converges to x∞, we may suppose xn ∈ im(γ),

for n À 0. Fix such n. Take δn such that γ([0, δn]) is the subarc of im(γ) with

endpoints x∞, xn. Since xn is the nearest to x∞, hi(im(γ)) /⊂ γ([0, δn]) for any n,

a contradiction. Hence L∞ does not have unbounded holonomy on the side which

contains xi. By Theorem 2.1.1, L∞ is semistable on the side which contains xi.

Hence L∞ is equivalent to Li (Remark 2.1.4). Thus x∞ is contained in ∪Lα. ¤

Now, we describe how to modify F near L to obtain a new finite depth

foliation F1. The situation is divided into the following two cases.

Case 1 There exists more than one leaves of F representing [L].

Case 2 There exists exactly one leaf of F representing [L].

In Case 1, let {φβ} be the set of all the embeddings which give equivalence

relations between L and the leaves representing [L]. Let U = ∪φβ(L × [0, 1]).

The situation is divided into the following two subcases.

Case 1.1 U = M .

Claim 1 For each side of L, there is a leaf L′ to which L is equivalent through

the side.

Proof of Claim 1. Let P be a plaque of F⊥ through x ∈ L. For a side L̃ of

L, let P+ be the component of P \ x which is contained in the side L̃. Let xi be

a sequence of points in P+ which converges to x. Since U = M , for each i, there

exists a leaf Li to which L is equivalent via embedding φi : L× [0, 1] → M such

that φi(L× [0, 1]) 3 xi. If there exists i such that φi(L× [0, 1]) contains the side

L̃, then the leaf φi(L× {1}) is equivalent to L through the side L̃. Suppose for

each i, φi(L × [0, 1]) does not contain the side L̃. Let Li = φi(L × {1}). Then
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Li is a depth 0 leaf such that Li ∩ P contains a point yi such that yi = x or yi is

nearer to x than xi in P+. By applying the argument as in the proof of Claim

given soon after the proof of Lemma 3.1.1, we see that Li is semistable on the

side L̃. Hence by Remark 2.1.4, there exisits a leaf L′ to which L is equivalent

through the side L̃, this completes the proof of the claim. ¤

Let {φ±β } be the set of all the embeddings which give equivalence relations

between L and the leaves representing [L] through the side L̃±. Let U± =

∪φ±β (L× [0, 1]).

Claim 2 Both U+ and U− are closed.

Proof of Claim 2. Since the situation is symmetric, we give the proof for

U+. Let {xi}i=1,2,... be a Cauchy sequence in M such that each xi is contained

in U+ and converges to x∞. We show that x∞ ∈ U+. Assume x∞ /∈ U+. This

implies that there does not exisit j such that x∞ ∈ φ+
j (L × [0, 1]). For each

i, we fix an embedding φ+
i giving an equivalence relation through the side L̃+

such that xi ∈ φ+
i (L × [0, 1]). Let L∞ be the leaf of F which contains x∞. Let

Li = φ+
i (L × {1}). Let P be a plaque of F⊥ through x∞. We may suppose

each xi is contained in P . Let P+, P− be the components of P \ x∞. Since

x∞ /∈ φ+
i (L×[0, 1]), all of the xi’s are contained in P+ or P−, say P+. Let yi be the

point of Li∩P+ which is the nearest to x∞. By applying the argument in the proof

of Claim given soon after the proof of Lemma 3.1.1, we can show that L∞ does not

have unbounded holonomy on the side which contains xi. By Theorem 2.1.1, L∞
is semistable on the side which contains xi. Hence for large n, L∞ is equivalent

to Ln through the side which contains xi. Let φ′ : Ln × [0, 1] → M be an

embedding which gives the equivalence relation. Then, by composing φ+
n and φ′,

we can obtain an embedding which gives equivalence relation between L and L∞
through the side L̃+. Hence x∞ ∈ U+, a contradiction. ¤

Claim 3 There exists a leaf L∗ to which L is equivalent through both sides of

L.

Proof of Claim 3. Since U = M and M is connected, the above Claim 2

implies that U+ ∩ U− 6= ∅. For a point y in U+ ∩ U−, let φ± be an embedding

from L × [0, 1] to M which gives equivalence relation through L̃± such that

φ±(L × [0, 1]) contains y. Let L± = φ±(L × {1}). If L+ = L−, then L is

equivalent to L+ = L− through both sides of L. Suppose L+ ⊂ intφ−(L× [0, 1]).

Since L+ is transverse to F⊥, L is equivalent to L+ through the side L̃−. Thus
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L+ satisfies the condition of L∗. The case of L− ⊂ intφ+(L× [0, 1]) is treated in

the same manner, these complete the proof of the claim. ¤

By joining the embeddings giving equivalence relation between L and L∗ in

the above Claim 3, we see that there is an immersion φ′ : L×[0, 1] → M such that

the image of {x}×[0, 1] is contained in a leaf of F⊥, φ′(L×{0}) = φ′(L×{1}) = L.

Hence M admits a fiber bundle structure over S1 with each fiber homeomorphic

to L and transverse to F⊥, and L is a fiber. In this case, we let F1 be the foliation

given by this bundle structure, i.e., each leaf of F1 is a fiber of the fibration.

Case 1.2 U 6= M .

In this case, we first show the following claims (Claims 1～3).

By applying the argument as in the proof of Claim 2 of Case 1.1, we can show

the following.

Claim 1 U is closed.

Let τ be a leaf of F⊥|U which meets a component of ∂U , say L0.

Claim 2 The leaf τ is an arc properly embedded in U .

Proof of Claim 2. Assume not, i.e., τ meets ∂U in one point. Let {xi}i=1,2,...

be a sequence of points on τ such that dτ (x0, xi) > i, where dτ is the path metric

on τ induced from M . By the above Claim 1, U is compact. Hence there exists an

accumulating point of ∪xi. By taking a subsequence of {xi}i=1,2,... if necessary,

we may suppose that xi converges to x∞. Since U is closed, x∞ ∈ U . Then

x∞ ∈ L or there exists φ∞ ∈ {φβ} such that x∞ ∈ φ∞(L× [0, 1]). Since τ meets

∂U in one point, x∞ /∈ ∂U .

Case 1.2.1 x∞ ∈ L.

In this case, L0 6= L. Let φ0 be an embedding which gives equivalence relation

between L and L0. Since xi converges to x∞, and dτ (x0, xi) > i, we see that

τ ∩φ0(L× [0, 1]) is a union of infinitely many fibers of F⊥|φ0(L×[0,1]) contained in

τ , contradicting that τ meets ∂U in one point.

Case 1.2.2 x∞ /∈ L.

In this case, there exists φ∞ ∈ {φβ} such that x∞ ∈ φ∞(L × [0, 1]). Let

L∞ = φ∞(L× {1}). On the other hand, since U is closed, L0 ⊂ U . This implies

that L0 is equivalent to L. Suppose L0 = L. Since dτ (x0, xi) > i, we see that

τ ∩ φ∞(L × [0, 1]) is a union of infinitely many fibers of F⊥|φ0(L×[0,1]) those are

contained in τ , contradicting that τ meets ∂U in one point.
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Suppose L0 6= L. Let φ0 be an embeddeing which gives equivalence relation

between L and L0. The situation is divided into the following two cases.

Case 1.2.2.1 φ0(L× [0, 1]) ∩ φ∞(L× [0, 1]) = φ∞(L× [0, 1]).

In this case, since the length of each fiber of F⊥|φ∞(L×[0,1]) is finite, and

dτ (x0, xi) > i, we see that τ ∩φ∞(L× [0, 1]) is a union of infinitely many fibers of

F⊥|φ∞(L×[0,1]). Hence τ ∩ φ0(L× [0, 1]) is also a union of infinitely many subarcs

of τ which are properly embedded in φ0(L × [0, 1]), contradicting that τ meets

∂U in one point.

Case 1.2.2.2 φ0(L× [0, 1]) ∩ φ∞(L× [0, 1]) = L.

In this case, by applying the argument as in Case 1.2.2.1, we can show that

τ ∩φ∞(L× [0, 1]) is a union of infinitely many fibers of F⊥|φ∞(L×[0,1]). Since each

fiber of F⊥|φ0(L×[0,1]) is adjacent to a fiber of F⊥|φ∞(L×[0,1]), τ ∩ φ0(L × [0, 1])

is also a union of infinitely many fibers of F⊥|φ0(L×[0,1]). This contradicts the

assumption that τ meets ∂U in one point. ¤
Claim 3 The boundary of U consists of two components.

Proof of Claim 3. Since F is transversely oriented, we see by Claim 2 of Case

1.2 that ∂U consists of at least two components. Suppose L ⊂ ∂U . Let L′′ be

another component of ∂U . Since U is closed, L′′ ⊂ U . Hence L′′ is equivalent

to L. Let φ′′ be an embedding which gives equivalence relation between L and

L′′. Then, it is obvious that U = φ′′(L × [0, 1]), hence ∂U = L ∪ L′′. Suppose

L ⊂ int U . Let L1, L2 be different components of ∂U . Let φ1 (φ2 resp.) be an

embedding which gives equivalence relation between L and L1 (L2 resp.). Then

it is obvious that U = φ1(L× [0, 1]) ∪ φ2(L× [0, 1]). Hence ∂U = L1 ∪ L2. This

completes the proof of the claim. ¤
Let ∂U = L∞ ∪ L−∞. Obviously, L∞ is equivalent to L−∞, i.e., there exists

φ∗ : L∞ × [0, 1] → M such that φ∗(L∞ × [0, 1]) = U . Now, we modify F
by replacing F|U with the image of the product foliation on L∞ × [0, 1]. The

modification near the depth 0 leaf L is completed.

In Case 2 (the case that there exists exactly one leaf of F representing [L]), let

U = M \ L. Then ∂Û = L+ ∪ L−, where L+ (L− resp.) is homeomoprhic to L.

The situation is divided into the following two subcases.

Case 2.1 There exists a homeomorphism h : L× [0, 1] → Û such that the image

of each x× [0, 1] is a leaf of F̂⊥.

In this case M admits a fiber bundle structure over S1 with each fiber home-

omorphic to L and transverse to F⊥, and L is a fiber. Then, F1 is the foliation
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given by this bundle structure,

Case 2.2 There does not exist a homeomorphism from L× [0, 1] to Û as in Case

2.1.

In this case F is unchanged by the modification.

In Cases 1.2 and 2.2, we further modify the foliation by using another equiv-

alence class of the depth 0 leaves. By Lemma 3.1.1, this terminates in finitely

many steps. Let F1 be the foliation which is obtained by repeating the procedure

for all equivalence classes of the depth 0 leaves. Note that this modification does

not change the transverse foliation F⊥, i.e., F1⊥ = F⊥.

3.2 Second step of Modification

In this subsection, we describe a procedure for modifying F1 obtained in Sec-

tion 3.1 by using depth 1 leaves of F1.

Lemma 3.2.1 For the modified foliation F1, the number of the equivalence

classes represented by the depth 1 leaves is finite.

Proof. Let {L(1)
k } be a set of depth 1 leaves of F1 such that each pair of elements

is not mutually equivalent. We assume that {L(1)
k } has infinitely many elements.

By Lemma 2.1.2 and Theorem 2.1.1, we can show that each leaf of {L(1)
k } is

isolated in ∪L
(1)
k . By slightly modifying the (F ,F⊥)-coodinate atlas {ϕi} if

necessary, we may suppose that (∪L
(1)
k ) ∩ (∪ϕi(D

n−1 × ∂[0, 1])) = ∅. Hence we

can find U , a component of M \ ∪L
(1)
k such that U ∩ (

⋃m
i=1 ϕi(D

n−1× ∂[0, 1])) =

∅. For any point x in ∂Û , let τ̂x be the leaf of F̂1⊥ which meets x. Since

U ∩ (
⋃m

i=1 ϕi(D
n−1× ∂[0, 1])) = ∅, τ̂x is a proper subarc of ϕi(c× [0, 1]) for some

i and c ∈ Dn−1. Hence τ̂x is an arc properly embedded in Û with endpoints x

and y, say. Since F is transversely oriented, x and y are contained in different

components of ∂Û . Let Fx (Fy resp.) be the leaf of F1 which meets ι̂(x) (ι̂(y)

resp.). Then we immediately have the following.

