From Brain Waves to Mathematics of Fractals

- The beauty of numbers behind irregular functions -

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp)

University of North Texas, RIMS Kyoto University

Nara Women's University, November 2009

A B + A B +

- ₹ 🖹 🕨

What can I do for them?

< ∃ >

What can I do for them?

• Medical doctor?

< ∃ >

What can I do for them?

- Medical doctor?
- Mathematician?

Sorry....no patience..

What can I do for them?

- Medical doctor?
- Mathematician?
- Brain scientist?

Sorry....no patience.. How can I help?

What can I do for them?

- Medical doctor?
- Mathematician?
- Brain scientist?

Sorry....no patience.. How can I help? It might be interesting!?

• Why is it difficult to analyze functions like brain waves?

<ロト <部ト < 注ト < 注ト

э

- Why is it difficult to analyze functions like brain waves?
- Even if a part is enlarged, the complexity of the data is not reduced.

(日) (同) (三) (三)

- Why is it difficult to analyze functions like brain waves?
- Even if a part is enlarged, the complexity of the data is not reduced.
- The methods of classical calculus can not be applied!

・ロト ・同ト ・ヨト ・ヨト

- Why is it difficult to analyze functions like brain waves?
- Even if a part is enlarged, the complexity of the data is not reduced.
- The methods of classical calculus can not be applied!

My research dream

Find new techniques to analyze irregular functions like brain waves!

・ロト ・同ト ・ヨト ・ヨト

Self-similarity

The geometric characterization of the simplest fractal is self-similarity: the shape is made of smaller copies of itself. The copies are similar to the whole.

Examples of fractals

- The simplest fractals are constructed by iteration. For example, start with a filled-in triangle and iterate this process:
- For every filled-in triangle, connect the midpoints of the sides and remove the middle triangle. Iterating this process produces, in the limit, the Sierpinski Gasket.
- The gasket is self-similar.

Extention of self-similarity

- Self-similarity can be extended to allow the pieces to look like the whole in some sense.
- The right window is a rescaling of the x-axis by a factor of 4, and the y-axis by a factor of 2. The right picture has about the same distribution of jumps as the left.

Extention of self-similarity

- Self-similarity can be extended to allow the pieces to look like the whole in some sense.
- The right window is a rescaling of the x-axis by a factor of 4, and the y-axis by a factor of 2. The right picture has about the same distribution of jumps as the left.

Examples

Stock price movement?

Extention of self-similarity

- Self-similarity can be extended to allow the pieces to look like the whole in some sense.
- The right window is a rescaling of the x-axis by a factor of 4, and the y-axis by a factor of 2. The right picture has about the same distribution of jumps as the left.

Examples

Stock price movement? Coastline?

Extention of self-similarity

- Self-similarity can be extended to allow the pieces to look like the whole in some sense.
- The right window is a rescaling of the x-axis by a factor of 4, and the y-axis by a factor of 2. The right picture has about the same distribution of jumps as the left.

Examples

Stock price movement? Coastline? Mountain?

() <) <)
 () <)
 () <)
 () <)
</p>

Extention of self-similarity

- Self-similarity can be extended to allow the pieces to look like the whole in some sense.
- The right window is a rescaling of the x-axis by a factor of 4, and the y-axis by a factor of 2. The right picture has about the same distribution of jumps as the left.

Examples Stock price movement? Coastline? Mountain? Tree?

Extention of self-similarity

- Self-similarity can be extended to allow the pieces to look like the whole in some sense.
- The right window is a rescaling of the x-axis by a factor of 4, and the y-axis by a factor of 2. The right picture has about the same distribution of jumps as the left.

Examples

Stock price movement? Coastline? Mountain? Tree? Female!

Let the binary expansion of $x \in [0,1]$ be

$$x = \sum_{k=1}^{\infty} \epsilon_k 2^{-k}, \qquad \epsilon_k = \epsilon_k(x) \in \{0, 1\}.$$

(E)

Let the binary expansion of $x \in [0,1]$ be

$$x = \sum_{k=1}^{\infty} \epsilon_k 2^{-k}, \qquad \epsilon_k = \epsilon_k(x) \in \{0, 1\}.$$

0 _____ 1

回 と く ヨ と く ヨ と

3

Let the binary expansion of $x \in [0,1]$ be

$$x = \sum_{k=1}^{\infty} \epsilon_k 2^{-k}, \qquad \epsilon_k = \epsilon_k(x) \in \{0, 1\}.$$

