
From Brain Waves to Mathematics of Fractals
- The beauty of numbers behind irregular functions -

Kiko Kawamura
(kkawamur@kurims.kyoto-u.ac.jp)

University of North Texas, RIMS Kyoto University

Nara Women’s University, November 2009

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Motivation

There are a lot of people who are suffering from depression.

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Motivation

There are a lot of people who are suffering from depression.

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Motivation

There are a lot of people who are suffering from depression.

What can I do for them?

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Motivation
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What can I do for them?
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There are a lot of people who are suffering from depression.

What can I do for them?
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Motivation

There are a lot of people who are suffering from depression.

What can I do for them?

Medical doctor? Sorry....no patience..

Mathematician? How can I help?

Brain scientist?
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Motivation

There are a lot of people who are suffering from depression.

What can I do for them?

Medical doctor? Sorry....no patience..

Mathematician? How can I help?

Brain scientist? It might be interesting!?

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Brain waves

Why is it difficult to analyze functions like brain waves?
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Why is it difficult to analyze functions like brain waves?

Even if a part is enlarged, the complexity of the data is not
reduced.
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Brain waves

Why is it difficult to analyze functions like brain waves?

Even if a part is enlarged, the complexity of the data is not
reduced.

The methods of classical calculus can not be applied!
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Brain waves

Why is it difficult to analyze functions like brain waves?

Even if a part is enlarged, the complexity of the data is not
reduced.

The methods of classical calculus can not be applied!

My research dream

Find new techniques to analyze irregular functions like brain waves!
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Fractals

Self-similarity

The geometric characterization of the simplest fractal is
self-similarity: the shape is made of smaller copies of itself.
The copies are similar to the whole.
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Examples of fractals

The simplest fractals are constructed by iteration. For
example, start with a filled-in triangle and iterate this process:

For every filled-in triangle, connect the midpoints of the sides
and remove the middle triangle. Iterating this process
produces, in the limit, the Sierpinski Gasket.

The gasket is self-similar.
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Examples of fractals (continued)

Extention of self-similarity

Self-similarity can be extended to allow the pieces to look like
the whole in some sense.

The right window is a rescaling of the x-axis by a factor of 4,
and the y-axis by a factor of 2. The right picture has about
the same distribution of jumps as the left.
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Examples of fractals (continued)

Extention of self-similarity

Self-similarity can be extended to allow the pieces to look like
the whole in some sense.

The right window is a rescaling of the x-axis by a factor of 4,
and the y-axis by a factor of 2. The right picture has about
the same distribution of jumps as the left.

Examples

Stock price movement?
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Examples of fractals (continued)

Extention of self-similarity

Self-similarity can be extended to allow the pieces to look like
the whole in some sense.

The right window is a rescaling of the x-axis by a factor of 4,
and the y-axis by a factor of 2. The right picture has about
the same distribution of jumps as the left.

Examples

Stock price movement? Coastline?
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Examples of fractals (continued)

Extention of self-similarity

Self-similarity can be extended to allow the pieces to look like
the whole in some sense.

The right window is a rescaling of the x-axis by a factor of 4,
and the y-axis by a factor of 2. The right picture has about
the same distribution of jumps as the left.

Examples

Stock price movement? Coastline? Mountain?
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Examples of fractals (continued)

Extention of self-similarity

Self-similarity can be extended to allow the pieces to look like
the whole in some sense.

The right window is a rescaling of the x-axis by a factor of 4,
and the y-axis by a factor of 2. The right picture has about
the same distribution of jumps as the left.

Examples

Stock price movement? Coastline? Mountain? Tree?
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Examples of fractals (continued)

Extention of self-similarity

Self-similarity can be extended to allow the pieces to look like
the whole in some sense.

The right window is a rescaling of the x-axis by a factor of 4,
and the y-axis by a factor of 2. The right picture has about
the same distribution of jumps as the left.

Examples

Stock price movement? Coastline? Mountain? Tree? Female!
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Preparation

Notation

Let the binary expansion of x ∈ [0, 1] be

x =
∞∑

k=1

ǫk2
−k, ǫk = ǫk(x) ∈ {0, 1}.
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Preparation

Notation

Let the binary expansion of x ∈ [0, 1] be

x =
∞∑

k=1

ǫk2
−k, ǫk = ǫk(x) ∈ {0, 1}.