Claim 1 Û is homeomorphic to Fx × [0, 1], where each {p} × [0, 1] is contained

in a leaf of F⊥.

Moreover we have the following.

Claim 2 If Fx 6= Fy, then F1|U is a product foliation with each leaf is at depth

0.
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Proof of Claim 2. If Fx or Fy is a depth 1 leaf, then obviously Fx is equivalent

to Fy, this contradicts the assumption that each pair of elements of {L(1)
k } is not

mutually equivalent. This together with Lemma 2.1.4, ∂U consists of depth 0

leaves. Since F1 is modified for all equivalence classes of the depth 0 leaves, F1|U
is a product foliation with each leaf is at depth 0. ¤

Suppose Fx = Fy. Let Ũ = U ∪ Fx.

Claim 3 Under the above conditions, we have the following:

1. Fx is a depth 1 leaf;

2. ∂Ũ = Fx \ Fx; and

3. Fx is the only element of {L(1)
k } which meets Ũ .

Remark 3.2.1 By 1 and 2 of the above Claim 3, we see that ∂Ũ consists of

depth 0 leaves.

Proof of Claim 3. By Lemma 2.1.5, it is obvious that 1 of the claim holds. We

show that ∂Ũ ⊃ Fx \ Fx. Note that since Fx is a depth 1 leaf, Fx \ Fx is a union

of depth 0 leaves. Let L0 be a leaf contained in Fx \ Fx. Since U ∼= Fx × (0, 1),

Fx is noncompact, and each leaf of F̂1 is transverse to F̂⊥, every leaf of F1|U is

noncompact. Since L0 is compact, this shows that L0∩U = ∅. Hence L0∩Ũ = ∅.
On the other hand, since L0 ⊂ Fx, we have L0 ⊂ Ũ . These imply L0 ⊂ ∂Ũ . Then,

we show that ∂Ũ ⊂ Fx \ Fx. Let a be a point in ∂Ũ and Na a neighbourhood of

a. Then there exist points b1 and b2 of Na such that b1 ∈ Ũ and b2 6∈ Ũ . Suppose

b1 /∈ Fx. Then take an arc

(

b1b2 in Na connecting b1 and b2. Then there is a

point b ∈

(

b1b2 such that b ∈ Fx. This shows that a ∈ Fx. Since δU = Fx, both

sides of Fx are contained in U . Hence Fx ⊂ int Ũ , and this shows that a /∈ Fx.

These show ∂Ũ ⊂ Fx \Fx, and 2 of the claim holds. We can show 3 of the claim

immediately by the above Claim 1. ¤

We know that the number of the equivalence classes represented by the depth

0 leaves of F is finite (Lemma 3.1.1). Since the modification does not change the

number of the equivalence classes represented by the depth 0 leaves, the number

of the equivalence classes represented by the depth 0 leaves of F1 is also finite.

This fact together with the above Claim 2, 3 of the above Claim 3 and Re-

mark 3.2.1 imply that {L(1)
k } consists of finitely many elements, a contradiction.

¤
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Now, we modify the foliation F1. Since the number of the equivalence classes

represented by the depth 0 leaves is finite (Lemma 3.1.1), M \∪(depth 0 leaves)

consists of finite number of components, say U1, U2, . . . , Uk. Note that there is a

depth 1 leaf in each Ui. Let L(⊂ U1) be a depth 1 leaf. The situation is divided

into the following two cases.

Case 1 There exist more than one leaves of F1 representing [L].

Case 2 There exists exactly one leaf of F1 representing [L].

In Case 1, let {φβ} be the set of all the embeddings which give equivalence

relations between L and the leaves representing [L]. Let U (1) = ∪φβ(L× [0, 1]).

The situation is divided into the following two subcases.

Case 1.1 U (1) = U1.

In this case, by applying the argument as in the proof of Claim 3 of Case

1.1 in Section 3.1, we can show that there exists a depth 1 leaf L′ ⊂ U such

that for each side of L, L is equivalent to L′ through the side. This implies that

U1\L ∼= L×(0, 1) with each x×(0, 1) is contained in a leaf of F⊥. We modify F1

by replacing F1|U(1) with the image of the product foliation on L × [0, 1]. Note

that in this case, the modification on U1 is completed.

Case 1.2 U (1) 6= U1.

In this case, by applying the argument as in the proof of Claim 1 of Case 1.2

in Section 3.1, we can show that U (1) is complete with respect to the induced

Riemannian metric, which implies that U (1) ∼= L × [0, 1] with each x × [0, 1] is

contained in a leaf of F⊥. Let ∂U (1) = L− ∪ L+. We modify F1 by replacing

F1|U(1) with the image of the product foliation on L− × [0, 1].

Case 2 is divided into the following two subcases.

Case 2.1 There exists an immersion h : L× [0, 1] → U1 \ L such that the image

of each x× [0, 1] is contained in a leaf of F̂⊥.

In this case, we replace F1|U1\L by the image of the product foliation on

L× [0, 1]. Note that in this case, the modification on U1 is completed.

Case 2.2 There does not exist an immersion h as in Case 2.1.

In this case F1 is unchanged by the modification.

In Cases 1.2 and 2.2, we further modify the foliation for another equivalence

class of a depth 1 leaf in U1, and repeat the procedure to modify the foliation in

U1. Then the desired foliation F2 is obtained by repeating the procedure for all

Ui’s.
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Note that this modification does not change the transverse foliation F⊥, i.e.,

F2⊥ = F⊥.

3.3 Completion of modification

In this subsection, we apply the similar modifications for leaves at higher depth

to give a means of completing the modification.

Lemma 3.3.1 For the modified foliation F2, the number of equivalence classes

represented by the depth 2 leaves is finite.

Proof. Let {L(2)
` } be a set of depth 2 leaves of F2 such that each pair of elements

is not mutually equivalent. We assume that {L(2)
` } has infinitely many elements.

By slightly modifying an (F ,F⊥)-coordinate atlas if necessary, we may suppose

that (∪L
(2)
` )∩ (

⋃m
i=1 ϕi(D

n−1 × ∂[0, 1])) = ∅. Hence we can find U , a component

of M \∪L
(2)
` such that U ∩ (

⋃m
i=1 ϕi(D

n−1× ∂[0, 1])) = ∅. For any point x in ∂Û ,

let τ̂x be the leaf of F̂2 which meets x. Since U ∩ (
⋃m

i=1 ϕi(D
n−1 × ∂[0, 1])) = ∅,

τ̂x is a proper subarc of ϕi(c× [0, 1]) for some i and c ∈ Dn−1. Hence τ̂x is an arc

properly embedded in Û with endpoints x and y, say. Since F2 is transversely

oriented, x and y are contained in different components of ∂Û . Let Fx (Fy resp.)

be a leaf of F2 which meets x (y resp.).

We immediately have the following.

Claim 1 Û is homeomorphic to Fx × [0, 1], where each {p} × [0, 1] is contained

in a leaf of F⊥.

By applying the arguments as in the proof of Claim 2 in Section 3.2, we have

the following claim.

Claim 2 If Fx 6= Fy, then F2|U is a product foliation with depth 0 leaves or

depth 1 leaves.

Suppose Fx = Fy. Let Ũ = U ∪ Fx. By applying the arguments as in the

proof of Claim 3 in Section 3.2, we have the following.

Claim 3 Under the above conditions, we have the following:

1. Fx is a depth 2 leaf;

2. ∂Ũ = Fx \ Fx; and

3. Fx is the only element of {L(2)
` } which meets Ũ .
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Remark 3.3.1 By 1 and 2 of the above Claim 3, we see that each component

of ∂Ũ is a depth 0 leaf or a depth 1 leaf.

We know that the number of the equivalence classes of the depth 0 leaves and

depth 1 leaves of F1 are finite (Lemmas 3.1.1 and 3.2.1). Since the modification in

Section 3.2 does not change the number of the equivalence classes represented by

the depth 0 or depth 1 leaves, the number of the equivalence classes represented

by the depth 0 or depth 1 leaves of F2 is also finite. This fact together with

the above Claim 2, 3 of the above Claim 3, and Remark 3.3.1 imply that {L(2)
` }

consists of finitely many elements, a contradiction. ¤

Then we can further apply the similar modifications for higher depth leaves

to obtain a modified foliation F̃ that cannot be modified any more. Note that

the modification for depth d leaves does not affect the leaves at depth less than

d. Note that if F⊥ is fixed, then for each i, F i is unique. Hence F̃ is unique.

And by the construction, it is easy to show the following.

Fact 3.3.1 depth(F̃) ≤ depth(F).

Moreover, by applying the argument as in the proof of Lemma 3.3.1, we can

show the following.

Proposition 3.3.1 The number of the equivalence classes of the leaves of F̃ is

finite.

Here, we note that the modified foliation F̃ satisfies the conditions soon after

Remark 2.1.4 in Section 2.1.2.
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4 Proof of Theorems

4.1 Structure of the manifold MSq

Let Kq(= hq(C)) be a q-twisted double of K ′, and Sq(= hq(S)), Aq(= hq(A)) as

in Section 2.2.2. Recall that (XSq , γSq) is a complementary sutured manifold of

Sq. Let MSq be the manifold obtained from XSq by attaching a 2-handle along γSq

(see Section 2.2.4) with the orientation inherited from XSq . We further suppose

that each component of ∂MSq is equipped with the orientation inherited from

R(γSq). Since Sq is a genus one surface, the boundary of MSq consists of two tori.

Then T+ denotes the component of ∂MSq whose normal vectors point outward,

and T− the other.

Let Lq be the link ∂Aq equipped with the orientation such that each compo-

nent of Lq is parallel to K ′, hence the linking number of Lq is q.

Proposition 4.1.1 MSq is homeomorphic to E(Lq).

Proof. Recall that Sq is obtained by plumbing Aq and a Hopf annulus (see

Section 2.2.2). Note that a part of Sq near the Hopf annulus looks as in Figure

4.1(a). The part of (XSq , γSq) corresponding to the part of Sq in Figure 4.1(a),����������������yyyyyyyyyyyyyyyy��yy��yy���������yyyyyyyyy����yyyy���������yyyyyyyyy ��������yyyyyyyyD' 

(a) (b) (c)

Sq

Figure 4.1

looks as in Figure 4.1(b). Let D′ be the product disk for (XSq , γSq) as in Figure

4.1(c). Recall that MSq is obtained from XSq and D2 × [0, 1] by identifying γSq

and ∂D2 × [0, 1]. Hence we may regard that D′ is a subspace of MSq . Since D′

is a product disk for (XSq , γSq), D′ ∩ γSq (= D′ ∩ (∂D2 × [0, 1])) consists of two
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arcs in ∂D′, say a1, a2. Let D′′ be a product disk for (D2 × [0, 1], ∂D2 × [0, 1])

such that D′′ ∩ (∂D2× [0, 1]) = a1 ∪ a2. Let AM = D′ ∪D′′. Note that AM is an

annulus proprely embedded in MSq such that a component of ∂AM is contained

in T+ and the other in T− (see Figure 4.2).����yyyy ����yyyy��������yyyyyyyy��yy ��yyD' 

' D ' 

MSq

a1 a2

T       +

T        −   

D I�~

Figure 4.2

Now, let N be the manifold which is obtained from MSq by cutting along AM

and AM,1, AM,2 the copies of AM in ∂N (see Figure 4.3(a)).

