The role of the round spheres

Hui Ma
hma@math.tsinghua.edu.cn
Department of Mathematical Sciences
Tsinghua University
Beijing, China

16 January 2008

Outline

Introduction

Question and history

Montiel and Ros's Proof to Alexandrov's theorem

Outline

Introduction

Question and history

Montiel and Ros's Proof to Alexandrov's theorem

A round sphere

$$
\mathbb{S}^{2}(r)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=r^{2}\right\}
$$

Remark: In this talk, "surfaces" are all connected and without boundary.

Start from linear algebra

- Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ be a 2×2 matrix. If $\exists \lambda \in \mathbb{R}, \xi=\binom{x_{1}}{x_{2}}$, s.t. $A \xi=\lambda \xi$, then λ is called the eigenvalue of A and ξ is called the eigenvector of A w.r.t. the eigenvalue λ.
- If A is symmetric, i.e., $a_{12}=a_{21}$, then the eigenvalues of A are real and A is similar to a diagonal matrix.
- Each symmetric matrix relates to a quadratic form.

Definition of surfaces in \mathbb{R}^{3}

- Goal: Use calculus to study properties of surfaces.
- Question: how to define surfaces?

Definition of surfaces in \mathbb{R}^{3}

- (Intuitive definition of surfaces) A surface is a subset of \mathbb{R}^{3} s.t. each of its points has a neighborhood similar to a piece of a plane which blends smoothly and without self-intersections when bent in \mathbb{R}^{3}.
- (Definition) A smooth surface in \mathbb{R}^{3} is a subset $\Sigma \subset \mathbb{R}^{3}$ such that each point has an open neighborhood $U \subset \Sigma$ and a map $\mathrm{X}: V \rightarrow \mathbb{R}^{3}$ from an open set $V \subset \mathbb{R}^{2}$ such that
- $\mathrm{X}: V \rightarrow U$ is a homeomorphism
- $\mathrm{X}(u, v)=(x(u, v), y(u, v), z(u, v))$ has derivative of all orders
- $(d \mathrm{X})_{q}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective for all $q \in V$

Two important quadratic forms on surfaces in \mathbb{R}^{3}

- The first fundamental form:

$$
\begin{aligned}
\mathrm{I} & =d \mathrm{X} \cdot d \mathrm{X} \\
& =\mathrm{X}_{u} \cdot \mathrm{X}_{u} d u^{2}+2 \mathrm{X}_{u} \cdot \mathrm{X}_{v} d u d v+\mathrm{X}_{v} \cdot \mathrm{X}_{v} d v^{2}
\end{aligned}
$$

- The second fundamental form :

$$
\begin{aligned}
\mathrm{II} & =d^{2} \mathrm{X} \cdot \mathrm{~N}=-d \mathrm{X} \cdot d \mathrm{~N} \\
& =-\mathrm{X}_{u} \cdot \mathrm{~N}_{u} d u^{2}-2 \mathrm{X}_{u} \cdot \mathrm{~N}_{v} d u d v-\mathrm{X}_{v} \cdot \mathrm{~N}_{v} d v^{2} \\
N:= & \frac{X_{u} \times X_{v}}{\left|X_{u} \times X_{v}\right|}, \quad \text { a unit normal vector field on } \quad \Sigma
\end{aligned}
$$

Definition of curvatures

N, a unit normal field on the surface Σ, can be thought of as a differentiable map $\mathrm{N}: \Sigma \rightarrow \mathbb{S}^{2}$, the so-called Gauss map.

- The endomorphism $-d \mathrm{~N}_{p}: T_{p} \Sigma \rightarrow T_{\mathrm{N}(p)} \mathbb{S}^{2}=T_{p} \Sigma$ is self-adjoint.
- Its eigenvalues $k_{1}(p), k_{2}(p)$ are called principal curvatures of Σ at p.
- $K(p)=k_{1}(p) k_{2}(p), H(p)=\frac{k_{1}(p)+k_{2}(p)}{2}$ are called the Gauss curvature and mean curvature, respectively.

$$
K(p)=\operatorname{det}(d N)_{p}, \quad H(p)=-\frac{1}{2} \operatorname{tr}(d N)_{p}, \quad p \in \Sigma
$$

Totally umbilical surfaces

- (Planes) If P is a plane of \mathbb{R}^{3} with unit normal vector a, then $(d \mathrm{~N})_{p}=0$ and so $h_{p}=0$ for each $p \in P$. Hence, $k_{1}=k_{2} \equiv 0$.
- (Round Sphere) The inner unit normal N of $\mathbb{S}^{2}(r)$ is $-\frac{1}{r} \mathrm{X}$. Then $-d \mathrm{~N}=\frac{1}{r} d \mathrm{X}$. So $k_{1}=k_{2} \equiv \frac{1}{r}$.

Proposition (Classification of totally umbilical surfaces)
A connected surface in \mathbb{R}^{3} satisfies $k_{1}=k_{2}$ everywhere, i.e. totally umbilical, if and only if it is a plane or a round sphere.