3

Let the binary expansion of $x \in [0,1]$ be

$$x = \sum_{k=1}^{\infty} \epsilon_k 2^{-k}, \qquad \epsilon_k = \epsilon_k(x) \in \{0, 1\}.$$

伺 と く ヨ と く ヨ と

э

Examples

• If $x \in [0,1]$ is a dyadic point, there are two ways to express:

$$\frac{1}{2} = .011111 \dots = .100000 \dots$$

 If x ∈ [0, 1] is a rational number, the binary expansion is either terminating or repeating:

$$\frac{3}{8} = .011, \qquad \frac{1}{3} = .010101010101 \dots = .\overline{01}.$$

Lebesgue's singular function: unfair coin tossing

- Imagine flipping a coin.
- Suppose this coin has probability a of landing heads and probability 1 a of landing tails. $(a \neq 1/2)$
- Determine a number $t \in [0, 1]$ by flipping the coin infinitely many times:

$$t = 0.\epsilon_1 \epsilon_2 \dots = \sum_{k=1}^{\infty} \epsilon_k 2^{-k},$$

where ϵ_k is 0 if the kth flip is heads, or 1 if it is tails.

 Define Lebesgue's singular function as the probability distribution

$$L_a(x) := Prob(t \le x).$$

Functional equation

Theorem (De Rham, 1957)

 $L_a(x)$ is the unique continuous solution of the functional equation

$$L_a(x) = \begin{cases} aL_a(2x), & 0 \le x \le \frac{1}{2}, \\ (1-a)L_a(2x-1) + a, & \frac{1}{2} \le x \le 1, \end{cases}$$

where 0 < a < 1, and $a \neq 1/2$.

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp)

From Brain Waves to Mathematics of Fractals - I he beau

Property of Lebesgue's singular function

Figure: Lebesgue's singular function (a = 0.3)

Theorem (Salem, 1943)

 $L_a(x)$ is strictly increasing and $L'_a(x) = 0$ almost everywhere.

Definition (Differentiability)

A function f if differentiable at x = a, if there exist finite numbers M and N such that

$$f'_{+}(a) := \lim_{h \to 0+} \frac{f(a+h) - f(a)}{h} = M,$$

$$f'_{-}(a) := \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} = N,$$

and M = N.

同 ト イヨ ト イヨ ト 二 ヨ

Question 1

- Can I give a concrete example of $x \in [0,1]$ where $L'_a(x) = 0$?
- What set of $x \in [0,1]$ have $L'_a(x) = 0$?

留 と く ヨ と く ヨ と …

3

Question 1

- Can I give a concrete example of $x \in [0,1]$ where $L'_a(x) = 0$?
- What set of $x \in [0,1]$ have $L'_a(x) = 0$?

For instance,

- x = 1/2?
- x = 1/3?
- x = 3/7?

A B > A B >

3

Definition

For
$$x = \sum_{k=1}^{\infty} \epsilon_k(x) 2^{-k}$$
, define

$$D_1(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \epsilon_k(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 1\}|}{n}$$

provided the limit exists. Put

$$D_0(x) := 1 - D_1(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 0\}|}{n}$$

 $D_i(x)$ is the density of the digit i in the binary expansion of x.

Examples

•
$$x = 1/3?$$

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beau

Definition

For
$$x = \sum_{k=1}^{\infty} \epsilon_k(x) 2^{-k}$$
, define

$$D_1(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \epsilon_k(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 1\}|}{n}$$

provided the limit exists. Put

$$D_0(x) := 1 - D_1(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 0\}|}{n}$$

 $D_i(x)$ is the density of the digit i in the binary expansion of x.

Examples

•
$$x = 1/3? \rightarrow x = .\overline{01}$$

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beau

Definition

For
$$x = \sum_{k=1}^{\infty} \epsilon_k(x) 2^{-k}$$
, define

$$D_1(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \epsilon_k(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 1\}|}{n}$$

provided the limit exists. Put

$$D_0(x) := 1 - D_1(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 0\}|}{n}$$

 $D_i(x)$ is the density of the digit *i* in the binary expansion of *x*.

Examples

•
$$x = 1/3? \to x = .\overline{01} \to D_0(x) = D_1(x) = 1/2.$$

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beau

Definition

For
$$x = \sum_{k=1}^{\infty} \epsilon_k(x) 2^{-k}$$
, define

$$D_1(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \epsilon_k(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 1\}|}{n}$$

provided the limit exists. Put

$$D_0(x) := 1 - D_1(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 0\}|}{n}$$

 $D_i(x)$ is the density of the digit *i* in the binary expansion of *x*.

