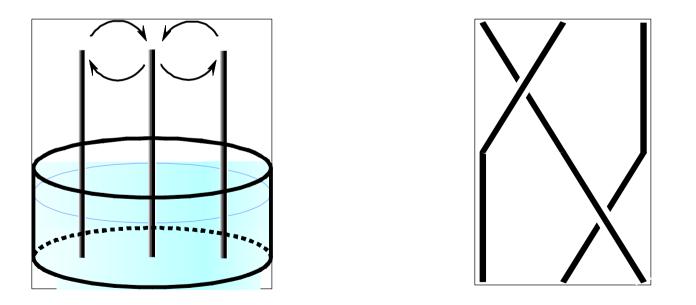
Realizing Topological Chaos by Simple Mechanisms

Tsuyoshi Kobayashi (Nara Women's Univ.) joint work with Saki Umeda (Nara Women's Univ.)

Mixing fluid by a periodic motion of finite number of rods

Mapping class group of Dn (disk with n-punctures)



Braid group Bn / center

Nielsen - Thurston theory

Each element of Map(Dn) is either periodic pseudo - Anosov (p.A.) : chaotic •reducible

Thurston, W., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc(N. S.) 19(1988), 417-431.

It is natural to expect :

Movement of rods corresponding to p.A. map can mix up fluid efficiently. B-A-S etc.

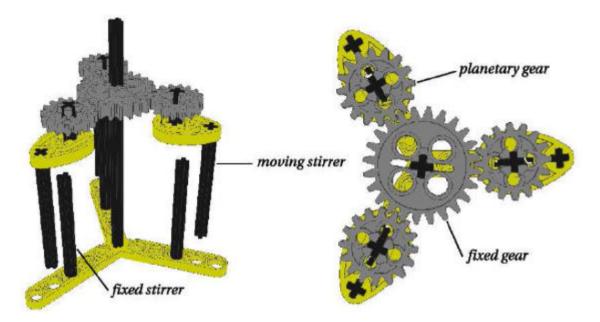
Boyland, P.L., Aref, H., and Stremler M.A., Topological Fluid mechanics of stirring, J.Fluid Mech. 403(2000), 277-304.

Kobayashi-Umeda suggested a simple mechanism realizing p.A. mixing.

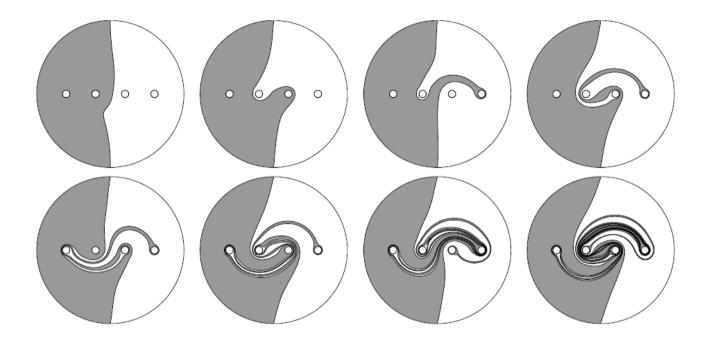


Kobayashi T., and Umeda, S, Realizing pseudo-Anosov egg beaters with simple mechanisms, Proc. of the Int. Workshop on Knot theory for Sci. Objects, March(2006), 97-109, 2007.

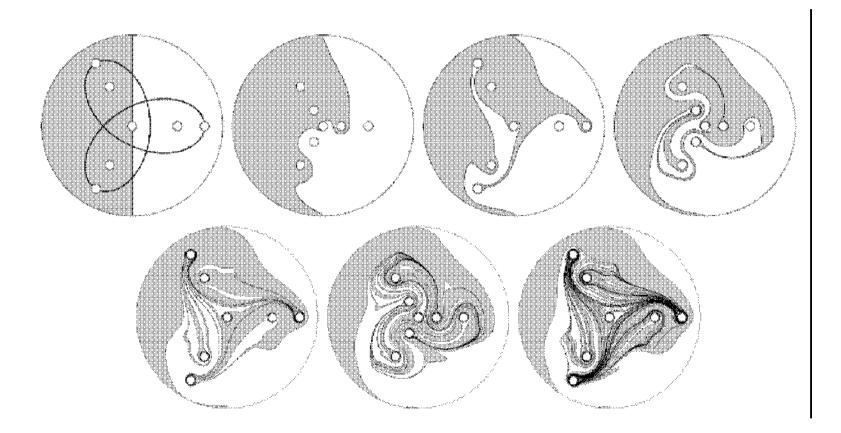
<u>Thiffeault-Finn</u> p.A. mixing with 6 (or 7) rods can stir much larger region than mixing with 3 rods.