Gauss map and the second fundamental form

For the endomorphism $d \mathrm{~N}_{p}$ of $T_{p} \Sigma, p \in \Sigma$, we can associate a quadratic form h_{p} :

$$
\begin{aligned}
& h_{p}: T_{p} \Sigma \times T_{p} \Sigma \rightarrow \mathbb{R}, \quad p \in \Sigma, \\
& h_{p}(v, w)=-\left\langle d \mathrm{~N}_{p}(v), w\right\rangle, \quad v, w \in T_{p} \Sigma .
\end{aligned}
$$

This is nothing else but the second fundamental form of the surface Σ at the point p. In terms of it,

$$
K(p)=\operatorname{det} h_{p}, \quad H(p)=\frac{1}{2} \operatorname{tr} h_{p}, \quad p \in \Sigma
$$

Outline

Introduction

Question and history

Montiel and Ros's Proof to Alexandrov's theorem

Fights between the Gauss curvature and mean curvature

- The Gauss curvature and mean curvature were born in the 18th century.
- Since then, they have fought to prevail over each other.
- The initial battle was won by the Gauss curvature because of the famous Gauss's Theorema Egregium.
- Sophie Germain (1776-1831) argued against Gauss by preferring mean curvature function during her study on the vibration of elastic surfaces.

What can curvatures say about the shape of surfaces?

- It is one of the most favorite questions in modern differential geometry - skip from local to global property
- To determine compact surfaces with one or several simplest curvature behavior

Which are the compact surfaces with constant Gauss curvature?

- Hilbert(1901)-Liebmann (1899): The only compact surfaces with constant Gauss curvature are round spheres.
- Hadamard (1897): Any compact surface with positive Gauss curvature is convex.
** The global problems on the mean curvature proved to be more complicated and so, more interesting.

Is a CMC surface necessarily a round sphere?

- Liebmann (1900): A closed strictly convex CMC surface in \mathbb{R}^{3} must be a round sphere.
- Hopf (1951): A CMC topological sphere in \mathbb{R}^{3} must be a round sphere.
- Alexandrov (1956): A compact embedded CMC surface in \mathbb{R}^{3} must be a round sphere.
- Alexandrov $(1956,1962)$ reflection
- Reilly (1976) a purely analytic proof
- Montiel and Ros (1991) a relatively elementary proof
- Hijazi, Montiel and Zhang (2001) a proof based on boundary problem of Dirac operator

Alexandrov's theorem

A compact embedded CMC surface in \mathbb{R}^{3} must be a round sphere.

- One of the most beautiful theorems in classical differential geometry.

A. D. Alexandrov (1912-1999)

Outline

Introduction

Question and history

Montiel and Ros's Proof to Alexandrov's theorem

Step 1: Heintze-Karcher's inequality

- Any compact embedded surface Σ in \mathbb{R}^{3} can determine a compact connected domain, s.t. $\partial \Omega=\Sigma$.
- Study the square of the distance function $f(p)=\left|p-p_{0}\right|^{2}$ from points of Σ to a fixed point $p_{0} \in \mathbb{R}^{3}$.

Proposition
Take $q \in \Omega$. If $p \in \Sigma$ is the point of Ω closest to q, then $q=p+t \mathrm{~N}(p)$, where $\mathrm{N}(p)$ is the inner normal and $0 \leq t \leq \frac{1}{k_{\max (p)}}$.

Hence, $\Omega \subset F(A)$, where $F(p, t)=p+t \mathrm{~N}$, $A=\left\{(p, t) \in \Sigma \times \mathbb{R} \left\lvert\, 0 \leq t \leq \frac{1}{k_{\max }}\right.\right\}$.

$\operatorname{Vol}(\Omega)$ and $\operatorname{Area}(\Sigma)$

$$
\begin{aligned}
\operatorname{Vol}(\Omega) & =\int_{\Sigma} \int_{0}^{c(p)} d \operatorname{Vol}(\mathrm{X}+t \mathrm{~N}) \\
& =\int_{\Sigma} \int_{0}^{c(p)}\left(1-t k_{1}\right)\left(1-t k_{2}\right) d t d A \\
& \leq \int_{\Sigma} \int_{0}^{\frac{1}{k_{\max }}}(1-t H)^{2} d t d A \\
& \leq \int_{\Sigma} \int_{0}^{1 / H}(1-t H)^{2} d t d A \\
& =\frac{1}{3} \int_{\Sigma} \frac{1}{H} d A,
\end{aligned}
$$

Heintze-Karcher's inequality

Let $\mathrm{X}: \Sigma \rightarrow \mathbb{R}^{3}$ be a compact embedded surface whose mean curvature H w.r.t. the inner normal is everywhere positive, then

$$
\operatorname{Vol}(\Omega) \leq \frac{1}{3} \int_{\Sigma} \frac{1}{H} d A
$$

where Ω is the inner domain determined by Σ. Moreover, equality holds $\Leftrightarrow M$ is totally umbilical $\Leftrightarrow \Sigma$ is a round sphere.

Step 2: Minkowski formula

The divergence theorem gives

$$
\begin{array}{r}
3 \operatorname{Vol}(\Omega)=-\int_{\Sigma}\langle\mathrm{X}, \mathrm{~N}\rangle d A, \\
\int_{\Sigma}(1+H\langle\mathrm{X}, \mathrm{~N}\rangle) d A=0 \\
\left(\because \Delta|\mathrm{X}|^{2}=4(1+H\langle\mathrm{X}, \mathrm{~N}\rangle) .\right)
\end{array}
$$

Final step

For CMC case, the Heintze-Karcher's inequality implies

$$
3 H \operatorname{Vol}(\Omega) \leq \operatorname{Area}(\Sigma)
$$

The Minkowski formula implies

$$
\int_{\Sigma} d A-3 H \operatorname{Vol}(\Omega)=\int_{\Sigma}(1+H\langle\mathrm{X}, \mathrm{~N}\rangle) d A=0
$$

i.e. " =" attached in Heintze-Karcher type inequality, then Σ is a round sphere.

The story does not end

Is a CMC surface necessarily a round sphere? No!

Thanks for Your Attention!