Examples

•
$$x = 1/3? \rightarrow x = .01 \rightarrow D_0(x) = D_1(x) = 1/2.$$

• $x = 3/7?$

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp)

Definition

For
$$x = \sum_{k=1}^{\infty} \epsilon_k(x) 2^{-k}$$
, define

$$D_1(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \epsilon_k(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 1\}|}{n}$$

provided the limit exists. Put

$$D_0(x) := 1 - D_1(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 0\}|}{n}$$

 $D_i(x)$ is the density of the digit *i* in the binary expansion of *x*.

Examples

•
$$x = 1/3? \to x = .\overline{01} \to D_0(x) = D_1(x) = 1/2.$$

• $x = 3/7? \to x = .\overline{011}$

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp)

From Brain Waves to Mathematics of Fractals - The beau
Density of 0 and 1 in the binary expansion of x

Definition

For
$$x = \sum_{k=1}^{\infty} \epsilon_k(x) 2^{-k}$$
, define

$$D_1(x) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \epsilon_k(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 1\}|}{n}$$

provided the limit exists. Put

$$D_0(x) := 1 - D_1(x) = \lim_{n \to \infty} \frac{|\{1 \le k \le n : \epsilon_k = 0\}|}{n}$$

 $D_i(x)$ is the density of the digit *i* in the binary expansion of *x*.

Examples

•
$$x = 1/3? \to x = .\overline{01} \to D_0(x) = D_1(x) = 1/2.$$

•
$$x = 3/7? \rightarrow x = .\overline{011} \rightarrow D_0(x) = 1/3, D_1(x) = 2/3.$$

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp)

Theorem (Kawamura, 2009)

If $x \in [0,1]$ is dyadic, then $L'_a(x)$ does not exist, since

 $L_{a+}'(x) \neq L_{a-}'(x).$

If $x \in [0, 1]$ is not dyadic and
• $D_0(x) = D_1(x)$, then $L'_a(x) = 0$.
• $D_0(x) \neq D_1(x)$, then $L'_a(x) = \begin{cases} 0, & \text{if } a^{D_0(x)}(1-a)^{D_1(x)} < 1/2, \\ +\infty, & \text{if } a^{D_0(x)}(1-a)^{D_1(x)} > 1/2. \end{cases}$

同 ト イヨ ト イヨ ト ・ ヨ ・ ・ ク ヘ ()

Answer for Question 1 (cont.)

Examples

•
$$x = 1/2?$$

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beau

★ 문 ► ★ 문 ►

Answer for Question 1 (cont.)

Examples

•
$$x = 1/2? \rightarrow 1/2$$
 is a dyadic point!

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beau

★ 문 ► ★ 문 ►

• $x = 1/2? \rightarrow 1/2$ is a dyadic point! $\rightarrow L'_a(1/2)$ does not exist.

• x = 1/3?

御 と く き と く き と …

3

• $x = 1/2? \rightarrow 1/2$ is a dyadic point! $\rightarrow L'_a(1/2)$ does not exist.

•
$$x = 1/3? \rightarrow D_0(x) = D_1(x) = 1/2.$$

御 と く き と く き と …

• $x = 1/2? \rightarrow 1/2$ is a dyadic point! $\rightarrow L'_a(1/2)$ does not exist.

•
$$x = 1/3? \to D_0(x) = D_1(x) = 1/2.$$

 $\to L'_a(1/3) = 0.$

•
$$x = 3/7?$$

御 と く き と く き と …

• $x = 1/2? \rightarrow 1/2$ is a dyadic point! $\rightarrow L'_a(1/2)$ does not exist.

•
$$x = 1/3? \to D_0(x) = D_1(x) = 1/2.$$

 $\to L'_a(1/3) = 0.$

•
$$x = 3/7? \rightarrow D_0(x) = 1/3, D_1(x) = 2/3.$$

御 と く き と く き と …

3

• $x = 1/2? \rightarrow 1/2$ is a dyadic point! $\rightarrow L'_a(1/2)$ does not exist.