��������������yyyyyyyyyyyyyy��������������yyyyyyyyyyyyyyAM;1

AM; 2

N ������yyyyyy ������yyyyyy����������������yyyyyyyyyyyyyyyy����yyyy ����yyyy������������yyyyyyyyyyyy��yy ��yy
(a) (b)

Figure 4.3

Note that (N, AM,1 ∪ AM,2) naturally inherits a sutured manifold structure
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from (XSq , γSq), i.e., R±(AM,1 ∪ AM,2) is the image of T±.

Let (X̃Sq , γ̃Sq) be the sutured manifold obtained from (XSq , γSq) by the prod-

uct decomposition along D′ (see Figure 4.3(b)). By Figure 4.3, we have the

following.

Claim The manifold pair (N, AM,1 ∪ AM,2) is homeomorphic to (X̃Sq , γ̃Sq).

Since MSq is retrieved from N by identifying AM,1 and AM,2, this claim implies

that MSq is obtained from X̃Sq by identifying the components of γ̃Sq and that

the image of γ̃Sq is AM . It is directly observed from Figure 4.4 that X̃Sq is��������yyyyyyyy��������yyyyyyyy ���������yyyyyyyyy���������yyyyyyyyy��������yyyyyyyyD' 

   product
decomposition

   isotopy

Figure 4.4

homeomorphic to E(K ′), and the union of core curves of γ̃Sq is equivalent to the

link Lq. Here we note that one component of ∂AM is contained in T+ and the

other is in T−, and that MSq is orientable. Hence the identification has to be as

in Figure 4.5. These show that MSq is homeomorphic to E(Lq). ¤

We describe two facts that will be required for the proof of Theorem 1.0.1.

Let AM be as in the proof of Proposition 4.1.1.

Fact 4.1.1 Let T ′ be the component of ∂N(∂MSq ∪AM ,MSq) which is contained

in intMSq (Figure 4.6). By Proposition 4.1.1, we may regard T ′ is contained

in E(Lq). Moreover it is directly observed that the closure of a component of

E(Lq) \ T ′ is homeomorphic to E(K ′) and the closure of the other, say Q, is

homeomorphic to (disk with two holes)× S1.

For the statement of the second fact, we prepare some notations. By Propo-

sition 4.1.1, we can consider T+, T− as boundary components of E(Lq). Let
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AM;2

(a) (b) (c)

Figure 4.5����������yyyyyyyyyyl

l+T

+

-T

-

AM

T' 

Figure 4.6

`± = T± ∩ AM . Note that `± is isotopic to a S1-fiber of Q. Recall that MSq =

XSq ∪ (D2× [0, 1]) and T+ = R+(γSq)∪ (D2×{1}), T− = R−(γSq)∪ (D2×{0}).
By deforming `± by an ambient isotopy, if necessary, we may suppose that

`± ⊂ R±(γSq). Recall that (XSq , γSq) is the complementary sutured manifold

of Sq, hence R±(γSq) is homeomorphic to Sq. Then,

p± : R±(γSq) −→ Sq

denotes the natural homeomorphism. By Figure 4.5(b), `+∪`− looks as in Figure

4.6. By tracing the deformations of Figure 4.4 conversely together with `+ ∪ `−,

we obtain Figure 4.7. This observation implies the following.

Fact 4.1.2 Under the above notations, p+(`+) and p−(`−) are isotopic on Sq to

loops which meet transversely in one point.
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Figure 4.7

4.2 Foliations on M (n)

Let K be a q-twisted double of K ′ (in this subsection, we basically follow the

notations in Section 4.1, but we use K,S, L,MS for Kq, Sq, Lq,MSq for simplicity).

Let S3(K, 0) be the manifold obtained from S3 by performing 0-surgery on K.

Note that H1(S
3(K, 0);Z) ∼= Z. Let Σ(n)(K, 0) be the n-fold cyclic covering

space of S3(K, 0) (see Section 1). Note that Σ(n)(K, 0) admits a decomposition

Σ(n)(K, 0) = M1∪· · ·∪Mn where each Mi (i = 1, . . . , n) is homeomorphic to MS,

and M1, . . . , Mn are arrayed cyclically i.e., Mi ∩Mi+1 = ∂Mi ∩ ∂Mi+1 consists of

a torus Ti (if n > 2) (subscript is taken in mod n) or M1 ∩M2 = ∂M1 = ∂M2

(= T1 ∪ T2, say)(if n = 2). Let M (n) be the manifold obtained from Σ(n)(K, 0)

by cutting along Tn. In this subsection, for the proof of Theorem 1.0.1, we study

depth of foliations on M (n) the union of the depth 0 leaves of each of which

coincides with ∂M (n).

We may regard M (n) = M1 ∪T1 · · · ∪Tn−1 Mn. Then, we abuse notation Tn

for denoting the component of ∂M (n) such that Tn ⊂ Mn and T0 denotes the

other component of ∂M (n). By Proposition 4.1.1, each Mi is homeomorphic

to E(L). Let T ′
i be the torus in Mi corresponding to T ′ in Fact 4.1.1. Hence

the closure of a component of Mi \ T ′
i , say E(K ′)i, is homeomorphic to E(K ′)

and the closure of the other component of Mi \ T ′
i , say Qi, is homeomorphic to

(disk with two holes)×S1. Let `+
j (`−j resp.) (j = 1, . . . , n−1) be a simple closed

curve in Tj which is isotopic to an S1-fiber of Qj (Qj+1 resp.). By Fact 4.1.2, we

obtain the following.

Lemma 4.2.1 Under the above notations, `+
j and `−j are isotopic to loops on Tj
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which meet transversely in one point.

4.2.1 Foliation F ′ on M (n)′

Let T = (
⋃n−1

j=1 Tj)∪(
⋃n

i=1 T ′
i ). Let F be a codimension one, transversely oriented

taut C0 foliation of finite depth on M (n) such that the union of the depth 0 leaves

of F coincides with ∂M (n).

Lemma 4.2.2 By deforming T by an ambient isotopy in M (n), if necessary, we

may suppose T is transverse to F .

Proof. Since F is taut, Theorem 4 of [17] implies that by ambient isotopy in

M (n), we can deform T so that either T is transverse to F or there exists T , a

component of T such that T is a leaf of F . However by the assumption that the

union of the depth 0 leaves coincides with ∂M (n), we see that there does not exist

such T as above. Hence we may suppose T is transverse to F . This completes

the proof of the lemma. ¤

Let
◦
T 0,

◦
T n be tori in intM (n) such that

◦
T 0 (

◦
T n resp.) is parallel to T0 (Tn

resp.), and
◦
T 0 ∩T = ∅ (

◦
T n ∩T = ∅ resp.). By applying the arguments as in the

proof of Lemma 4.2.2, we can assume that
◦
T 0 ∪

◦
T n ∪T is transverse to F . Let

M (n)′ be the closure of the component of M (n) \ (
◦
T 0 ∪

◦
T n) which does not meet

∂M (n). Note that M (n)′ is homeomorphic to M (n). Let F ′ = F |M(n)′ .

Lemma 4.2.3 F ′ is of finite depth and for each leaf L′ of F ′ we have: if L

is the leaf of F such that L ⊃ L′, then depth(L) > depth(L′). In particular,

depth(F ′) ≤ depth(F)− 1.

For the proof of the lemma, for each i (0 ≤ i ≤ depth(F)), we show the

following inductively. Note that Assertion (depth(F)) gives the lemma.

Assertion (i) Let L be a leaf of F such that depth(L) = i. Then, either one

of the following holds:

1. L ∩M (n)′ = ∅; or

2. for any component F of L ∩ M (n)′, we can define depth(F ) (note that

depth(F ) denotes the depth of F as a leaf of F ′), and depth(F ) ≤ i − 1,

i.e., F \ F is a union of leaves Fα such that depth(Fα) ≤ i− 2.
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Proof of Assertion (i). Suppose i = 0. Then, clearly L ∩M (n)′ = ∅. Suppose

for i ≤ k (0 ≤ k ≤ depth(F)−1), Assertion (i) holds. Consider the case i = k+1.

If L∩M (n)′ = ∅, then 1 holds. Suppose L∩M (n)′ 6= ∅. Let F be a component of

L ∩M (n)′. Recall that L \ L is a union of leaves Lβ such that depth(Lβ) ≤ k.

Claim 1 Suppose (∪Lβ) ∩M (n)′ = ∅. Then L ∩M (n)′ is compact.

Proof of Claim 1. Assume L ∩ M (n)′ is not compact. Then there exists a

sequence of points in L ∩ M (n)′, say {xi}i=1,2,... with an accumulating point x

such that x /∈ L ∩ M (n)′. Let Lx be the leaf of F ′ which contains x. Then

we have Lx ∩ (L ∩M (n)′ \ (L ∩M (n)′)) 6= ∅, thus Lx ⊂ L ∩M (n)′ \ (L ∩M (n)′),
contradicting the assumption that (∪Lβ) ∩M (n)′ = ∅. ¤

Claim 2 Suppose L ∩M (n)′ is compact. Then each component of L ∩M (n)′ is

compact.

Proof of Claim 2. Assume there is a component F ′ of L ∩M (n)′ which is not

compact. Then there exists a sequence of points in F ′, say {xi}i=1,2,... with an

accumulating point x such that x /∈ F ′. On the other hand, since L ∩M (n)′ is

compact, x ∈ L∩M (n)′. This contradicts the fact that L is proper (Remark 2.1.3).

¤

By the above Claims 1 and 2, we see if for each β, Lβ ∩ M (n)′ = ∅, then

depth(F ) = 0 ≤ (k + 1)− 1, that is, the conclusion 2 of Assertion (k + 1) holds.

Suppose (∪Lβ)∩M (n)′ 6= ∅. Since Assertion (i) holds for i ≤ k, for each β either

one of the following holds:

(a) Lβ ∩M (n)′ = ∅; or

(b) for any component Fβ,γ of Lβ ∩M (n)′, depth(Fβ,γ) ≤ k − 1.

Let {Lβ′} be the set of elements of {Lβ} intersecting M (n)′. Recall that L \ L =

∪Lβ, and Lβ′∩M (n)′ = ∪γFβ′,γ. This implies that (L\L)∩M (n)′ =
⋃

β′(
⋃

γ Fβ′,γ).

Claim 3 F \ F ⊂ (L \ L).

Proof of Claim 3. Since F \ F ⊂ L is clear, we show that (F \ F ) ∩ L = ∅.
Asuume that (F \ F ) ∩ L 6= ∅. Let x be a point in (F \ F ) ∩ L. Then there

exists a sequence of points in F , say {xi}i=1,2,... with an accumulating point x

such that x /∈ F and x ∈ L. However this contradicts the fact that L is proper

(Remark 2.1.3). ¤
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Hence F \ F ⊂ ⋃
β′(

⋃
γ Fβ′,γ). Hence by (b), depth(F ) ≤ k, this completes

the proof of Assertion (k + 1). ¤

Since each component of M (n)′ \ T naturally corresponds to each component

of M (n) \T, in the remainder of this subsection, we use the notation that M (n)′ =
M1 ∪T1 · · · ∪Tn−1 Mn = (E(K ′)1 ∪T ′1 Q1) ∪T1 · · · ∪Tn−1 (E(K ′)n ∪T ′n Qn). Let T̃ be

a union of tori which is ambient isotopic to T and transverse to F ′. For such

T̃, let T̃i be the component of T̃ corresponding to Ti, and M̃i the closure of the

component of M (n) \⋃n−1
i=1 T̃i corresponding to Mi (1 ≤ i ≤ n). Let di(T̃) be the

minimal value of the depths of the leaves of F ′ which meet M̃i.

Let Li be a leaf of F ′ which meets Mi such that depth(Li) = di(T) and

L∗i = Li ∩Mi.

Lemma 4.2.4 L∗i is compact and incompressible in Mi.

