Mating group size and optimal sexual pattern in sedentary marine animals

Sachi Yamaguchi*, Yuki Ozaki, Yoichi Yusa, Satoshi Takahashi (Nara Women's University)

* e-mail: sachi@lisboa.ics.nara-wu.ac.jp

2. Model

g(t), m(t), f(t): resource allocation ratio to growth, male and female functions, respectively

	Resource allocation ratio	Reproductive success $\phi(t)$
SS-individual	$g_{ss}(t)=1$	0
SL-individual	$m_{\rm SL}(t)+g_{\rm SL}(t)=1$	$F\Delta t \times \frac{m_{\rm sL}(t)r_{\rm s}}{\Theta[K-1]\cdot\alpha\Delta t + NA\Delta t + m_{\rm sL}(t)r_{\rm s}}$
L-individual	$m_{\rm L}(t)+f_{\rm L}(t)=1$	$\begin{split} (K-1) \big[F\Delta t \times \frac{m_{\mathrm{L}}(t)r_{\mathrm{L}}}{K-1} \cdot \big((K-2) \cdot \frac{\alpha \Delta t}{K-1} + N_{\mathrm{W}}A\Delta t + \frac{m_{\mathrm{L}}(t)r_{\mathrm{L}}}{K-1} \big)^{-1} \big] \\ + \frac{1}{f_{\mathrm{L}}(t)r_{\mathrm{L}}\Theta[\Theta[K-1]\alpha\Delta t + N_{\mathrm{L}}A\Delta t]} \end{split}$

3. Result & Summary

× 0.9

allocation of large HS

Female

0.0 0.1 Male alloca

We calculate the optimal resource allocation ratio which maximize lifetime reproductive success by using dynamic programming.

(Expected reproductive success after time t) = max [(Reproductive success at time t) +(Expected reproductive success after time $t+\Delta t$)]

$$\begin{split} R_{\rm ss}(K,0,0;t) &= \max_{0 \le m_{\rm ss}(t) \le 1} [\phi_{\rm ss}(K,0,0;m_{\rm ss}(t),t) + \sum_{\tilde{K}} \sum_{\tilde{i}} p_{i\tilde{i}} R_{\tilde{i}}(\tilde{K},0,0;t+\Delta t)] \\ R_{\rm sL}(K,N,0;t) &= \max_{0 \le m_{\rm sL}(t) \le 1} [\phi_{\rm sL}(K,N,0;m_{\rm sL}(t),t) + \sum_{\tilde{K}} \sum_{\tilde{N}} \sum_{\tilde{i}} p_{i\tilde{i}} R_{\tilde{i}}(\tilde{K},\tilde{N},0;t+\Delta t)] \\ R_{\rm L}(K,0,N_{\rm L};t) &= \max_{0 \le m_{\rm L}(t) \le 1} [\phi_{\rm L}(K,0,N_{\rm L};m_{\rm L}(t),t) + \sum_{\tilde{K}} \sum_{\tilde{N}_{\rm L}} \sum_{\tilde{i}} p_{i\tilde{i}} R_{\tilde{i}}(\tilde{K},0,\tilde{N}_{\rm L};t+\Delta t)] \end{split}$$

Strategy range of four patterns of sexuality

We define the patterns of sexuality by using the range of the average ESS allocation shedule:

SC D	$\begin{split} \overline{m}_{\mathrm{SL}}^* &= \frac{\sum_{K,N,t} q_{\mathrm{SL}}(N,N,t)}{\sum_{K,N,t} q_{\mathrm{SL}}} \\ \overline{f}_{\mathrm{L}}^* &= \frac{\sum_{K,N,t} q_{\mathrm{L}}(K,0,N,t)}{\sum_{K,N_{\mathrm{L}},t} q_{\mathrm{L}}} \\ \end{split}$ where $q_i(K,N,M;t)$ is the probability	$ \begin{array}{l} \sum_{\substack{\xi, t \ QBL, (K, N, 0, t) \mid \mathcal{M}_{SL}(K, N, 0; t) \\ \sum_{K,N,t \ QBL}(K, N, 0; t) \\ \sum_{k,l,t} q_L(K, 0, N_l; t) f_{L}^*(K, 0, N_l; t) \\ \sum_{K,N_{L},t} q_L(K, 0, N_l; t) \end{array} $ is the probability that the mutant's state is (K,N,N) at time t.		
A	Sexual patterns	the range of $\overline{m^*_{\scriptscriptstyle\rm SL}}$	the range of $\overline{f_{\text{L}}^*}$	
	Simultaneous hermaphroditism (SH)	$0 < \overline{m^*_{\scriptscriptstyle\rm SL}} < 0.1$	$0 < \overline{f_{\rm L}^*} < 0.9$	
	Androdioecy (A)	$0.1 < \overline{m^*_{\rm SL}} < 1.0$	$0 < \overline{f_{\rm L}^*} < 0.9$	
	Dioecy (D)	$0.9 < \overline{m^*_{\scriptscriptstyle\rm SL}} < 1.0$	$0.9 < \overline{f_{\rm L}^*} < 1.0$	
tion of small, $\overline{m_{st}^*}$	Sex change (SC)	$0.1 < \overline{m^*_{\scriptscriptstyle\rm SL}} < 0.9$	$0.9 < \overline{f_{\rm L}^*} < 1.0$	