•
$$x = 1/3? \to D_0(x) = D_1(x) = 1/2.$$

 $\to L'_a(1/3) = 0.$

•
$$x = 3/7? \rightarrow D_0(x) = 1/3, D_1(x) = 2/3.$$

$$\rightarrow L_a'(3/7) = \begin{cases} 0, & \text{if} \quad a^{1/3}(1-a)^{2/3} < 1/2, \\ +\infty, & \text{if} \quad a^{1/3}(1-a)^{2/3} > 1/2. \end{cases}$$

御 と く き と く き と …

Takagi's nowhere differentiable function

Definition (Takagi's function, 1903)

$$T(x) := \sum_{n=1}^{\infty} \frac{1}{2^n} \phi^{(n)}(x), \quad 0 \le x \le 1,$$

where

$$\phi(x) := \begin{cases} 2x, & 0 \le x \le 1/2, \\ 2 - 2x, & 1/2 \le x \le 1. \end{cases}$$

 ϕ is a typical chaotic dynamical system on [0,1].

Question 2

We know that Takagi's function is nowhere differentiable. But, at which $x \in [0,1]$ does T(x) have an infinite derivative?

Note!

Recall that if $T'(x) = \pm \infty$, the graph of T has a vertical tangent line at x.

Answer to Question 2

• Let I_n and O_n be the number of 1's and 0's, respectively in the first n binary digits of x.

• Let
$$D_n := O_n - I_n$$
.

Theorem (Begle & Ayres, 1937)

If $x \in [0,1]$ is dyadic, then T'(x) does not exist, since

$$T'_+(x) \neq T'_-(x).$$

2 If $x \in [0,1]$ is not dyadic, then

$$T'(x) = \begin{cases} +\infty, & \text{if } \lim_{n \to \infty} D_n = +\infty, \\ -\infty, & \text{if } \lim_{n \to \infty} D_n = -\infty, \\ \text{does not exist,} & \text{if } \lim_{n \to \infty} D_n \text{ does not exist.} \end{cases}$$

Recall that in classical calculus, the chain rule is used to compute the derivative of the composition of two differentiable functions: If

$$h(x) = f(g(x)),$$

then

$$h'(x) = f'(g(x))g'(x).$$

Recall that in classical calculus, the chain rule is used to compute the derivative of the composition of two differentiable functions: If

$$h(x) = f(g(x)),$$

then

$$h'(x) = f'(g(x))g'(x).$$

Question 3

But what about a function such as $T(L_a^{-1}(x))$: the composition of Takagi's function and the inverse of Lebesgue's singular function?

Put

$$f(x) = T(x),$$
 $g(x) = L_a^{-1}(x),$

and

$$h(x) = f(g(x)) = T(L_a^{-1}(x)).$$

If we try to use the chain rule to compute h'(x), we may run into one of the indeterminate products

$$+\infty \cdot 0$$
, or $-\infty \cdot 0$.

How can we overcome this problem?

Put

$$f(x) = T(x),$$
 $g(x) = L_a^{-1}(x),$

and

$$h(x) = f(g(x)) = T(L_a^{-1}(x)).$$

If we try to use the chain rule to compute h'(x), we may run into one of the indeterminate products

$$+\infty \cdot 0$$
, or $-\infty \cdot 0$.

How can we overcome this problem?

Answer

Wait for my next paper, please!

Question 4

Takagi's function T(x) is nowhere differentiable. Then how can we find the maximum points?

Question 4

Takagi's function T(x) is nowhere differentiable. Then how can we find the maximum points?

Theorem (Kahane, 1959)

- The maximum value of T(x) is 2/3.
- The binary expansion of any maximum point of T(x) is

$$x = . \begin{cases} 01 & 01 & 01 & 01 \\ or & 0r & 0r & 0r \\ 10 & 10 & 10 & 10 \end{cases} \begin{pmatrix} 01 & 0r & 01 \\ or & 0r & 0r \\ 10 &$$

Theorem (Hata-Yamaguti, 1984)

Takagi's function and Lebesgue's singular function are related by

$$T(x) = \frac{1}{2} \left. \frac{\partial L_a(x)}{\partial a} \right|_{a=\frac{1}{2}}$$

Why not keep differentiating?

Theorem (Hata-Yamaguti, 1984)

Takagi's function and Lebesgue's singular function are related by

$$T(x) = \frac{1}{2} \left. \frac{\partial L_a(x)}{\partial a} \right|_{a=\frac{1}{2}}$$

Why not keep differentiating?

Definition (*n*-th partial derivatives of $L_a(x)$)

$$T_n(x) := \frac{1}{n!} \left. \frac{\partial^n L_a(x)}{\partial a^n} \right|_{a=\frac{1}{2}}, \qquad n = 1, 2, 3, \dots$$

n-th partial derivatives of $L_a(x)$.

