Content-based Audio Retrieval via Hashing

Yi Yu

yuyi@ics.nara-wu.ac.jp Graduate School of Humanity and Science Nara Women's University

Seminar@PM3:00 2 July 1

What to Cover

- Research Background
- Short review -- ANN, LSH and E²LSH
- Peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

Research Background

- A great number of multimedia contents appear on the Internet
 - These contents are shared and exchanged over P2P networks.
 - The choice of music on the major P2P networks is almost unlimited
 - Fast access to the Internet make music download (and upload) more convenient
- The actual search is often limited to the text tags (nonflexible)
- Content-based scalable music searching capabilities need to be exploited

What to Cover

- Background and motivation
- Short review -- ANN, LSH and E²LSH
- Peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

Approximate Nearest Neighbor(ANN)

- > Given -- a set P of n points in \mathbb{R}^d (d dimension) and a slackness parameter $\varepsilon > 0$
- Goal -- with a query point q whose nearest neighbor in P is a, find one/all points p in P, satisfying

 $D(p,q) \le c D(q,a), c=1+\varepsilon$

Points in the shadowed ring are desired.

Locality-Sensitive Hashing (LSH)

> Hash function:

- A pseudo random hash value is obtained
- Hash value is nearly uniformly distributed.
- LSH: hash function is required to maintain the similarity. For any pair of points p, q,
 - Hash function h, generate h(p), h(q)
 - Pr[h(p)=h(q)] is "high" if p is "close" to q
 - Pr[h(p)=h(q)] is "low" if p is"far" from q

Exact Euclidian LSH (E²LSH)

- E²LSH performs locality-sensitive dimension reduction by p-stable distribution
 - A distribution D over R is called p-stable, if
 - (i) for any *n* real numbers $V = (v_1, v_2, ..., v_n)^T$
 - (ii) i.i.d. random variables $X = (x_1, x_2, ..., x_n)$ and x with distribution *D*

(iii) there exists $p, y = \left(\sum_{i} |v_i|^p\right)^{1/p} x$ and $f_V(X) = \sum_{i=1}^n v_i x_i$

- have the same distribution.
- Dimension compression $X \rightarrow f_V(X)$

What to Cover

- Background and motivation
- Short review -- ANN, LSH and E²LSH
- Peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

Traditional Client/Server Architecture

- A server is created to store the information that all nodes want to share
 - > The server is the only data source
 - Clients request data from the server

Peer-to-Peer Concept

- Sharing of computer resources by direct exchange between systems (Such resource includes information, processing cycles, storage, etc.)
- > Characteristics
 - Each node behaves as client, server, and router
 - Nodes are organized autonomously (there is no administrative authority)
 - Network topology is dynamic: nodes enter and leave the network frequently
 - Nodes collaborate directly with each other (not through wellknown servers)
 - Nodes have widely varying capabilities

Typical P2P Architectures (1)

pure P2P

Pure P2P

- Completely distributed, no central node
- Robust—a single fault node does not affect others
- Less efficient, the overhead may overload the network

Typical P2P Architectures (2)

structured P2P

Structured P2P

- Most systems only support name-based retrieval
- It is not straightforward to adopt more sophisticated retrieval models

leaf node

hub (supernode, superpeer, ultrapeer, directory node)

Nara Women's University

Typical P2P Architectures (3)

Hierarchical P2P

- Improves efficiency and scalability without sacrificing robustness
- The special dedicated hubs can provide more sophisticated services to improve query routing efficiency as well as retrieval accuracy
- It is straightforward to adopt various retrieval algorithms

hub (supernode, superpeer, ultrapeer, directory node)

Nara Women's University

What to Cover

- Background and motivation
- Short review -- ANN, LSH and E²LSH
- Peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

Information Retrieval System over Peer-to-Peer Networks

- What is it
 - The system performs the retrieval of documents to satisfy user's information requests in peer-to-peer networks
- What activities are involved
 - The querying node issues information requests
 - Other nodes respond to the requests with documents (document retrieval),
 - Or route requests further (query routing, resource selection)
- What architecture to use
 - Pure peer-to-peer architecture
 - Structured peer-to-peer architecture
 - Hierarchical peer-to-peer architecture
- What search mechanism to use
 - Name-based retrieval

Nara Women's University

Content-based retrieval

15

Why Content-based Retrieval

- Name-based retrieval only suffices known-item search
- Search across networks of digital libraries with more varied content requires content-based retrieval
 - Text documents usually don't have certain naming conventions and it is often difficult to describe a document in a few words
 - User usually does not know whether there are any relevant documents with respect to the information request

Why Music Retrieval over Peer-to-Peer Networks

- Existing music information retrieval models lack scalability, as a result, performance degrades when the database gets large.
- Fault-tolerance is easier to handle under a peer-to-peer architecture
- A peer-to-peer system can give access to a much larger database