Proof. Assume L∗i is not compact. Then there exists a sequence of points in L∗i ,

say {xi}i=1,2,... with an accumulating point x such that x /∈ L∗i . Let Lx be the leaf

of F ′ which contains x. Then we have Lx∩(L∗i \L∗i ) 6= ∅, thus Lx∩Mi ⊂ (L∗i \L∗i ).
By the definition of depth of leaves, the depth of Lx is less than di(T) and this

contradicts the definition of di(T). Thus L∗i is compact. Since F ′ is transverse

to T, each component of ∂L∗i is essential in ∪Ti. Suppose there is a compression

disk D for L∗i in Mi. Since F is taut, the leaf of F containing Li (say, L̂i) is

incompressible (Remark 2.2.1). Hence ∂D is inessential in L̂i, i.e., there is a disk

D′ in L̂i such that ∂D′ = ∂D. Since D is a compression disk for L∗i , D′ is not

contained in Mi, hence D∩ (∪Ti) 6= ∅. Let ` be a component of D′∩ (∪Ti) which

is innermost in D′. Let ∆(⊂ D′) be the disk bounded by `. Since ` is essential

in ∪Ti, ∆ is a compression disk for ∪Ti, a contradiction. ¤

4.2.2 Putting T in a nice position (with assuming K ′ a non-cable
knot)

In the remainder of this subsection, we suppose K ′ is a non-cable knot. Let F
be a codimension one, transversely oriented, taut C0 foliation of finite depth on

M (n) such that the union of the depth 0 leaves of F coincides with ∂M (n). Let

T,
◦
T 0,

◦
T n be as in Section 4.2.1. We suppose that

◦
T 0 ∪

◦
T n ∪T is isotoped as

in the paragraph preceding Lemma 4.2.3 (hence, M (n)′,F ′ are defined). Recall

from Section 4.2.1 that we use the notation M (n)′ = M1 ∪T1 · · · ∪Tn−1 Mn =

(E(K ′)1 ∪T ′1 Q1) ∪T1 · · · ∪Tn−1 (E(K ′)n ∪T ′n Qn).

36



Lemma 4.2.5 By deforming T ′
i by an ambient isotopy, we may suppose that

F ′ |E(K′)i
has no annular leaves for each i (1 ≤ i ≤ n).

Proof. We first note that the basic idea of the following proof is exactly the same

as that of Lemma 2.3 of [2]. The key of our proof is to remove the assumption

that the considered foliation is of class C2 which is required in Lemma 2.3 of [2].

Assume there exists k (1 ≤ k ≤ n) such that F ′ |E(K′)k
has an annular leaf,

say A. By the proof of Lemma 2.3 of [2], we see that ∂A ⊂ T ′
k is a pair of essential

simple closed curves which devides T ′
k into two annuli, A′, A′′, where either A∪A′

or A∪A′′ is isotopic to T ′
k in E(K ′)k. Now, assume that TA = A∪A′ is isotopic

to T ′
k. Let EA be a component of E(K ′)k \ A. We say that EA is outside if

∂EA = TA and that EA is inside otherwise. If there exists another annular leaf

B in F ′ |E(K′)k
, we say A < B if A is contained in the inside of B, or A ≤ B

if we include the case A = B. Now, suppose A < B. Let G be the closure

of the component of E(K ′)k \ (A ∪ B) which is between A and B. Then G is

homeomorphic to A × [0, 1], where A × {0} = A, A × {1} = B and ∂A × [0, 1]

corresponds to G ∩ T ′
k. In this case, we can think of B as “concentric” with A

and pushed out from A. Now, we consider the set of annular leaves B such that

A ≤ B. By using the above observation that A and B are concentric, it is easy

to show that this set is linearly ordered by < and the union of these leaves is a

closed set with an outermost annular leaf A∞. (That is, A∞ is maximal with the

property that A ≤ A∞.) Let A∞′ ⊂ T ′
k be the annulus such that T∞ = A∞∪A∞′

is isotopic to T ′
k.

Claim There exists a torus T in outside of A∞ which is transverse to F ′ and

isotopic to T∞.

Proof of Claim. Remark that A∞ is an essential annulus in T∞ (Figure 4.8).

Fix a point p0 ∈ A∞. Let Σ0 be a transverse section to A∞ at p0, Σo
0 be the

closure of the component of Σ0 \ p0 such that Σo
0 is contained in the outside of

A∞. Let α′ : [0, 1] −→ A∞ be a simple closed curve representing a generator of

π1(A
∞, p0) ∼= Z. By applying the argument as in the proof of Lemma 2 of [15],

we see that there is a map F : [0, 1]× [0, 1] −→ E(K ′)k such that F |(0,1)×(0,1) is an

embedding, F ({0} × [0, 1]) ⊂ Σo
0, F ({1} × [0, 1]) ⊂ Σo

0, F |[0,1]×{0} = α′, and F is

transverse to F|E(K′)k
. This together with Theorem 2 of [15] shows that there is

a homeomorphism Φ : π1(A
∞, p0) −→ G(Σ0, p0), where G(Σ0, p0) is the group of

germs of C0-homeomorphism of Σ0 which leaves p0 fixed. Hence Φ(π1(A
∞, p0))

is the holonomy group of A∞ at p0.
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If Φ(π1(A
∞, p0)) is trivial on Σo

0, then there exist annular leaves outside of A∞,

this contradicts the maximality of A∞. By taking α′−1 instead of α′, if necessary,

we may assume Φ(α′) is contracting on Σo
0, i.e., for each point x ∈ F ({0}×(0, 1]),

if x proceeds along the leaf of F ([0, 1] × [0, 1]) ∩ F ′ in the α′-direction, then x

approaches A∞ (Figure 4.9). �y����yyyyT 1

1A

Figure 4.8

L

1A
α

0

Figure 4.9

Let b1 be an essential arc properly embedded in A∞ such that p0 ∈ b1. By

using the augument of the proof of Lemma 2 of [15], we can show that there

is an embedding F ′ : [0, 1] × [0, 1] −→ E(K ′)k such that F ′({0} × [0, 1]) ⊂ T ′
k,

F ′({1}× [0, 1]) ⊂ T ′
k, F ′({1

2
}× [0, 1]) = Σo

0, F ′([0, 1]×{0}) = b1, F ′([0, 1]×{1})
is contained in a leaf, and F ′ is transverse to F ′. Let R = F ′([0, 1] × [0, 1]).

Note that F ′|R is isomorphic to the product foliation on [0, 1] × [0, 1], i.e., the

foliation on [0, 1]× [0, 1] with each leaf being {∗}× [0, 1]. Let b2 = F ′([0, 1]×{1}),
p1 = F ′({0}× {0}), p2 = F ′({1}× {0}), q1 = F ′({0}× {1}), q2 = F ′({1}× {1}),
a1 = F ′({0} × [0, 1]), a2 = F ′({1} × [0, 1]). Note that pi, qi are points on T ′

k

(Figure 4.10).

Let Lb2 be the leaf of F ′ which contains b2. Let `i be the arc in T∞ ∩ Lb2

with ∂`i = `i ∩ ai = qi ∪ ri (where ri is a point in int ai), b′2 the component of

Lb2 ∩ R such that ∂b′2 = r1 ∪ r2 (Figure 4.11). Note that b′2 is an arc properly

embedded in R and by [15, Theorem 2], we see that b2 ∪ (`1 ∪ `2) ∪ b′2 bounds a
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rectangle Ǎ1 in Lb2 . Let a′i be the subarc in ai with ∂a′i = pi ∪ ri, a′′i the subarc

in ai with ∂a′′i = ri∪ qi, and R′ the rectangle in R with edges a′′1, b
′
2, a

′′
2, b2 (Figure

4.11). Then, `i ∪ a′′i is a simple closed curve in T∞ disjoint from ∂A∞. Let

`∞1 , `∞2 be the components of ∂A∞ such that pi ∈ `∞i (Figure 4.12). Let B1, B2

be mutually disjoint annuli in T∞ such that ∂Bi = (`i ∪ a′′i ) ∪ `∞i (Figure 4.12).

Then A∞ ∪ (B1 ∪ B2) ∪ Ǎ1 ∪ R′ bounds a solid torus V in E(K ′)k (Figure 4.11

and Figure 4.12).

�����������������������������������yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
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Figure 4.11
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Let Ǎ∞ = A∞ \ b1. Let Ǎ∞ be the metric completion of Ǎ∞. Note that Ǎ∞

is obtained from Ǎ∞ by adding two edges, say b+
1 , b−1 , each corresponding to b1,

where there is a simple closed curve in A∞ representing α′ in π1(A
∞, p0) such

that the image of the simple closed curve is an oriented arc in Ǎ∞ which goes

from b+
1 to b−1 (Figure 4.13).������������������������yyyyyyyyyyyyyyyyyyyyyyyy
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^
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b1+

b1-

b1-

α
0

Figure 4.13

Let f : b−1 −→ b+
1 be the natural homeomorphism and g : [0, 1] −→ [0, 1]

the local homeomorphism induced from the holonomy map corresponding to

Φ([α′])|Σo
0
. Since Ǎ∞ is simply connected, by [15, Theorem 2], we see that the

foliated manifold (V ,F ′|V ) is isomorphic to (Ǎ∞ × [0, 1]/∼, F̌/∼), where F̌ is

a product foliation on Ǎ∞ × [0, 1] and the equivalence relation ∼ is defined as

follows; for x ∈ b−1 , y ∈ [0, 1], (x, y) ∼ (f(x), g(y)).
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Let Ǎ∗ be the rectangle in Ǎ∞ × [0, 1] corresponding to the flat rectangle

properly embedded in Ǎ∞×[0, 1] (∼= [0, 1]2×[0, 1]) such that ([0, 1]×{0})×{g(1)}
(= b+

1 ×{g(1)}) and ([0, 1]×{1})×{1} (= b−1 ×{1}) are edges of Ǎ∗ (Figure 4.14).

Note that Ǎ∗ is transverse to F̌/∼. Let A∗ be the annulus in V corresponding

to Ǎ∗/∼. Note that one component of ∂A∗ is contained in B1, and the other

is contained in B2 and A∗ is transverse to F ′. Let A∗′ be the closure of the

component of T∞ \ ∂A∗ which is contained in A∞′. Let T = A∗ ∪A∗′. Then T

is transverse to F ′. Further, T is ambient isotopic to T ′
k since V is a solid torus

and T∞ is isotopic to T ′
k. This completes the proof of the claim. ¤������������yyyyyyyyyyyy
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^
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Figure 4.14

Let T be as in the proof of Claim. By taking T instead of T∞, we can

remove such annuli B (≥ A).

Assume there exist infinitely many pairs of annular leaves A∞,1, A∞,2, . . .

which are maximal. This implies that there exist infinitely many simple closed

curves ∂A∞,1, ∂A∞,2, . . . . Then, the distances of each pair of simple closed curves

will be close to 0, this contradicts the condition that leaves are transversely

oriented. Thus, by repeating the operation finitely many times, we can remove

all annular leaves. This completes the proof of the lemma. ¤

In what follows, we assume that the considerd foliation satisfies the condition

of Lemma 4.2.5.

Lemma 4.2.6 For each i, F ′ |E(K′)i
is taut.

Proof. Let L be a leaf of F ′|E(K′)i
. Let (2E(K ′)i, 2F ′|E(K′)i

) be a double of

(E(K ′)i,F ′|E(K′)i
) along T ′

i , i.e., 2E(K ′)i = E(K ′)+
i ∪E(K ′)−i , where E(K ′)±i is a
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copy of E(K ′)i and 2E(K ′)i is obtained from E(K ′)+
i and E(K ′)−i by identifying

their boundaries by the natural homeomorphism. Then 2F ′|E(K′)i
is the foliation

on 2E(K ′)i which is the image of the foliations on E(K ′)+
i and E(K ′)−i each of

which corresponds to F ′|E(K′)i
.