0 1
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Preparation

Notation

Let the binary expansion of x ∈ [0, 1] be

x =
∞∑

k=1

ǫk2
−k, ǫk = ǫk(x) ∈ {0, 1}.

0 1

1/2

0 1
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Preparation

Notation

Let the binary expansion of x ∈ [0, 1] be

x =
∞∑

k=1

ǫk2
−k, ǫk = ǫk(x) ∈ {0, 1}.

0 1

1/2

0 1

0 1

1/21/4 3/4

0 1 0 1
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Preparation(continued)

Examples

If x ∈ [0, 1] is a dyadic point, there are two ways to express:

1

2
= .011111 · · · = .100000 · · · .

If x ∈ [0, 1] is a rational number, the binary expansion is
either terminating or repeating:

3

8
= .011,

1

3
= .0101010101 · · · = .01.
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Lebesgue’s singular function: unfair coin tossing

Imagine flipping a coin.

Suppose this coin has probability a of landing heads and
probability 1 − a of landing tails. (a 6= 1/2)

Determine a number t ∈ [0, 1] by flipping the coin infinitely
many times:

t = 0.ǫ1ǫ2 · · · =
∞∑

k=1

ǫk2
−k,

where ǫk is 0 if the kth flip is heads, or 1 if it is tails.

Define Lebesgue’s singular function as the probability
distribution

La(x) := Prob(t ≤ x).
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Functional equation

Theorem (De Rham, 1957)

La(x) is the unique continuous solution of the functional equation

La(x) =

{

aLa(2x), 0 ≤ x ≤ 1
2 ,

(1 − a)La(2x − 1) + a, 1
2 ≤ x ≤ 1,

where 0 < a < 1, and a 6= 1/2.

M

0 1

1
-

M

M

a

0

1

1

-

0

a

a2

1

a + a(1 − a)

11/2
M

M

M

M

- · · ·

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Property of Lebesgue’s singular function

Figure: Lebesgue’s singular function (a = 0.3)

Theorem (Salem, 1943)

La(x) is strictly increasing and L′

a(x) = 0 almost everywhere.
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Review

Definition (Differentiability)

A function f if differentiable at x = a, if there exist finite numbers
M and N such that

f ′

+(a) := lim
h→0+

f(a + h) − f(a)

h
= M,

f ′

−
(a) := lim

h→0−

f(a + h) − f(a)

h
= N,

and M = N .
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Question

Question 1

Can I give a concrete example of x ∈ [0, 1] where L′

a(x) = 0?

What set of x ∈ [0, 1] have L′

a(x) = 0?
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Question

Question 1

Can I give a concrete example of x ∈ [0, 1] where L′

a(x) = 0?

What set of x ∈ [0, 1] have L′

a(x) = 0?

For instance,

x = 1/2?

x = 1/3?

x = 3/7?
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Density of 0 and 1 in the binary expansion of x

Definition

For x =
∑

∞

k=1 ǫk(x)2−k, define

D1(x) := lim
n→∞

1

n

n∑

k=1

ǫk(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 1}|

n
,

provided the limit exists. Put

D0(x) := 1 − D1(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 0}|

n
.

Di(x) is the density of the digit i in the binary expansion of x.

Examples

x = 1/3?
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Density of 0 and 1 in the binary expansion of x

Definition

For x =
∑

∞

k=1 ǫk(x)2−k, define

D1(x) := lim
n→∞

1

n

n∑

k=1

ǫk(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 1}|

n
,

provided the limit exists. Put

D0(x) := 1 − D1(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 0}|

n
.

Di(x) is the density of the digit i in the binary expansion of x.

Examples

x = 1/3? → x = .01
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Density of 0 and 1 in the binary expansion of x

Definition

For x =
∑

∞

k=1 ǫk(x)2−k, define

D1(x) := lim
n→∞

1

n

n∑

k=1

ǫk(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 1}|

n
,

provided the limit exists. Put

D0(x) := 1 − D1(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 0}|

n
.