What to Cover

- Background and motivation
- Short review -- ANN, LSH and E²LSH
- Explain concept of peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

P2P Search

- Goal: Find documents with content of interest
- Search query is propagated over part of the network (from peer to a neighbor peer).
- Each search includes a query and a "propagation rule", which determines the search range (which neighbors the search is propagated to).
- > When a peer receives a query
 - > it checks if it can satisfy it
 - it decreases hop count
 - it forwards the query to a subset of its neighbors if the hop count is still greater than 0
- Overall performance of a P2P network highly depends on the efficiency and versatility of search

Nara Women's University

Challenges in Enhancing CBMR over P2P Networks

- More extensive semantics set for similarity retrieval is necessary
- Performance capability to the large database and the peer's number.
- P2P networks have many special properties, such as reliability, distributed computing and storage power,faulttolerance, and low bandwidth.

How to Improve Current Music Retrieval over P2P Networks

- We take the node or peer of a P2P system as a personal computer
- \geq Two main aspects can be taken into account.
 - Facilitate content-based similarity retrieval by indexing audio music documents. For example, a hashing scheme--Locality Sensitive Hashing.
 - Load balance—distribute load in order to maximize throughput and minimize inconvenience to subscribers.

What to Cover

- Background and motivation
- Short review -- ANN, LSH and E²LSH
- Peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

Peer-to-Peer Model for Content-based Music Retrieval

- All PCs are interconnected, each PC stores a collection of music documents.
- Analysis of acoustic data and conversion to characteristic sequences are done locally at each PC.
- While building the database, characteristic sequences for each music document are stored in multiple locally sensitive hashing instances.

Peer-to-Peer Model for Content-based Music Retrieval

What to Cover

- Background and motivation
- Short review -- ANN, LSH and E²LSH
- Peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

Motivation

- Depend on:
 - Mapping features to integer values by heuristics
 - Reducing pairwise comparisons by hashing
- > Challenges:
 - Characterize acoustic objects with relevant spectral features.
 - Represent audio features so that they can be indexed.
 - Locate desired music segments with a given query in the acceptable time.

Problem Definition

- Match acoustic sequences without comparing a query to each object in the database.
 - A corpus of *n* musical reference pieces are represented by frames $R = \{r_{i,i} : r_{i,i} \in R_i, 1 \le i \le n, 1 \le j \le R_i \}$

 $-r_{i,j}$ -- j^{th} spectral feature of i^{th} reference melody in a highdimension space

- A query sequence <u>q1, q2, ..., q0</u> filters some resemblances by E²LSH/LSH-based ANN.
- Resembled features are reorganized and compared by DP/Sparse DP.

Retrieval Framework

> Task:

- Take a fragment of the query song as input
- Perform a content-based similarity retrieval
- Return melodies similar to this query fragment
- Major stages:
 - Metadata organization (red + green)
 - Querying (red + blue)

Metadata Organization

Basic procedures:

- Audio sequences are divided into small frames
 - STFT is calculated and used as the feature
- Feature mapping and hash value are calculated
 - In LSH (hash value is directly calculated from STFT)
 - In E²LSH (STFT is first projected to a lower dimensional sub-feature, hash value is calculated)
- The features are stored in the bucket
- Results -- Convert audio features into "indexable" items.

Example: a Hash Instance

- Original feature (q₀, r₀), Locality sensitive mapping (q, r), Per-dimension quantification, Hash calculation [H(r), H(q)]
- Random weight makes hash values of reference melodies almost uniformly distributed.
- If q and r have a short distance
 - They are quantified to same integer sequences
 - & generate same hash value (H(r) = H(q)) with a high probability.

Parallel Hash Instances

Necessary condition:

- Each hash instance contains all the features.
- Locality sensitive mapping generates different features & keep similarity

Parallel lookup:

- Construct L hash instances with random g_1, g_2, \dots, g_L
- With a query feature Q, lookup buckets $g_1(Q)$, $g_2(Q)$... $g_L(Q)$
- $g_1(Q) U g_2(Q) U \dots U g_L(Q)$ gives total results

Query Stage I

Feature extraction

- Divide the query into overlapped frames
- Calculate STFT for each frame

Query Stage II

> Hashing-based ANN:

- Similar frames lie in the same bucket
- However, dissimilar frames also exist (dissimilar frames)
- Approximation allows a significant speedup of the calculation
- > Example(Index with single feature):
 - Assume that q is similar to f1, f2, f3.
 - Lookup hash table 1, $h_1(q)$ gives query result f1, f3 and f5.
 - Lookup hash table 2, $h_2(q)$ gives query result f1, f2 and f4.
 - f4 & f5 are not similar to q and are removed by ANN.
 - Union of indexed results are f1, f2 and f3.