By Lemma 4.2.5, we see that 2F ′|E(K′)i
has no toral leaves. Then, by us-

ing [7, Theorem 2.2], we see that there exists a closed transverse curve τ in

(2E(K ′)i, 2F|E(K′)i
) which meets 2L in one point, where 2L denotes the leaf

of 2F ′|E(K′)i
which is the double of L. Without loss of generality, we may as-

sume that the intersection of 2L and τ is contained in intE(K ′)+
i . Let ϕ be

the natural involution on 2E(K ′)i, hence ϕ(E(K ′)±i ) = E(K ′)∓i . Then let τ ′ =

(τ ∩E(K ′)+
i )∪ϕ(τ ∩E(K ′)−i ). Then we deform τ ′ slightly in a small neighbour-

hood of ∂E(K ′)+
i (= ∂E(K ′)−i ⊂ 2E(K ′)i) so that τ ′ ⊂ intE(K ′)+

i (⊂ 2E(K ′)i)

and τ ′ is transverse to 2F ′|E(K′)i
. Note that τ ′ meets 2L in one point which is

contained in E(K ′)+
i . This immediately implies that F ′|E(K′)i

admits a closed

transverse curve which meets L in one point. Hence F ′|E(K′)i
is taut. ¤

Lemma 4.2.7 Suppose there is a compact leaf Fi of F ′|E(K′)i
. Then Fi∩∂E(K ′)i

6= ∅ and each component of ∂Fi(⊂ T ′
i ) is null-homologous in E(K ′)i, i.e., corre-

sponding to a longitude of K ′.

Proof. Since the union of compact leaves of F coincides with ∂M (n), it is clear

that Fi∩∂E(K ′)i 6= ∅. We note that each component of Fi∩∂E(K ′)i is an essen-

tial simple closed curve on ∂E(K ′)i (otherwise, F ′|∂E(K′)i
has a singularity). We

also note that Fi is orientable and F is transversely oriented. This implies that

for the homology boundary operator ∂ : H2(E(K ′)i, ∂E(K ′)i) −→ H1(∂E(K ′)i),

∂[Fi] = rα, where α is an indivisible element of H1(∂E(K ′)i). By Lemma 4.2.6,

there exists a closed transverse curve σi in E(K ′)i which meets Fi in one point.

Thus the intersection number of σi and Fi is ±1. This implies that [Fi] is nonzero

and is indivisible in H2(E(K ′)i, ∂E(K ′)i). Since E(K ′)i is an exterior of a knot,

H2(E(K ′)i, ∂E(K ′)i) ∼= Z and any generator is the class represented by a Seifert

surface for K ′. Hence [Fi] is a generator of H2(E(K ′)i, ∂E(K ′)i) and the homol-

ogy class is represented by a Seifert surface for K ′. Thus we see that r = 1 and α

is the class represented by a longitude of K ′. These imply that each component

of ∂Fi is null-homologous in E(K ′)i. ¤
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4.2.3 Putting T in a better position with assuming q = 0

Recall that K ′ is a non-cable knot. Let F be a codimension one, transversely

oriented, taut C0 foliation of finite depth on M (n) such that the union of the

depth 0 leaves of F coincides with ∂M (n). Let T,M (n)′,Mi, E(K ′)i, Qi,F ′ are

as in Section 4.2.2. That is, they satisfy the conditions of Lemmas 4.2.5～4.2.7.

For each i (i = 1, . . . , n), let di(T), Li, L
∗
i be as in Section 4.2.1. Recall that

Qi
∼= (disk with two holes) × S1. We say that a surface S in Qi is vertical if S

is ambient isotopic to a surface which is a union of S1-fibers. Note that if S is

vertical, then each component of S is either an annulus or a torus. We say that

S is horizontal if S is ambient isotopic to a surface which is transverse to the

S1-fibers.

In the remainder of this subsection, we suppose that q = 0.

Lemma 4.2.8 For each i (1 ≤ i ≤ n), each component of L∗i ∩ Qi is a vertical

annulus or a ∂-parallel annulus.

Proof. Let L̃i be a component of L∗i ∩Qi. Since L∗i is compact (Lemma 4.2.4)

and F is proper (Remark 2.1.3), L̃i is compact (Claim 2 in Section 4.2.1). Since

L∗i is incompressible in Mi (Lemma 4.2.4) and each component of L∗i ∩ T ′
i is

essential in L∗i (otherwise T ′
i is compressible), L̃i is incompressible in Qi. Hence

by [8, VI.34], L̃i is either vertical, horizontal or a ∂-parallel annulus. Hence for a

proof of the lemma, it is enough to show that L̃i is not horizontal. Suppose L̃i is

horizontal. Then it is clear that L̃i ∩T ′
i 6= ∅. Since L∗i is compact (Lemma 4.2.4)

and F is proper (Remark 2.1.3), each component of L∗i ∩ E(K ′)i is compact.

Hence by Lemma 4.2.7, each component of ∂(L∗i ∩ E(K ′)i) is a longitude of K ′.
Hence each component of L̃i ∩ T ′

i is a longitude of K ′. On the other hand, since

q = 0, Proposition 4.1.1 together with Fact 4.1.1 in Section 4.1 implies that each

longitude of K ′ is isotopic in ∂E(K ′) to an S1-fiber of Qi. Hence each component

of L̃i ∩ T ′
i is isotopic in T ′

i to an S1-fiber of Qi. However since L̃i is transverse to

the S1-fibers of Qi, L̃i cannot have a boundary component which is isotopic in

∂Qi to an S1-fiber of Qi, a contradiction. ¤

Let T̃ be a union of tori which is ambient isotopic to T and transverse to F ′.
Now, we define a complexity of T̃, denoted by c(T̃), as follows.

c(T̃) =
n∑

i=1

di(T̃).
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In the remainder of this subsection, we discuss for T with c(T) is maximal

among all T̃ as above.

Lemma 4.2.9 For each i (1 < i < n), there exists a depth di(T) leaf L such

that there is a component of L ∩Qi which is a vertical annulus in Qi and meets

Ti−1 or Ti.

Proof. By Lemma 4.2.8, for each i, we have; for each depth di(T) leaf L with

L∩Mi 6= ∅, each component of L∩Qi is either a vertical annulus or a ∂-parallel

annulus. Assume that for some m (1 < m < n), we have; for each depth dm(T)

leaf L with L ∩Mm 6= ∅, each component of L ∩Qm is a ∂-parallel annulus.

Claim 1 For each depth dm(T) leaf L with L ∩Mm 6= ∅, we have L ∩ T ′
m = ∅.

Proof of Claim 1. Assume that there exists a depth dm(T) leaf L with L ∩
Mm 6= ∅ and L∩T ′

m 6= ∅. Since F is a finite depth foliation and the union of the

compact leaves of F is T0 ∪ Tn, we see by Lemma 2.1.1 that L meets
◦
T 0 or

◦
T n.

This fact and the assumption that L ∩ T ′
m 6= ∅ imply that there is a component

of L ∩ Qm, say A′, such that A′ ∩ T ′
m 6= ∅ and A′ ∩ Tj 6= ∅ (j = m − 1 or m).

By the assumption, A′ is a ∂-parallel annulus, but any ∂-parallel annulus cannot

meet both T ′
m and Tj, a contradiction. ¤

By applying the arguments in the proof of Lemma 4.2.5 for the ∂-parallel

annuli in Qi, deform T by an ambient isotopy. Let T? be the new union of tori.

Let M?
i be the closure of the component of M (n)′ \⋃n−1

i=1 T ?
i corresponding to Mi

with T ?
i the component of T? corresponding to Ti. Then by the construction, it

is easy to see the following.

(i) for any depth dm(T) leaf L with L ∩Mm 6= ∅, we have L ∩M?
m = ∅; and

(ii) M?
m ⊂ Mm.

By (ii), we have dm(T?) ≥ dm(T). Moreover (i) implies dm(T?) 6= dm(T).

Hence the following claim is established.

Claim 2 dm(T?) > dm(T).

Claim 3 If j 6= m, then dj(T?) = dj(T) .

Proof of Claim 3. By the proof of Claim 1, we see that the components of

T, other than Tm−1, Tm are not changed by the deformation for obtaining T?.

Hence we can immediately see that for k (1 ≤ k ≤ m − 2 or m + 2 ≤ k ≤ n),
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dk(T?) = dk(T). Thus we will prove for j = m − 1, m + 1. Since the situation

is symmetric, it is enough to prove for the case j = m − 1. Suppose there does

not exist a depth dm(T) leaf L such that L ∩ Tm−1 6= ∅. Then T ?
m−1 = Tm−1

and we immediately have dm−1(T?) = dm−1(T). Suppose there exists a depth

dm(T) leaf L with L ∩ Tm−1 6= ∅. Note that the construction of T? implies

M?
m−1 ⊃ Mm−1 (cf. the above (ii)). Moreover by the deformation described in

the proof of Lemma 4.2.5, we see that each component of M?
m−1 \Mm−1 is a solid

torus whose boundary is the union of an annulus in Tm−1 and an annulus in T ?
m−1.

Since M?
m−1 ⊃ Mm−1, dm−1(T?) ≤ dm−1(T). Assume dm−1(T?) < dm−1(T). This

implies that there exists a leaf L′′ of F ′ such that depth(L′′) < dm−1(T) and

L′′ intersects one of the solid tori. Note that L′′ ∩ Mm−1 6= ∅, which implies

dm−1(T) ≤ depth(L′′), a contradiction. Hence we have dm−1(T?) = dm−1(T). ¤

The above Claims 2 and 3 imply c(T?) > c(T), this contradicts the assumption

that c(T) is maximal. ¤

Let Li be the union of the leaves Li of F ′ such that Li ∩ Mi 6= ∅ and

depth(Li) = di(T).

Lemma 4.2.10 By deforming T by an ambient isotopy, if necessary, in addition

to the above conditions (i.e., T is transverse to F ′ and c(T) is maximal), we may

suppose that L1 ⊂ M1 or Ln ⊂ Mn.

Proof. Let L be a depth 0 leaf. Then L meets either
◦
T 0 or

◦
T n. Suppose

L∩ ◦
T 0 6= ∅. Then d1(T) = 0, and L1 is a union of depth 0 leaves. Assume that

L meets both M1 and M2. By Lemma 4.2.8, a component of L1 ∩ Q2 is either

vertical or a ∂-parallel annulus. Assume there is a component, say A2, of L1∩Q2

which is vertical in Q2. Since each component of L1 intersects M1, by retaking

A2, if necessary, we may suppose that A2 intersects T1. On the other hand, since

L∩ ◦
T 0 6= ∅ and L∩M2 6= ∅, it is easy to see that there is a component of L∩Q1,

say A1, which is vertical in Q1 and intersects T1. Since A1 (A2 resp.) is a subset

of L1, each component of A1 ∩ T1 is either a component of A2 ∩ T2 or disjoint

from A2 ∩ T2. However, this contradicts Lemma 4.2.1. Hence any component of

L1 ∩Q2 is ∂-parallel in Q2. By the arguments of the proof of Lemma 4.2.5, we

may suppose via an ambient isotopy that L1 ⊂ M1. By applying the arguments

for the case L∩ ◦
T n 6= ∅ and L ∩ Mn−1 6= ∅, we may suppose that L1 ⊂ M1 or

Ln ⊂ Mn. ¤
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4.2.4 Behavior of di’s

In this subsection, we suppose K,F ,T,M (n)′ ,F ′ are as in Section 4.2.3, partic-

ularly as in Lemma 4.2.10. In what follows, to simplify the notation, we use di

for di(T). Let k be an integer (1 ≤ k ≤ n) such that dk = max{d1, . . . , dn}. The

purpose of this subsection is to prove the following (note that c(T) is maximal).