Di(x) is the density of the digit i in the binary expansion of x.

Examples

x = 1/3? → x = .01 → D0(x) = D1(x) = 1/2.
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Density of 0 and 1 in the binary expansion of x

Definition

For x =
∑

∞

k=1 ǫk(x)2−k, define

D1(x) := lim
n→∞

1

n

n∑

k=1

ǫk(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 1}|

n
,

provided the limit exists. Put

D0(x) := 1 − D1(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 0}|

n
.

Di(x) is the density of the digit i in the binary expansion of x.

Examples

x = 1/3? → x = .01 → D0(x) = D1(x) = 1/2.

x = 3/7?
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Density of 0 and 1 in the binary expansion of x

Definition

For x =
∑

∞

k=1 ǫk(x)2−k, define

D1(x) := lim
n→∞

1

n

n∑

k=1

ǫk(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 1}|

n
,

provided the limit exists. Put

D0(x) := 1 − D1(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 0}|

n
.

Di(x) is the density of the digit i in the binary expansion of x.

Examples

x = 1/3? → x = .01 → D0(x) = D1(x) = 1/2.

x = 3/7? → x = .011
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Density of 0 and 1 in the binary expansion of x

Definition

For x =
∑

∞

k=1 ǫk(x)2−k, define

D1(x) := lim
n→∞

1

n

n∑

k=1

ǫk(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 1}|

n
,

provided the limit exists. Put

D0(x) := 1 − D1(x) = lim
n→∞

|{1 ≤ k ≤ n : ǫk = 0}|

n
.

Di(x) is the density of the digit i in the binary expansion of x.

Examples

x = 1/3? → x = .01 → D0(x) = D1(x) = 1/2.

x = 3/7? → x = .011 → D0(x) = 1/3, D1(x) = 2/3.
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Answer to Question 1

Theorem (Kawamura, 2009)

1 If x ∈ [0, 1] is dyadic, then L′

a(x) does not exist, since

L′

a+(x) 6= L′

a−(x).

2 If x ∈ [0, 1] is not dyadic and

D0(x) = D1(x), then L′

a
(x) = 0.

D0(x) 6= D1(x), then

L′

a
(x) =

{

0, if aD0(x)(1 − a)D1(x) < 1/2,

+∞, if aD0(x)(1 − a)D1(x) > 1/2.
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Answer for Question 1 (cont.)

Examples

x = 1/2?
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Answer for Question 1 (cont.)

Examples

x = 1/2? → 1/2 is a dyadic point!
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Answer for Question 1 (cont.)

Examples

x = 1/2? → 1/2 is a dyadic point!
→ L′

a(1/2) does not exist.

x = 1/3?
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Answer for Question 1 (cont.)

Examples

x = 1/2? → 1/2 is a dyadic point!
→ L′

a(1/2) does not exist.

x = 1/3? → D0(x) = D1(x) = 1/2.
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Answer for Question 1 (cont.)

Examples

x = 1/2? → 1/2 is a dyadic point!
→ L′

a(1/2) does not exist.

x = 1/3? → D0(x) = D1(x) = 1/2.
→ L′

a(1/3) = 0.

x = 3/7?
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Answer for Question 1 (cont.)

Examples

x = 1/2? → 1/2 is a dyadic point!
→ L′

a(1/2) does not exist.

x = 1/3? → D0(x) = D1(x) = 1/2.
→ L′

a(1/3) = 0.

x = 3/7? → D0(x) = 1/3, D1(x) = 2/3.
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Answer for Question 1 (cont.)

Examples

x = 1/2? → 1/2 is a dyadic point!
→ L′

a(1/2) does not exist.

x = 1/3? → D0(x) = D1(x) = 1/2.
→ L′

a(1/3) = 0.

x = 3/7? → D0(x) = 1/3, D1(x) = 2/3.

→ L′

a(3/7) =

{

0, if a1/3(1 − a)2/3 < 1/2,

+∞, if a1/3(1 − a)2/3 > 1/2.
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Takagi’s nowhere differentiable function

Definition (Takagi’s function, 1903)

T (x) :=
∞∑

n=1

1

2n
φ(n)(x), 0 ≤ x ≤ 1,

where

φ(x) :=

{

2x, 0 ≤ x ≤ 1/2,

2 − 2x, 1/2 ≤ x ≤ 1.