Thiffeault, J.L., Finn, M.D., Topology, Braids, and Mixing in Fluids, Math, Phys. and Eng. Sci. 364 (2006), 3251-3266



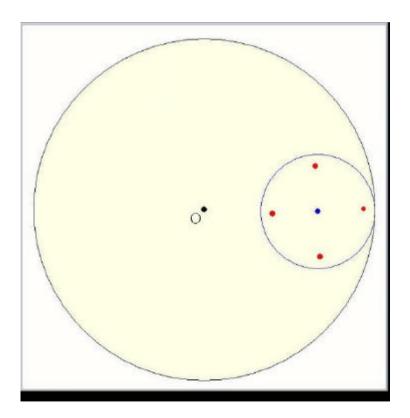
However, there is large region which is not mixed at all.



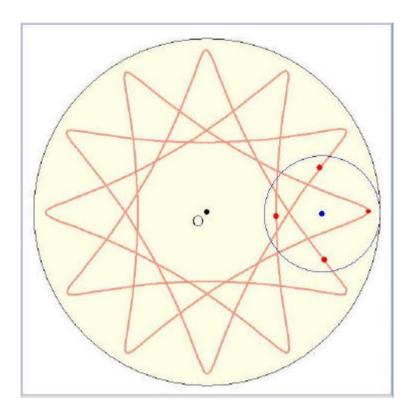
Thiffeault - Finn say :

"More rods will lead to a greater topological entropy, but will also complicate the apparatus."

In this talk we introduce a mixing system using trochoid.



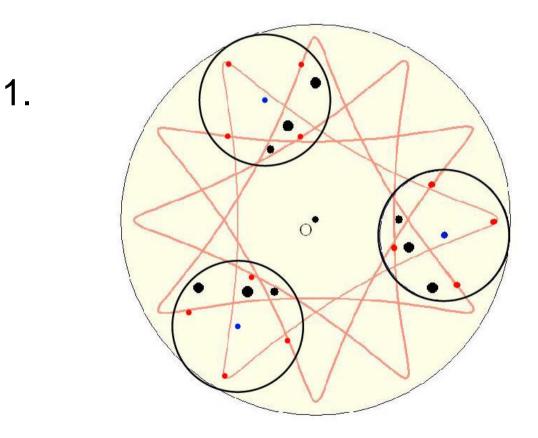
Outer circle : Inner circle = 3 : 1 Number of moving points = 4



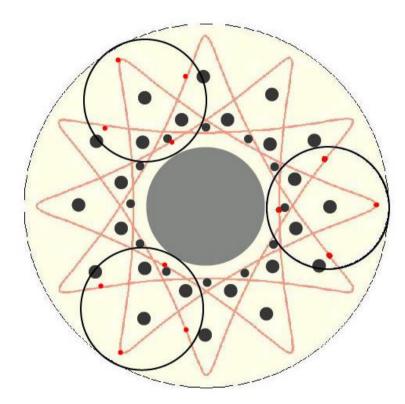
Place rods at the moving points.

the rods mix up fulids in the outer circle.

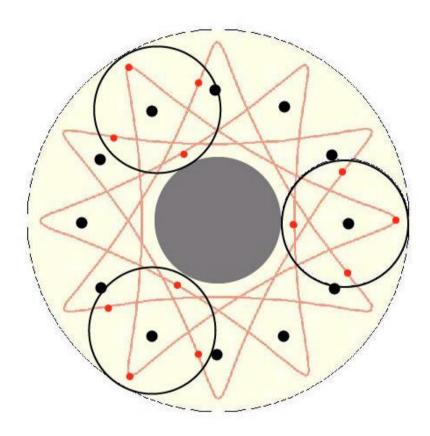
Furthermore: Place obstacles as follows:



2.



3.



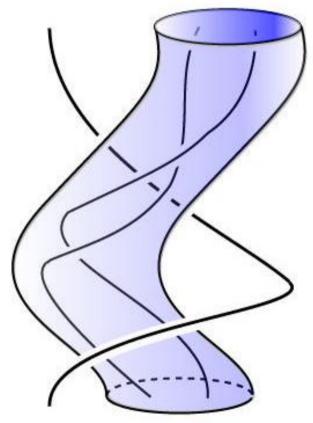
Fact:

These mixings are all of type p.A.

