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A round sphere

S2(r) = {(x , y , z) ∈ R3|x2 + y2 + z2 = r2}

Remark: In this talk, ”surfaces” are all connected and without
boundary.
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Start from linear algebra

• Let A =

(
a11 a12

a21 a22

)
be a 2× 2 matrix. If

∃λ ∈ R, ξ =

(
x1

x2

)
, s.t. Aξ = λξ, then λ is called the

eigenvalue of A and ξ is called the eigenvector of A w.r.t. the
eigenvalue λ.

• If A is symmetric, i.e., a12 = a21, then the eigenvalues of A
are real and A is similar to a diagonal matrix.

• Each symmetric matrix relates to a quadratic form.
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Definition of surfaces in R3

• Goal: Use calculus to study properties of surfaces.

• Question: how to define surfaces?
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Definition of surfaces in R3

• (Intuitive definition of surfaces) A surface is a subset of R3

s.t. each of its points has a neighborhood similar to a piece of
a plane which blends smoothly and without self-intersections
when bent in R3.

• (Definition) A smooth surface in R3 is a subset Σ ⊂ R3 such
that each point has an open neighborhood U ⊂ Σ and a map
X : V → R3 from an open set V ⊂ R2 such that

• X : V → U is a homeomorphism
• X(u, v) = (x(u, v), y(u, v), z(u, v)) has derivative of all orders
• (dX)q : R2 → R3 is injective for all q ∈ V
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Two important quadratic forms on surfaces in R3

• The first fundamental form:

I = dX · dX

= Xu ·Xudu2 + 2Xu ·Xvdudv + Xv ·Xvdv2

• The second fundamental form :

II = d2X ·N = −dX · dN

= −Xu ·Nudu2 − 2Xu ·Nvdudv −Xv ·Nvdv2

N :=
Xu × Xv

|Xu × Xv |
, a unit normal vector field on Σ
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Definition of curvatures

N, a unit normal field on the surface Σ, can be thought of as a
differentiable map N : Σ → S2, the so-called Gauss map.

• The endomorphism −dNp : TpΣ → TN(p)S2 = TpΣ is
self-adjoint.

• Its eigenvalues k1(p), k2(p) are called principal curvatures of
Σ at p.

• K (p) = k1(p)k2(p), H(p) = k1(p)+k2(p)
2 are called the Gauss

curvature and mean curvature, respectively.

K (p) = det(dN)p, H(p) = −1

2
tr(dN)p, p ∈ Σ.
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Totally umbilical surfaces

• (Planes) If P is a plane of R3 with unit normal vector a, then
(dN)p = 0 and so hp = 0 for each p ∈ P. Hence,
k1 = k2 ≡ 0.

• (Round Sphere) The inner unit normal N of S2(r) is −1
r X.

Then −dN = 1
r dX. So k1 = k2 ≡ 1

r .

Proposition (Classification of totally umbilical surfaces)

A connected surface in R3 satisfies k1 = k2 everywhere, i.e. totally
umbilical, if and only if it is a plane or a round sphere.
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Gauss map and the second fundamental form

For the endomorphism dNp of TpΣ, p ∈ Σ, we can associate a
quadratic form hp:

hp : TpΣ× TpΣ → R, p ∈ Σ,

hp(v ,w) = −〈dNp(v),w〉, v ,w ∈ TpΣ.

This is nothing else but the second fundamental form of the
surface Σ at the point p. In terms of it,

K (p) = det hp, H(p) =
1

2
trhp, p ∈ Σ.
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Fights between the Gauss curvature and mean curvature

• The Gauss curvature and mean curvature were born in the
18th century.

• Since then, they have fought to prevail over each other.

• The initial battle was won by the Gauss curvature because of
the famous Gauss’s Theorema Egregium.

• Sophie Germain (1776-1831) argued against Gauss by preferring
mean curvature function during her study on the vibration of
elastic surfaces.
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What can curvatures say about the shape of surfaces?

• It is one of the most favorite questions in modern differential
geometry – skip from local to global property

• To determine compact surfaces with one or several simplest
curvature behavior
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Which are the compact surfaces with constant Gauss
curvature?

• Hilbert(1901)-Liebmann (1899): The only compact surfaces
with constant Gauss curvature are round spheres.

• Hadamard (1897): Any compact surface with positive Gauss
curvature is convex.

** The global problems on the mean curvature proved to be
more complicated and so, more interesting.
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Is a CMC surface necessarily a round sphere?

• Liebmann (1900): A closed strictly convex CMC surface in R3

must be a round sphere.

• Hopf (1951): A CMC topological sphere in R3 must be a
round sphere.

• Alexandrov (1956): A compact embedded CMC surface in R3

must be a round sphere.

• Alexandrov (1956, 1962) reflection
• Reilly (1976) a purely analytic proof
• Montiel and Ros (1991) a relatively elementary proof
• Hijazi, Montiel and Zhang (2001) a proof based on boundary

problem of Dirac operator
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Alexandrov’s theorem

A compact embedded CMC surface in R3 must be a round sphere.

— One of the most beautiful theorems in classical differential
geometry.

A. D. Alexandrov
(1912-1999)
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Step 1: Heintze-Karcher’s inequality

• Any compact embedded surface Σ in R3 can determine a
compact connected domain, s.t. ∂Ω = Σ.

• Study the square of the distance function f (p) = |p − p0|2
from points of Σ to a fixed point p0 ∈ R3.

Proposition

Take q ∈ Ω. If p ∈ Σ is the point of Ω closest to q, then
q = p + tN(p), where N(p) is the inner normal and 0 ≤ t ≤ 1

kmax(p)
.

Hence, Ω ⊂ F (A), where F (p, t) = p + tN,
A = {(p, t) ∈ Σ× R|0 ≤ t ≤ 1

kmax
}.
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Vol(Ω) and Area(Σ)

Vol(Ω) =

∫
Σ

∫ c(p)

0
dVol(X + tN)

=

∫
Σ

∫ c(p)

0
(1− tk1)(1− tk2)dtdA

≤
∫

Σ

∫ 1
kmax

0
(1− tH)2dtdA

≤
∫

Σ

∫ 1/H

0
(1− tH)2dtdA

=
1

3

∫
Σ

1

H
dA,
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Heintze-Karcher’s inequality

Let X : Σ → R3 be a compact embedded surface whose mean
curvature H w.r.t. the inner normal is everywhere positive, then

Vol(Ω) ≤ 1

3

∫
Σ

1

H
dA,

where Ω is the inner domain determined by Σ. Moreover, equality
holds ⇔ M is totally umbilical ⇔ Σ is a round sphere.
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Step 2: Minkowski formula

The divergence theorem gives

3Vol(Ω) = −
∫

Σ
〈X,N〉dA,∫

Σ
(1 + H〈X,N〉)dA = 0

(∵ 4|X|2 = 4(1 + H〈X,N〉).)
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Final step

For CMC case, the Heintze-Karcher’s inequality implies

3HVol(Ω) ≤ Area(Σ).

The Minkowski formula implies∫
Σ

dA− 3H Vol(Ω) =

∫
Σ
(1 + H〈X,N〉)dA = 0,

i.e. ”=” attached in Heintze-Karcher type inequality, then Σ is a
round sphere.
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The story does not end

Is a CMC surface necessarily a round sphere?
No !
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Thanks for Your Attention!
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