φ is a typical chaotic dynamical system on [0, 1].
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Question

Question 2

We know that Takagi’s function is nowhere differentiable.
But, at which x ∈ [0, 1] does T (x) have an infinite derivative?

Note!

Recall that if T ′(x) = ±∞, the graph of T has a vertical tangent
line at x.
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Answer to Question 2

Let In and On be the number of 1’s and 0’s, respectively in
the first n binary digits of x.

Let Dn := On − In.

Theorem (Begle & Ayres, 1937)

1 If x ∈ [0, 1] is dyadic, then T ′(x) does not exist, since

T ′

+(x) 6= T ′

−
(x).

2 If x ∈ [0, 1] is not dyadic, then

T ′(x) =







+∞, if limn→∞ Dn = +∞,

−∞, if limn→∞ Dn = −∞,

does not exist, if limn→∞ Dn does not exist.
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Composition of functions

Recall that in classical calculus, the chain rule is used to compute
the derivative of the composition of two differentiable functions: If

h(x) = f(g(x)),

then
h′(x) = f ′(g(x))g′(x).

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Composition of functions

Recall that in classical calculus, the chain rule is used to compute
the derivative of the composition of two differentiable functions: If

h(x) = f(g(x)),

then
h′(x) = f ′(g(x))g′(x).

Question 3

But what about a function such as T (L−1
a (x)): the composition of

Takagi’s function and the inverse of Lebesgue’s singular function?
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Question

Put
f(x) = T (x), g(x) = L−1

a (x),

and
h(x) = f(g(x)) = T (L−1

a (x)).

If we try to use the chain rule to compute h′(x), we may run into
one of the indeterminate products

+∞ · 0, or −∞ · 0.

How can we overcome this problem?
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Question

Put
f(x) = T (x), g(x) = L−1

a (x),

and
h(x) = f(g(x)) = T (L−1

a (x)).

If we try to use the chain rule to compute h′(x), we may run into
one of the indeterminate products

+∞ · 0, or −∞ · 0.

How can we overcome this problem?

Answer

Wait for my next paper, please!
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Maximum points of T (x)

Question 4

Takagi’s function T (x) is nowhere differentiable. Then how can we
find the maximum points?
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Maximum points of T (x)

Question 4

Takagi’s function T (x) is nowhere differentiable. Then how can we
find the maximum points?

Theorem (Kahane, 1959)

The maximum value of T (x) is 2/3.

The binary expansion of any maximum point of T (x) is

x = .







01

or

10







01

or

10







01

or

10







01

or

10

· · · .
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Relationship among two irregular functions

Theorem (Hata-Yamaguti, 1984)

Takagi’s function and Lebesgue’s singular function are related by

T (x) =
1

2

∂La(x)

∂a

∣
∣
∣
∣
a= 1

2

Why not keep differentiating?
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Relationship among two irregular functions

Theorem (Hata-Yamaguti, 1984)

Takagi’s function and Lebesgue’s singular function are related by

T (x) =
1

2

∂La(x)

∂a

∣
∣
∣
∣
a= 1

2

Why not keep differentiating?

Definition (n-th partial derivatives of La(x))

Tn(x) :=
1

n!

∂nLa(x)

∂an

∣
∣
∣
∣
a= 1

2

, n = 1, 2, 3, . . . .
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n-th partial derivatives of La(x).

1.2

0.8

0.0

1.0

0.6

0.2

0.4
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1.5
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2
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-4
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Figure: Graphs of T1 (top left), T2 (top right), T3 (bottom left) and T4

(bottom right).
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Question

Theorem (Allaart-Kawamura, 2006)

For each n ∈ N, Tn(x) is continuous but nowhere differentiable.

Question 5

What are the maximum values of Tn?