<u>Proof</u>:

Consider the links obtained by closing braids defined by the rods and obstacles.

<u>Observation:</u> If it is reducible, $lk(l_1, l_i) = lk(l_2, l_i).$ for any l_1, l_2 : inside tube l_i : outside tube



1. Fundamental region

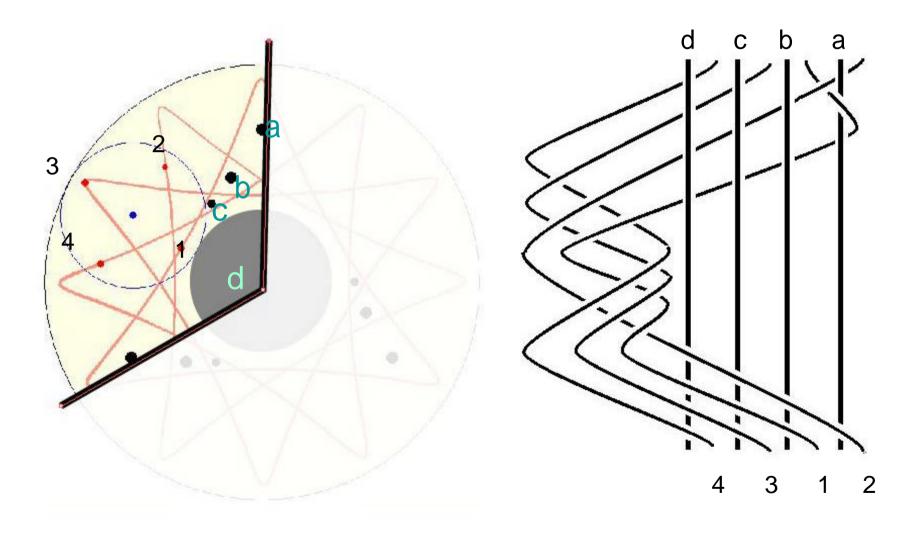


Table of Linking number

	а	b	С	d
1	1	1	1	1
2	0	1	1	1
3	0	0	1	1
4	0	0	0	1

$$lk(i, j) = -1 (i, j {1, 2, 3, 4})$$
$$lk(x, y) = 0 (x, y {a, b, c, d})$$

2. Fundamental region

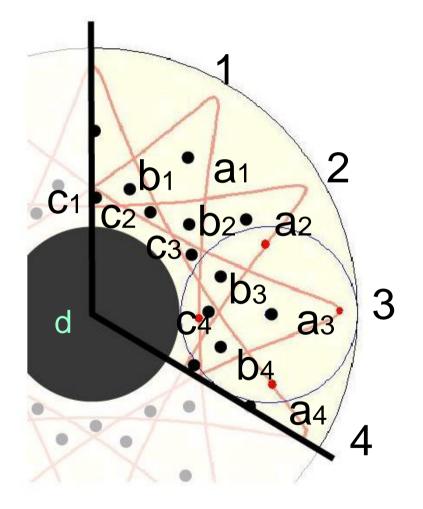


Table of linking numbers

	a 1	b1	C 1	d
1	1	1	1	1

	a 2	b ₂	C 2	d
1	0	1	1	1

	a 3	bз	C 3	d
1	0	0	1	1
	a4	b4	C 4	d
1	0	0	0	1

etc.

3. Fundamental regions

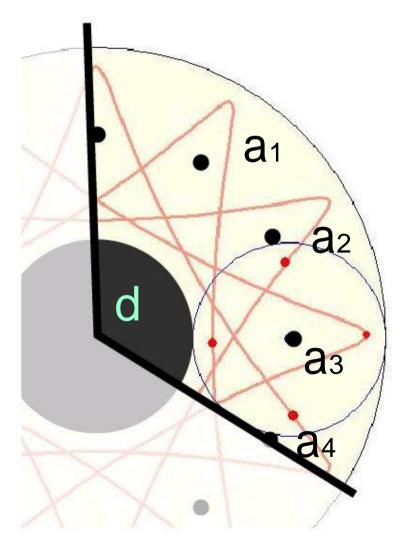


Table of linking numbers

	1	2	3	4
d	1	1	1	1
aı	1	0	0	0
a 2	0	1	0	0
аз	0	0	1	0
a 4	0	0	0	1