Proposition 4.2.1 Suppose k = min{`|d` = max{d1, . . . , dn}}. Then, we have

the following:

1. if 2 ≤ ` ≤ k (k + 1 ≤ ` ≤ n − 1 resp.), then d`−1 < d` (d`+1 < d` resp.),

hence d1 < · · · < dk ≥ dk+1 > · · · > dn; and

2. suppose dk = dk+1 = d, then there exists a depth d + 1 leaf of F ′.

For the proof of Proposition 4.2.1, we first prove the following lemmas (Lem-

mas 4.2.11～4.2.14).

Lemma 4.2.11 For any m (1 ≤ m ≤ k) ( j (k ≤ j ≤ n) resp.), we have the

following.

(∗) For any m′ (1 ≤ m′ ≤ m) (j′ (j ≤ j′ ≤ n) resp.), dm′ ≤ dm

(dj′ ≤ dj resp.).

(Hence we have either d1 ≤ · · · ≤ dk ≥ · · · ≥ dn, d1 ≤ · · · ≤ dn = dk or

dk = d1 ≥ · · · ≥ dn.)

Proof. Let Lk be a leaf of F ′ such that depth(Lk) = dk and Lk ∩ Mk 6= ∅.
Since F is a finite depth foliation and the union of the compact leaves of F is

T0 ∪ Tn, we see by Lemma 2.1.1 that Lk meets
◦
T 0 or

◦
T n. Since the situation

in symmetric, we may suppose without loss of generality that Lk meets
◦
T 0. We

consider dm for m less than k. If k = 1, then (∗) is clear. Hence we may suppose

k > 1. First, consider the case m = k − 1. If dk−1 = dk, then dm′ ≤ dk−1 for any

m′ ≤ k− 2 because dk is maximal. Hence we suppose dk−1 < dk. In this case, we

can show that any depth dk−1 leaf does not meet Tk−1. In fact, if there is a depth

dk−1 leaf Lk−1 with Lk−1 ∩ Tk−1 6= ∅, then Lk−1 ∩ Mk 6= ∅. This implies that

dk ≤ depth(Lk−1) = dk−1, a contradiction. Hence Lk−1 ∩ Tk−1 = ∅. This implies

that Lk−1∩
◦
T 0 6= ∅, and that for each m′ (1 ≤ m′ ≤ k− 2), Lk−1∩Mm′ 6= ∅. This

implies that dm′ ≤ dk−1, i.e., (∗) holds for m = k − 1.
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Note that if k = 2, we have proved the lemma for m ≤ k. Hence we suppose

k > 2 in the remainder of the proof. Next consider the case m = k − 2. If

dk−2 = dk−1, then the above implies for any m′ ≤ k − 3, we have dm′ ≤ dk−2. If

dk−2 < dk−1, then we can apply the above arguments to show that Lk−2∩
◦
T 0 6= ∅,

and that for each m′ (1 ≤ m′ ≤ k − 3), Lk−2 ∩M ′
m′ 6= ∅. Hence dm′ ≤ dk−2, i.e.,

(∗) holds for m = k− 2. Then we apply the above arguments repeatedly to have

the conclusion of the lemma for m ≤ k.

Next, we consider dj for j greater than k. If there exists L′k, a depth dk

leaf of F ′ with L′k ∩Mk 6= ∅ and L′k∩
◦
T n 6= ∅, we can apply the arguments for

m (1 ≤ m ≤ k) to show that (∗) holds.

Suppose there does not exist a leaf of F ′ satisfying the above conditions, i.e.,

for any depth dk leaf L′k of F ′ with L′k ∩ Mk 6= ∅, we have L′k∩
◦
T n= ∅. First,

consider the case j = k+1. If dk+1 = dk, then dj′ ≤ dk+1 for any j′ (k+2 ≤ j′ ≤ n)

because dk is maximal. Hence we suppose dk+1 < dk. Then we can show that

any depth dk+1 leaf intersecting Mk+1 does not meet Tk by applying the above

arguments. Thus Lk+1∩
◦
T n 6= ∅, and this implies that for any j′ ≥ j, dj′ ≤ dj.

Then, we can apply the arguments for the case m ≤ k to show that (∗) holds for

j = k+1. Then we apply the above arguments repeatedly to have the conclusion

of the lemma for j ≥ k. This completes the proof of the lemma. ¤
Recall that dk = max{d1, . . . , dn}. In what follows we further suppose k =

min{` | d` = max{d1, . . . , dn}}.

Lemma 4.2.12 Suppose dk+1 = dk. Then by deforming T by an ambient iso-

topy, we may suppose that Lk ∩ Tk = ∅ and Lk+1 ∩ Tk = ∅.

Proof. Assume that Lk∩Tk 6= ∅ (hence Lk+1∩Tk 6= ∅). By Lemma 4.2.8, each

component of Lk ∩Qk+1 is either a vertical or a ∂-parallel annulus.

If any component of Lk ∩ Qk+1 intersecting Tk is a ∂-parallel annulus, by

applying the arguments in the proof of Lemma 4.2.5, we may suppose via an

ambient isotopy that Lk ∩ Tk = ∅. Let T∗ be the new tori, T ∗
i the component

of T∗ corresponding to Ti, and M∗
i the closure of the component of M (n) \ ∪T ∗

i

corresponding to Mi. Then we claim that there is a depth dk leaf Lk of F such

that Lk ∩M∗
k+1 6= ∅. In fact, if there does not exist a depth dk leaf intersecting

M∗
k+1, then we can show that c(T∗) > c(T) by applying the argument as in the

proof of Lemma 4.2.9, a contradiction. Hence dk+1(T∗) = dk+1, and L ∗
k+1∩T ∗

k =

∅, where L ∗
k+1 is the union of the leaves L′ of F ′ such that L′ ∩M∗

k+1 6= ∅ and

depth(L′) = dk+1.
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Assume there is a component Ak of Lk ∩Qk+1 which is vertical in Qk+1 and

Ak∩Tk 6= ∅. By Lemma 4.2.8, each component of Lk+1∩Qk is either vertical or a

∂-parallel annulus. If any component of Lk+1∩Qk intersecting Tk is a ∂-parallel

annulus, by applying the arguments as in the proof of Lemma 4.2.5, we may

suppose via an ambient isotopy that Lk+1 ∩ Tk = ∅, hence Lk ∩ Tk = ∅, giving

the conclusion of the lemma. Assume there is a component Ak+1 of Lk+1 ∩ Qk

which is vertical in Qk and Ak+1 ∩ Tk 6= ∅. Since Ak (Ak+1 resp.) is a subset of

Lk (Lk+1 resp.), each component of Ak ∩ Tk is either a component of Ak+1 ∩ Tk

or disjoint from Ak+1 ∩ Tk, this contradicts Lemma 4.2.1. This completes the

proof of the lemma. ¤

Lemma 4.2.13 Suppose dk+1 = dk. Then d1 = 0 and dn = 0. Moreover, by

deforming T by an ambient isotopy, we may suppose L1 ⊂ M1 and Ln ⊂ Mn.

Proof. Since F ′ is of finite depth (Lemma 4.2.3), there is a depth 0 leaf, say Fk,

in Lk and there is one, say Fk+1, in Lk+1 (see Lemma 2.1.1). By Lemma 4.2.12,

we may suppose that Lk ∩ Tk = ∅ and Lk+1 ∩ Tk = ∅. Since F ′ is transverse to

T, these imply Lk ∩ Tk = ∅ and Lk+1 ∩ Tk = ∅. Thus Fk ⊂ M1 ∪M2 ∪ · · · ∪Mk

and Fk+1 ⊂ Mk+1 ∪ · · · ∪ Mn. These show Fk ∩ M1 6= ∅, and Fk+1 ∩ Mn 6= ∅,
which imply d1 = 0 and dn = 0.

By the arguments in the proof of Lemma 4.2.10, Fk ⊂ M1 ∪M2 ∪ · · · ∪Mk

implies via an ambient isotopy that L1 ⊂ M1, and Fk+1 ⊂ Mk+1 ∪ · · · ∪ Mn

implies via an ambient isotopy that Ln ⊂ Mn. ¤

Lemma 4.2.14 Suppose n ≥ 3. If dk+1 = dk, then k + 2 ≤ n and dk+2 < dk+1.

Proof. By Lemma 4.2.13, for i 6= 1, n, we immediately have di > 0. Hence

dk+1(= dk) > 0. Note that dn = 0. Hence k + 1 ≤ n− 1, i.e., k + 2 ≤ n. Assume

dk+2 = dk+1. By Lemma 4.2.9, there is a component Ak+1 of Lk+1 ∩Qk+1 which

is vertical in Qk+1 and satisfies Ak+1 ∩ Tk 6= ∅ or Ak+1 ∩ Tk+1 6= ∅. We have the

following cases.

Case 1 Any component of Lk+1 ∩Qk+1 does not intersect Tk.

In this case, there exists a component A′
k+1 of Lk+1 ∩Qk+1 which is vertical

and A′
k+1∩Tk+1 6= ∅ (Lemma 4.2.9). If any component of Lk+1∩Qk+2 intersecting

Tk+1 is ∂-parallel in Qk+2, by the arguments in the proof of Lemma 4.2.5, we

can deform Tk+1 by an ambient isotopy so that (with abusing notations) Lk+1 ∩
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Tk+1 = ∅. However this implies Lk+1 ⊂ Mk+1, contradincting the fact that F is

a finite depth foliation and the union of the depth 0 leaves of F is T0 ∪ Tn (see

Lemma 2.1.1). Hence there is a component of Lk+1 ∩ Qk+2 which is vertical in

Qk+2 intersecting Tk+1. However this contradicts Lemma 4.2.1.

Case 2 There is a component of Lk+1 ∩Qk+1 which intersects Tk.

Case 2 is devided into the following two subcases.

Case 2.1 Any component of Lk+1 ∩Qk+1 intersecting Tk is ∂-parallel in Qk+1.

In this case, by applying the arguments in the proof of Lemma 4.2.5, we can

deform by an ambient isotopy so that (with abusing notations) Lk+1 ∩ Tk = ∅.
Let T∗ be the new union of tori corresponding to T, M∗

j (Q∗
j resp.) the manifold

corresponding to Mj(Qj resp.), d∗j the value corresponding to dj. Note that

M∗
k ⊂ Mk ∪Mk+1, M∗

k+1 ⊂ Mk+1, M∗
j = Mj (j 6= k, k + 1).

Claim c(T∗) = c(T).

Proof of Claim. The maximality of c(T) implies that c(T∗) ≤ c(T). On the

other hand, M∗
k+1 ⊂ Mk+1 implies d∗k+1 ≥ dk+1. Since M∗

k ⊂ Mk ∪ Mk+1 and

dk = dk+1, we see that d∗k ≥ dk. Since M∗
j = Mj for j 6= k, k + 1, we see that for

j 6= k, d∗j = dj. Thus we obtain c(T∗) ≥ c(T), hence c(T∗) = c(T). ¤

Let L ∗
i be the union of the leaves L∗ of F ′ such that L∗ ∩ M∗

i 6= ∅, and

depth(L∗) = d∗i . By Claim and Lemma 4.2.9, we see that there is a component

A∗
k+1 of L ∗

k+1 ∩ Q∗
k+1 which is vertical in Q∗

k+1 and satisfies A∗
k+1 ∩ T ∗

k 6= ∅ or

A∗
k+1 ∩ T ∗

k+1 6= ∅. Recall that L ∗
k+1 ∩ T ∗

k = ∅. Hence A∗
k+1 ∩ T ∗

k+1 6= ∅, we can

apply the argument of Case 1 to have a contradiction.

Case 2.2 There is a component Ak+1 of Lk+1∩Qk+1 which meets Tk and vertical.