Where are they attained?
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Maximum of T2

1.5

0.5

-1.5

1.0

0.0

-1.0

-0.5

0.8 10.2 0.4 0.6

Theorem (A-K, 2006)

The binary expansion of any maximum point of T2(x) has the form:
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Maximum of T2

1.5

0.5

-1.5

1.0

0.0

-1.0

-0.5

0.8 10.2 0.4 0.6

Theorem (A-K, 2006)

The binary expansion of any maximum point of T2(x) has the form:

x = .00







01

or

10

010







01

or

10

01010







01

or

10

0101010







01

or

10

010101010 · · · .
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Maximum of T3

3

1

2

0

-1

0.6 0.8 10.2 0.4

Theorem (A-K, 2006)

The binary expansion of any maximum point of T3(x) in [0, 1
2 ] has

the form:
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Maximum of T3

3

1

2

0

-1

0.6 0.8 10.2 0.4

Theorem (A-K, 2006)

The binary expansion of any maximum point of T3(x) in [0, 1
2 ] has

the form:

x = .0000







01

or

10

0







01

or

10

010
︸︷︷︸

010
︸︷︷︸







01

or

10

010
︸︷︷︸







01

or

10

01010
︸ ︷︷ ︸

01010
︸ ︷︷ ︸







01

or

10

01010
︸ ︷︷ ︸







01

or

10

0101010
︸ ︷︷ ︸

0101010
︸ ︷︷ ︸







01

or

10

0101010
︸ ︷︷ ︸

· · · .
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Mysterious conjecture for Tn

Extensive numerical computation suggested that

Conjecture

For each n ≥ 4, Tn has only finitely many maximum points!
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Self-similar sets in the complex plane

Consider a unique bounded continous solution Gα(x) of

Gα(x) =

{

αGα(2x), 0 ≤ x < 1/2,

(1 − α)Gα(2x − 1) + α, 1/2 ≤ x ≤ 1,

where α ∈ C such that |α| < 1.

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Self-similar sets in the complex plane

Consider a unique bounded continous solution Gα(x) of

Gα(x) =

{

αGα(2x), 0 ≤ x < 1/2,

(1 − α)Gα(2x − 1) + α, 1/2 ≤ x ≤ 1,

where α ∈ C such that |α| < 1.

Remark

If α = a, a real number, then

Ga(x) = La(x), 0 < a < 1, a 6= 1/2.
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Self-similar sets in the complex plane

Consider a unique bounded continous solution Gα(x) of

Gα(x) =

{

αGα(2x), 0 ≤ x < 1/2,

(1 − α)Gα(2x − 1) + α, 1/2 ≤ x ≤ 1,

where α ∈ C such that |α| < 1.

Remark

If α = a, a real number, then

Ga(x) = La(x), 0 < a < 1, a 6= 1/2.

Properties of Gα

Gα : [0, 1] → C,

Gα([0, 1]): self-similar set on C.

Example: if α = 1/2 + 1/2i, Gα([0, 1]) is Levy’s dragon curve.
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Figure: Graphs of Gα (top left), view from the top (top right), from a
different angle (bottom left), Levy dragon curve (bottom right).
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Observation

Each coordinate function is somewhat similar to Takagi’s function!

This is no surprise, because...

Kiko Kawamura (kkawamur@kurims.kyoto-u.ac.jp) From Brain Waves to Mathematics of Fractals - The beaut



Observation

Each coordinate function is somewhat similar to Takagi’s function!

This is no surprise, because...

Theorem (K, 2003)

Im
∂Gα(x)

∂αI

∣
∣
∣
∣
αR=1/2

= 2T (x).
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What about my dream?!?!

It seems that I have enjoyed exploring the wonders of irregular
functions, but...
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What about my dream?!?!

It seems that I have enjoyed exploring the wonders of irregular
functions, but...

Did I forget about my dream?
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What about my dream?!?!

It seems that I have enjoyed exploring the wonders of irregular
functions, but...

Did I forget about my dream?

Where are the applications?
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What about my dream?!?!

It seems that I have enjoyed exploring the wonders of irregular
functions, but...

Did I forget about my dream?

Where are the applications?

Brain science (Tsuda and Yamaguchi, 2006)

Self-similar functions whose graphs look remarkably like Gα(x)
appear in neural systems!
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Message to future female scientists
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