Figure: Graphs of T_1 (top left), T_2 (top right), T_3 (bottom left) and T_4 (bottom right).

Theorem (Allaart-Kawamura, 2006)

For each $n \in \mathbf{N}$, $T_n(x)$ is continuous but nowhere differentiable.

Question 5

- What are the maximum values of T_n ?
- Where are they attained?

A B + A B +

Maximum of T_2

Theorem (A-K, 2006)

The binary expansion of any maximum point of $T_2(x)$ has the form:

Maximum of T_2

Theorem (A-K, 2006)

The binary expansion of any maximum point of $T_2(x)$ has the form:

$$x = .00 \begin{cases} 01 \\ or \\ 10 \end{cases} 01010101 \begin{cases} 01 \\ or \\ 10 \end{cases}$$

Maximum of T_3

Theorem (A-K, 2006)

The binary expansion of any maximum point of $T_3(x)$ in $[0, \frac{1}{2}]$ has the form:

Theorem (A-K, 2006)

The binary expansion of any maximum point of $T_3(x)$ in $[0, \frac{1}{2}]$ has the form:

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp)

From Brain Waves to Mathematics of Fractals - The beau

Extensive numerical computation suggested that

Conjecture

For each $n \ge 4$, T_n has only finitely many maximum points!

Self-similar sets in the complex plane

Consider a unique bounded continous solution $G_{\alpha}(x)$ of

$$G_{\alpha}(x) = \begin{cases} \alpha G_{\alpha}(2x), & 0 \le x < 1/2, \\ (1-\alpha)G_{\alpha}(2x-1) + \alpha, & 1/2 \le x \le 1, \end{cases}$$

where $\alpha \in \mathbf{C}$ such that $|\alpha| < 1$.

Self-similar sets in the complex plane

Consider a unique bounded continous solution $G_{\alpha}(x)$ of

$$G_{\alpha}(x) = \begin{cases} \alpha G_{\alpha}(2x), & 0 \le x < 1/2, \\ (1-\alpha)G_{\alpha}(2x-1) + \alpha, & 1/2 \le x \le 1, \end{cases}$$

where $\alpha \in \mathbf{C}$ such that $|\alpha| < 1$.

Remark

If $\alpha = a$, a real number, then

$$G_a(x) = L_a(x), \qquad 0 < a < 1, \quad a \neq 1/2.$$

Self-similar sets in the complex plane

Consider a unique bounded continous solution $G_{\alpha}(x)$ of

$$G_{\alpha}(x) = \begin{cases} \alpha G_{\alpha}(2x), & 0 \le x < 1/2, \\ (1-\alpha)G_{\alpha}(2x-1) + \alpha, & 1/2 \le x \le 1, \end{cases}$$

where $\alpha \in \mathbf{C}$ such that $|\alpha| < 1$.

Remark

If $\alpha = a$, a real number, then

$$G_a(x) = L_a(x), \qquad 0 < a < 1, \quad a \neq 1/2.$$

Properties of G_{α}

•
$$G_{\alpha}:[0,1] \rightarrow \mathbf{C}$$
,

•
$$\overline{G_{\alpha}([0,1])}$$
: self-similar set on C

Example: if $\alpha = 1/2 + 1/2i$, $\overline{G_{\alpha}([0,1])}$ is Levy's dragon curve.

Figure: Graphs of G_{α} (top left), view from the top (top right), from a different angle (bottom left), Levy dragon curve (bottom right).

Observation

Each coordinate function is somewhat similar to Takagi's function!

This is no surprise, because...

Observation

Each coordinate function is somewhat similar to Takagi's function!

This is no surprise, because...

御 と く き と く き と …

It seems that I have enjoyed exploring the wonders of irregular functions, but...

It seems that I have enjoyed exploring the wonders of irregular functions, but...

• Did I forget about my dream?

It seems that I have enjoyed exploring the wonders of irregular functions, but...

- Did I forget about my dream?
- Where are the applications?
It seems that I have enjoyed exploring the wonders of irregular functions, but...

- Did I forget about my dream?
- Where are the applications?

Brain science (Tsuda and Yamaguchi, 2006)

Self-similar functions whose graphs look remarkably like $G_{\alpha}(x)$ appear in neural systems!

Message to future female scientists

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beau

< ≣ → <

Message to future female scientists