Indexed results are f1, f3, f5

Query Stage III

> Find desired target with a sequence of features

- With query sequences $(q_1, q_2, q_3, q_4, q_5)$ lookup parallel hash tables
 - Matched features belong to 3 reference melodies.
 - They are reorganized in time order.
 - 7 features in the 1st melody R_1 , 4 features in the 2nd melody R_2 ,
 - 3 features in the 3^{rd} melody R_3 .
 - On this basis, the sequence comparison is performed

Query Stage IV

- Matched pairs are sparsely distributed over the Dynamic Time Warping (DTW) table.
 - The conventional Dynamic Programming (DP) is not efficient.
- > Our sequence comparison scheme Sparse DP (SDP)
 - Distance calculated in the filtering stage is converted into weights and filled into the DTW table
 - Melody generating the maximal weight path is the best candidate

Experiment Setup

System parameters

- 462 reference melodies, each melody: 60s
- A query piece: 8s
- Sampling rate: 22.05KHz
- Frame length: 1024, Frame overlap: 50%
- Hash table size: 128

> Experiments goal:

- Evaluate performance of avoiding full pairwise comparison
- Compare LSH-DP, LSH-SDP, E²LSH-DP, E²LSH-SDP

Evaluation metric:

- Matched percentage
- Computation time
- Retrieval ratio

Nara Women's University

Experiments I -- Matched Percentage

Focus on the accuracy of indexing

- Ratio N_{rm}/N_{mm} is defined as Valid Match Percentage (VMP).
 - N_{mm} : Frames of the matched part under the conventional DP.
 - N_{rm}: Remaining frames of matched part after the filtering stage in LSH/E²LSH
- A good indexing scheme is to maximize VMP.

VMP under different filtering threshold (3 hash tables)

${}^{\delta}{}_{LSH}$	0.01	0.02	0.03	0.04	0.05
VMP _{LSH}	0.133	0.255	0.400	0.537	0.669
δ_{E2LSH}	0.0025	0.005	0.0075	0.0100	0.0125
VMP _{E2LSH}	0.123	0.240	0.363	0.472	0.573

Increasing filtering threshold leads to a high VMP at the cost of more computation.

Experiments II -- Computation Time

- Computation is mainly considered in two aspects:
 - Indexing the features by LSH/E²LSH together with ANN
 - Comparing feature sequences

Short discussion

- SDP has a very obvious superiority over DP
 - it avoids the calculation of feature distance
 - & its comparison time approaches a steady value, which guarantees worst retrieval time.
- SDP outperforms DP

Comparison time in DP and SDP under different number of hash tables (δ_{F2LSH} =0.0075) or different filtering threshold δ (3 hash tables) 38

Experiments II -- Computation Time

> All the queries are performed under the different schemes

- Short discussion
 - Conventional DP without hashing takes the longest time
 - E2LSH-SDP accelerates retrieval speed by 42.7 times compared with conventional DP.

The total retrieval time consumed under different schemes

Scheme	LSH-DP	LSH-SDP	E2LSH-DP	E2LSH-SDP	DP
Time(s)	582.3	480.015	313.875	187.65	8014.95

Experiments III -- Retrieval Ratio

- > A tradeoff is made between retrieval ratio and retrieval time
- With a suitable filtering threshold, the retrieval ratio is high enough while the computation time is controlled

Top-4 retrieval ratio of LSH/E²LSH (3 hash tables) retrieval ratio under different filtering threshold δ

δ_{LSH}	0.01	0.02	0.03	0.04	0.05
LSH-DP	0.83	0.88	0.92	0.91	0.93
LSH-SDP	0.86	0.89	0.91	0.92	0.94
2					
$\delta_{ extsf{E2LSH}}$	0.0025	0.005	0.0075	0.01	0.0125
δ _{E2LSH} E ² LSH-DP	0.0025	0.005 0.89	0.0075 0.92	0.01 0.93	0.0125 0.93

 $\delta_{LSH} = 0.03 \& \delta_{E2LSH} = 0.0075$ are suitable thresholds since a smaller value decreases retrieval ratio while a larger value increases the computation cost.

What to Cover

- Background and motivation
- Short review -- ANN, LSH and E²LSH
- Peer-to-peer network
- CBMR over peer-to-peer networks
- Challenges in scalable peer-to-peer environment
- Potential schemes of CBMR over P2P networks
- Current Work(Motivation, Methods, IBQBC Music Retrieval framework, Experiments and results)
- Conclusion and future work

Conclusion and Future Work

- Explain concept of peer-to-peer network
- Discuss CBMR over peer-to-peer networks
- Show some challenges in scalable peer-to-peer environment
- Introduce the potential schemes of CBMR over P2P networks
- > Our contribution on current work
 - Established indexed framework for query-by-content audio retrieval
 - Effectiveness of proposed algorithms(E²LSH-SDP, E²LSH-DP,LSH-DP,LSH-DP)
- Future work
 - Evaluation of scalability of the proposed schemes with a larger database
 - Application of query-by-content audio retrieval over P2P network .

Vara Women's University