Since dk+1 = dk, each component of Lk+1∩Qk is either vertical or a ∂-parallel

annulus (see the proof of Lemma 4.2.8). If there exists a component of Lk+1∩Qk

which is vertical in Qk intersecting Tk, this contradicts Lemma 4.2.1. Suppose

any component of Lk+1 ∩ Qk intersecting Tk is ∂-parallel. Then we can apply

the arguments of Case 2.1 to have a contradiction.

These contradictions completes the proof of the lemma. ¤

By Lemmas 4.2.11 and 4.2.14, we see that if n ≥ 3, d1, d2, . . . , dn has a unique

maximum dk, or two successive maxima dk, dk+1.
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Proof of Proposiotion 4.2.1.

Proof of 1. We give a proof for the case 2 ≤ ` ≤ k. Assume there exists

` (2 ≤ ` ≤ k) such that d`−1 = d`. Note that by the definition of k, we have

dk−1 < dk. Hence n ≥ 3 and by retaking `, if necessary, we may suppose

d`−1 = d` < d`+1. Note that d` < d`+1 implies L` ∩ T` = ∅. Since d`−1 = d`, we

see that each component of L`∩M`−1 is compact (see the proof of Lemma 4.2.4),

hence each component of L` ∩Q`−1 is either vertical or a ∂-parallel annulus. If

any component of L` ∩Q`−1 intersecting T`−1 is ∂-parallel in Q`−1, then we can

show that T can be isotoped so that L` ⊂ M` as in the proof of Lemma 4.2.14,

a contradiction. Hence there exists a component of L` ∩ Q`−1 which is vertical

in Q`−1 intersecting T`−1. However as in the proof of Lemma 4.2.14, we can

show that there is a component of L` ∩ Q` which is vertical and intersects T`,

contradicting Lemma 4.2.1. This completes the proof of the lemma for ` (2 ≤
` ≤ k). We can prove for ` (k + 1 ≤ ` ≤ n− 1) by the same way as above.

Proof of 2. Let L be a leaf of F ′ intersecting Tk. Since dk = dk+1, we have

Lk ∩ Tk = ∅, Lk+1 ∩ Tk = ∅ (Lemma 4.2.12). This implies that depth(L) 6= d.

On the other hand, by the defenition of di, we have depth(L) ≥ dk = d. These

imply depth(L) > d. ¤

Corollary 4.2.1 The depth of F ′ is greater than or equal to [n
2
].

Proof. Suppose n = 1. Then clearly we have depth(F ′) ≥ [1
2
] = 0. Suppose

n = 2. By Lemma 4.2.10, without loss of generality we may suppose that d1 = 0.

If d2 = 0, by 2 of Proposition 4.2.1, there exists a depth 1 leaf of F ′. Thus

depth(F ′) ≥ 1 = [2
2
]. If d2 > 0, then it is clear that depth(F ′) ≥ d2 ≥ 1 = [2

2
].

Suppose n ≥ 3. If n is odd, 1 of Proposition 4.2.1 implies that dk ≥ n−1
2

, i.e.,

depth(F ′) ≥ n−1
2

= [n
2
]. If n is even, 1 of Proposition 4.2.1 implies that dk ≥ n

2
−1.

Note that dk = n
2
− 1 holds if and only if dk = dn

2
= dn

2
+1 = n

2
− 1. Hence in this

case, by 2 of Proposition 4.2.1, we have depth(F ′) ≥ n
2

= [n
2
]. Hence, for any n

(n ≥ 1), we have depth(F ′) ≥ [n
2
]. ¤

4.3 Proof of Theorem 1.0.1

Let K, Σ(n)(K, 0), α be as in Theorem ??. Let F̌ be a codimension one, trans-

versely oriented, taut C0 foliation on Σ(n)(K, 0) of finite depth which has exactly

one depth 0 leaf T̂ representing α such that depth(F̌) = depth0
1,α(Σ(n)(K, 0)).
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Since T̂ is the compact leaf of the taut foliation F̌ , T̂ is taut, i.e., incom-

pressible and norm minimizing. Note that [T̂ ] = α = ±[Ti] (1 ≤ i ≤ n) and each

Ti is a torus. Hence T̂ is a torus or a 2-sphere. Assume that T̂ is a 2-sphere.

Theorem 3 of [15] implies that Σ(n)(K, 0) ∼= S2 × S1. By Theorem 7 of [9] ,

Σ(n)(K, 0) ∼= S2 × S1 implies that S3(K, 0) ∼= S2 × S1. However since K is a

non-trivial knot, Property R [6] implies that S3(K, 0) 6∼= S2 × S1. Hence Ť is an

incompressible torus.

Claim The compact leaf Ť is isotopic to some Ti (1 ≤ i ≤ n).

Proof. Let T̂ = (
⋃n

i=1 Ti)∪ (
⋃n

i=1 T ′
i ) (⊂ Σ(n)(K, 0)). Since F̌ is taut, Theorem

4 of [17] implies that by an ambient isotopy in Σ(n)(K, 0), we can deform T̂ so

that either T̂ is transverse to F̌ or there exists T (n), a component of T̂ which

coincides with Ť . Suppose T̂ is transverse to F̌ . By applying the arguments as

in the proof of Lemma 4.2.5, we may suppose for any i (1 ≤ i ≤ n), F̌ |E(K′)i
has

no annular leaves, particularly Ť ∩ (∪T ′
i ) = ∅. We suppose | Ť ∩ T̂ | is minimal

among all union of tori which is isotopic to T̂ and transverse to F̌ . If | Ť ∩T̂ |> 0,

i.e., there is a torus Tj with Ť ∩Tj 6= ∅, there exist Aj a component of Ť ∩Qj, and

Aj+1 a component of Ť ∩Qj+1 such that Aj ∩Aj+1 6= ∅. Since T̂ is transverse to

F̌ , each component of T̂∩ Ť is an essential simple closed curve in T̂. This shows

that Ť ∩Qi, if exists, is incompressible in Qi. Since Ť ∩T ′
i = ∅, Ť is not horizontal

in Qi. Hence by [8, VI.34], each component of Ť ∩ Qi is either vertical or a ∂-

parallel annulus. Then we note that the arguments in the proof of Lemma 4.2.5

for removing ∂-parallel annuli work for ∂-parallel components of Ť ∩ Qi. This

together with the minimality of | Ť ∩ T̂ | shows that each component of Ť ∩ Qi

is vertical. Particularly Aj and Aj+1 are vertical, contradicting Lemma 4.2.1.

Hence T̂ ∩ Ť = ∅. This shows either Ť ⊂ E(K ′)i or Ť ⊂ Qi. If Ť ⊂ E(K ′)i,

then Ť is separating in E(K ′)i hence separating in Σ(n)(K, 0). Thus Ť can not

be a leaf of the taut foliation F̌ , a contradiction. Hence Ť ⊂ Qi. Since Qi is

homeomorphic to (disk with two holes) × S1, Ť is isotopic to either T ′
i , Ti−1 or

Ti. Since T ′
i is separating, Ť can not isotopic to T ′

i , so Ť is isotopic to Ti−1 or

Ti. ¤
We may suppose without loss of generality that Ť is isotopic to Tn. Then we

can obtain a foliation F̂ ′ on M (n) by cutting F̌ along Ť . By Corollary 4.2.1 and

Lemma 4.2.3, we have

depth(F̌) = depth(F̂ ′) ≥ 1 +
[n

2

]
.

This completes the proof of Theorem 1.0.1.
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4.4 Proof of Theorem 1.0.2

Let F be a codimension one, transversely oriented, taut C0 foliation of finite

depth, with C∞ leaves on Σ(n)(K, 0) with exactly one depth 0 leaf representing

α, where α is corresponding to a generator of H1(S
3(K, 0)) ∼= Z. Let F̃ be

the foliation obtained by modifying F as in Section 3, hence F̃ satisfies the

conditions given soon after Remark 2.1.4 in Section 2.1.2. Then, by applying

the argument as in the proof of Claim in Section 4.3, we may assume that the

compact leaf of F̃ is isotopic to Tn. Let M (n) be the manifold obtained from

Σ(n)(K, 0) by cutting along Tn (in this subsection, we basicaly use the same

three dimensional manifolds and surfaces as in Section 4.2 and adopt the same

notations for denoting the manifolds, e.g., M (n), Mi, Tj, T ′
i , etc.) Then, M (n)

clearly corresponds to M̂ which appears in the paragraph preceding Lemma 2.1.6

in Section 2.1.2. Recall that ∂M (n) = T0 ∪ Tn. Let F̂ be the foliation on M (n)

induced from F̃ . Then, for the above folations F̃ and F̂ , we can consider the

graph G(F̃) and Ĝ(F̂) in Definitions 2.1.10 and 2.1.11. Let g = gap(F̃). Since

M (n) is not homeomorphic to (torus)×[0, 1], we see that F̃ is not a foliation given

by a surface bundle structure over S1. Thus G(F̃) has an edge, hence g ≥ 1. By

the construction of F̃ described in Section 3, we see that F̃ contains exactly one

depth 0 leaf. These imply that Ĝ(F̂) contains exactly two vertices at depth 0.

Lemma 4.4.1 Ĝ(F̂) is connected.

Proof. Assume that Ĝ(F̂) is not connected. Since the union of the compact

leaves of F̂ is T0∪Tn, there are exactly two vertices at depth 0. By Remark 2.1.5,

any component of Ĝ(F̂) must have a depth 0 vertex. Hence Ĝ(F̂) consists of

two components, say G1 and G2. Let {uj} ({vk} resp.) be the vertices of G1 (G2

resp.). Let Uj (Vk resp.) be the union of the leaves representing uj (vk resp.).

Then we show that
⋃

j Uj is closed. Let {xi}i=1,2,... be a Cauchy sequence in

M̂ such that each xi is contained in
⋃

j Uj and converges to x∞. We show that

x∞ ∈ ⋃
j Uj. Let L∞ be the leaf of F̂ which contains x∞. Let P be a plaque

of F̂⊥ through x∞. We may suppose each xi is contained in P . Let P+, P− be

the components of P \ x∞. Then, by retaking xi if necessary, we may suppose

that each xi is contained in P+. If there is a leaf L of F̂ which contains infinitely

many xi, this implies that L \ L ⊃ L∞. Thus there exists a path connecting uj

and the vertex representing L∞. Hence we have x∞ ∈ ⋃
j Uj. Suppose there does

not exist such L. Let Li be the leaf of F̂ which contains xi. Since Li intersects P

finitely many times, we may suppose that xi is the nearest to x∞ among all the
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points of Li ∩P . By applying the arguments as in the proof of Claim given soon

after the proof of Lemma 3.1.1, we can show that L∞ is equivalent to Li. This

implies that x∞ ∈ ⋃
j Uj. Hence

⋃
j Uj is closed. By applying the arguments as

above, we can show that
⋃

k Vk is also closed. Note that M (n) = (
⋃

j Uj)∪(
⋃

k Vk)

and that (
⋃

j Uj)∩ (
⋃

k Vk) = ∅, contradicting the fact that M (n) is connected. ¤

We say that graph Γ is a tree if Γ is connected and Γ does not contain a cycle.

Lemma 4.4.2 The following two conditions are equivalent to each other.

1. Ĝ(F̂) is a tree.

2. The number of the cycles of G(F̃) is one.

Proof. We first show that 1 implies 2. Suppose 1 holds. Recall that the

number of the depth 0 vertices of Ĝ(F̂) is two, and G(F̃) is obtained from Ĝ(F̂)

by identifying them. Since Ĝ(F̂) is a tree, Ĝ(F̂) does not have a cycle and there

is a unique path in Ĝ(F̂) connecting the depth 0 vertices, the path becomes a

cycle in G(F̃) and this is the only cycle in G(F̃).

Suppose 2 holds. Since Ĝ(F̂) is connected (Lemma 4.4.1), we only need

to prove that Ĝ(F̂) does not have a cycle. Assume that Ĝ(F̂) has a cycle.

By applying the argument as above, the path in Ĝ(F̂) connecting the depth 0

vertices become a cycle in G(F̃) and since the operation obtaining G(F̃) does

not remove a cycle, this implies that the number of the cycles of G(F̃) is two, a

contradiction. ¤

In the following, we suppose that Ĝ(F̂) is a tree. Let Γ be the path connecting

the depth 0 vertices of Ĝ(F̂). Then, clearly gap(F̂) = g. Suppose g = 1. Note

that Theorem 1.0.1 implies that depth(F) ≥ 1+
[

n
2

] ≥ 1+n
2

. Thus Theorem 1.0.2

holds.

Hence in the remainder of this proof, we suppose g > 1.

Lemma 4.4.3 There exists exactly one edge, say e, of Ĝ(F̂) with length(e) > 1.

(Hence we have length(e) = g.)

Proof. Let e be an edge of Ĝ(F̂) such that length(e) > 1. Let v, v′ be the

endpoints of e such that depth(v) < depth(v′). Let Γ1 (Γ2 resp.) be a directed

path from v (v′ resp.) to a vertex at depth 0 such that each edge of Γ1 (Γ2 resp.)

has length one (Remark 2.1.5). Here we regard the vertex v as Γ1 if depth(v) = 0.

Then, since Ĝ(F̂) is a tree and the number of the vertices at depth 0 is two, it
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is clear that Γ = Γ1 ∪ e ∪ Γ2. Take any edge e′ of Ĝ(F̂) with length(e′) > 1.

By applying the argument as above, we can show that there exist directed paths

Γ′1, Γ′2 from the endpoints of e′ to the depth 0 vertices, each edge of which has

length one. Moreover we have Γ = Γ′1 ∪ e′ ∪Γ′2. Since each edge of Γ1, Γ2, Γ′1, Γ′2
has length one, this shows that e′ = e. Hence e is the only edge of length greater

than one, thus we have length(e) = g. ¤

Let v, v′, Γ1, Γ2 be as in the proof of Lemma 4.4.3. Since the situation is

symmetric, we may suppose Γ1 (Γ2 resp.) contains the vertex representing T0 (Tn

resp.). Let m be the number of edges of Γ1. Since gap(F̂) = g, the number of

edges of Γ2 is m+ g. Rename the vertices in Γ1 ∪Γ2 by v0, v1, . . . , vm, vm+1, . . . ,

v2m+g+1 so that vi (0 ≤ i ≤ 2m+g+1) are on Γ in this order, and that v0 = [T0],

v2m+g+1 = [Tn].

Let Lk be a leaf representing vk. Let T = (
⋃n−1

j=1 Tj) ∪ (
⋃n

i=1 T ′
i ) be as in

Section 4.2.1. Let Mi be as in Section 4.2. Let M (n)′ be as in Section 4.2.1. Let

M ′
i be the closure of the component of M (n)′ \T corresponding to Mi. Note that

for i 6= 1, n, we have M ′
i = Mi.

Claim depth(F) ≥ m + g.

Proof of Claim. It is clear that depth(F̂) ≥ max{depth(vi)}. Note that

vm+1 corresponds to v′ in the proof of Lemma 4.4.3. Hence max{depth(vi)} =

depth(vm+1). Note that depth(vm+1) = Σε:edges of Γ1 length(ε) + length(e) (see

Figure 4.15). Since the length of each edge of Γ1 is one, this implies that

depth(vm+1) = (number of edges of Γ1)+g = m+g. Hence we have depth(F̂) ≥
m + g. By Lemma 2.1.6 and Fact 3.3.1, we see that depth(F) ≥ depth(F̂) ≥
m + g. ¤

Now we estimate the value m+g. If m ≥ n, we have m+g ≥ n+g > n+g
2

. By

the above Claim, this shows that Theorem 1.0.2 holds. Hence in the remainder

of this subsection, we suppose m < n.

Lemma 4.4.4 There is an ambient isotopy ft (0 ≤ t ≤ 1) of M (n) whose support

is contained in
⋃m+1

i=1 Mi satisfying the following two conditions:

1. f1(T)is transverse to F̂ ;

2. for k (1 ≤ k ≤ m), Lk ⊂
⋃k

i=1 M̃i, where M̃i is the closure of the component

of M (n) \ f1(∪n−1
j=1 Tj) corresponding to Mi.
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Proof. We consider for k = 1. By applying the argument as in the proof

of Assertion(i) in the proof of Lemma 4.2.3, we see that L1 ∩ M (n)′ = ∅ or

L1∩M (n)′ is compact. Suppose L1∩M2 6= ∅. Then, by applying the argument as

in the proof of Lemma 4.2.10, we can show that there is an ambient isotopy f 1
t

(0 ≤ t ≤ 1) whose support is contained in M1∪M2 such that L1 ⊂ M̌1, where M̌i

is the closure of the component of M (n) \ f 1
1 (∪n−1

j=1 Tj) corresponding to Mi, and

that f 1
1 (T) is transverse to F̂ . Suppose L1 ∩M2 = ∅. Then we let f 1

t = idM(n)

(0 ≤ t ≤ 1). Then, we consider for k = 2. Suppose L2 ∩ M (n) \ M̌1 6= ∅. If

L2 ∩ M (n) \ M̌1 is noncompact, then there exists a depth 1 leaf L′1 such that

L′1 ⊂ L2 and L′1 ∩M (n) \ M̌1 6= ∅. Now, since L1 ⊂ M̌1, L′1 6= L1. Let v′1 be the

vertex representing L′1. We claim that v′1 6= v1. In fact, if v′1 = v1, then there

is an embedding φ : L1 × [0, 1] → M (n) giving equivalence relation between L

and L′. Note that F̂ |φ(L×[0,1]) is a product foliation, and L1 ∩ T1 = ∅. These

imply that there is a point x in T1 ∩ φ(L1 × [0, 1]) such that F̂ and T1 are not

transverse at x, a contradiction. By Remark 2.1.5, there exists a directed path

Γ′1 from v′1 to v0 or v2m+g+1. This contradicts the assumption that Ĝ(F̂) is a

tree. Hence L2∩M (n) \ M̌1 is compact. Suppose L2∩M̌3 6= ∅. Then by applying

the argument as in the proof of Lemma 4.2.10, we can show that there is an

ambient isotopy f 2
t whose support is contained in M̌2 ∪ M̌3 such that L2 ⊂ ˇ̌M2,

where ˇ̌Mi is the closure of the component of M (n)\f 2
1 (f 1

1 (∪n−1
j=1 Tj)) corresponding

to Mi, and f 2
1 (f 1

1 (T)) is transverse to F̂ . Suppose L2 ∩ M̌3 = ∅. Then we let
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f 2
t = idM(n) (0 ≤ t ≤ 1). By applying the argument as above, we can obtain

a sequence of ambient isotopies f 1
t , f 2

t , . . . , fm−1
t , fm

t . Then, the desired ambient

isotopy ft is obtained by applying f 1
t , f 2

t , . . . , fm
t successively in this order (with

reparametrizing the parameter t). ¤

In the following, we abuse notation T for denoting f1(T) for simplicity, hence

for k (1 ≤ k ≤ m), Lk ⊂
⋃k

i=1 Mi holds. For k (1 ≤ k ≤ m), let jk be the integer

which satisfies Lk ∩Mjk
6= ∅ and Lk ∩Mjk+1 = ∅. We extend the definition of jk

by putting j0 = 0. Since Lk ⊂
⋃k

i=1 Mi, we immediately have the following.

Lemma 4.4.5 For k (1 ≤ k ≤ m), we have jk ≤ k.

Suppose jm ≥ n−m− g + 1. By applying Lemma 4.4.5 for the case k = m,

we have jm ≤ m. These inequalities imply m + g ≥ n+g+1
2

> n+g
2

. This together

with the claim in this subsection shows that Theorem 1.0.2 holds. Hence in

the remainder of this subsection, we may suppose jm < n − m − g + 1. Note

that Γ2 contains m + g + 1 vertices, vm+1, vm+2, . . . , v2m+g+1. By applying the

argument as in the proof of Lemma 4.4.4 to leaves corresponding to the m+g−1

vertices v2m+g, v2m+g−1, . . . , vm+2, we can obtain the following lemma. (Note that

L2m+g+1−k′(Mn+1−k′ resp.) in Lemma 4.4.6 corresponds to Lk′ (Mk′ resp.) in

Lemma 4.4.4.)

Lemma 4.4.6 There is an ambient isotopy f ′t (0 ≤ t ≤ 1) of M (n) whose support

is contained in
⋃m+g

i=1 Mn+1−i satisfying the following two conditions:

1. f ′1(T)is transverse to F̂ ;

2. for k′ (1 ≤ k′ ≤ m + g − 1), L2m+g+1−k′ ⊂
⋃k′

i=1

˜̃
Mn+1−i, where

˜̃
Mn+1−i is

the closure of the component of M (n)\f ′1(∪n−1
j=1 Tj) corresponding to Mn+1−i.

Note that since jm < n −m − g + 1 = n + 1 − (m + g), f ′t does not change⋃m
i=0 Li. In the following, we abuse notation T for denoting f ′1(T) for simplicity,

i.e., for k′ (1 ≤ k′ ≤ m + g − 1), L2m+g+1−k′ ⊂
⋃k′

i=1 Mn+1−i. For k′ (1 ≤ k′ ≤
m + g − 1), let j′k′ be the integer which satisfies L2m+g+1−k′ ∩Mn−j′

k′+1 6= ∅, and

L2m+g+1−k′ ∩Mn−j′
k′

= ∅. Since L2m+g+1−k′ ⊂
⋃k′

i=1 Mn+1−i, we immediately have

the following.

Lemma 4.4.7 For 1 ≤ k′ ≤ m + g − 1, we have j′k′ ≤ k′.

Then, we have the following.
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Lemma 4.4.8 n− j′m+g−1 ≤ jm + 1.

Proof. Assume that n− j′m+g−1 ≥ jm + 2. By the definition of jk, we see that

(Mjm+1 ∪ Mjm+2) ∩ Lm = ∅. On the other hand, the above inequolity implies

that (Mjm+1 ∪Mjm+2) ∩ Lm+2 = ∅. Since Lm+1 approaches both Lm and Lm+2,

Lm+1 intersects both Mjm+1 and Mjm+2. By applying the argument as in the

proof of Lemma 4.4.4, we can show that Lm+1 ∩Mjm+1 and Lm+1 ∩Mjm+2 are

compact. By applying the argument as in the proof of Lemma 4.2.8, we can

show that each component of Lm+1∩Qjm+1 (Lm+1∩Qjm+2 resp.) is a vertical or

boundary parallel annulus in Qjm+1 (Qjm+2 resp.), where Qi is as in Section 4.2.

By applying the argument as in the proof of Lemma 4.2.9, there exists a vertical

annulus A ⊂ Lm+1 ∩ Qjm+1 such that A ∩ Tjm 6= ∅ or A ∩ Tjm+1 6= ∅, and

there exists a vertical annulus A′ ⊂ Lm+1 ∩ Qjm+2 such that A ∩ Tjm+1 6= ∅ or

A ∩ Tjm+2 6= ∅. Since Lm+1 ⊃ Tn, we may suppose that A ∩ Tjm+1 6= ∅, and

since Lm+1 ⊃ T0, we may suppose that A′∩Tjm+1 6= ∅. However these contradict

Lemma 4.2.1. ¤

By Lemma 4.4.5, we see that jm ≤ m and by Lemma 4.4.7, we see that

j′m+g−1 ≤ m + g − 1. These together with Lemma 4.4.8 imply that

n−m− g + 1 ≤ m + 1.

Thus we obtain

m + g ≥ n + g

2
.

This together with the claim of this subsection, we can show that Theorem 1.0.2

holds. ¤

This completes the proof of Theorem 1.0.2.
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