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Chapter:
Introduction
Magnetic monopoles in gauge field theories




3 Dual superconductor picture for confinement
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U
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<> electric-magnetic dual [Nambu, 1974] ['tHooft, 1975][Mandelstam, 1976]
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3 Magnetic monopoles in gauge field theories

1) In Electro-magetism,
Dirac magnetic monopole

2) In non-Abelian gauge theory with (adjoint) matter fields, e.g., Georgi-Glashow model,
't Hooft-Polyakov magnetic monopole

3) How can the magnetic monopole be defined in pure non-Abelian gauge theory (in
absence of matter fields)?

The magnetic monopole is a basic ingredient in dual superconductivity picture [Nambu
1974, Mandelstam 1976, 't Hooft 1978] for understanding quark confinement in QCD.

1. 't Hooft (Abelian projection, partial gauge fixing)
[Nucl. Phys. B190, 455 (1981)]

2. Cho & Faddeev-Niemi (field decomposition, new variables)
[Phys. Rev. D21, 1080 (1980)] [Phys. Rev. Lett. 82, 1624 (1999)]...

The purpose of this talk is to give a short review of recent developments on the
second method from the viewpoint of quark confinement.

In particular, | emphasize some aspects of the second method superior to the first one.
4



3 't Hooft Abelian projection and magnetic monopole
Consider the (pure) Yang-Mills theory with the gauge group G = SU(N) on RP.

(1) Let x(«) be a Lie-algebra ¢-valued functional of the Yang-Mills field <7, (x). Suppose
that it transforms in the adjoint representation under the gauge transformation:

x(z) = x'(z) = U(x)x(2)U'(z) € 4 = su(N), U(z)eG, zecRP. (1)
(2) Diagonalize the Hermitian x(z) by choosing a suitable unitary matrix U(z) € G
X'(z) = diag(A1(@), Az(@), -+, An(@)). (2)

This is regarded as a partial gauge fixing, if x(x) is a gauge-dependent quantity.
(2a) At non-degenerate points x € RY of spacetime, the gauge group G is partially
fixed, leaving a subgroup H unfixed, i.e., a partial gauge fixing:

G =SU(N)— H=U(1)N"1 x Weyl. (3)

(2b) At degenerate points xg € R”, X\;(z0) = M\k(z0) (j #k =1,---,N), a magnetic

monopole appears in the diagonal part of 7, (x) (gauge fixing defects).
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G = SU(N) non-Abelian Yang-Mills field
— H = U(1)N~1 Abelian gauge field + magnetic monopoles + electrically charged

matter field ['t Hooft, 1981] e.g., x(z) = F12(x), F2,. Fuu(x)D*F ()

For the SU(2) matrix U(z) = e~ 1(@)o3(2)/2p—iB(z)o2(2)/2o—ia(2)o3(2)/2 diagonalizing
the Hermitian x(x), the diagonal part of the gauge transformed Yang-Mills field

. 41 cos B0, + 0,y [—40,,8 — sin $0,,v]e*® A
1 T — a1 p ol [ p _
tg U(z)0,U'(z) =g 2 ([i@uﬁ — sin £0,,7]e’™ —[cos B0, + 0,7 Y 74/2
(4)

contains the singular potential of the Dirac type.

”I/M?’ = g '[cos BO, . + 7] (5)

The D = 3 case agrees with the Dirac magnetic potential by choosing oo = ¢, 5 = 6,
v = v(p) (expressing the degenerate point)

—1
cosf + O
V3 — 9 + Swe
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Remarkable achievements in Abelian projection (Maximal Abelian gauge)
® Abelian dominance in the string tension

e T. Suzuki and I. Yotsuyanagi, Phys.Rev.D42:4257-4260,1990.
® Magentic monopole dominance in the string tension

e J.D.Stack, S.D.Neiman, R.J.Wensley, Phys.Rev.D50:3399-3405,1994. hep-
lat /9404014

e H. Shiba and T. Suzuki, Phys.Lett.B333:461-466,1994. hep-lat/9404015

® Gribov copy effects
e G.S. Bali, V. Bornyakov, M. Muller-Preussker and K. Schilling,
Phys.Rev.D54:2863-2875,1996. hep-lat/9603012

® Off-diagonal gluon mass generation
e K. Amemiya and H. Suganuma, Phys.Rev.D60:114509,1999. hep-lat/9811035

® Asymptotic freedom in an effective theory of dual Ginzburg-Landau type

e M. Quandt and H. Reinhardt, Int.J.Mod.Phys.A13:4049-4076,1998. hep-
th /9707185

e K.-I. Kondo, Phys.Rev.D57:7467-7487,1998. hep-th/9709109
® Hidden SUSY in a renormalizable MAG and dimensional reduction

e K.-I. Kondo, Phys.Rev.D58:105019,1998. hep-th/9801024

e K.-I. Kondo, Phys.Rev.D58:105016,1998. hep-th/9805153 :



8§  Maximal Abelian gauge (MAG) and magnetic
monopoles

e quark confinement follows from the area law of the Wilson loop average [Wilson,1974]

no GF

Non-Abelian Wilson loop <tr [9 exp {zg]{ dw“dﬂ(x)}] >YM ~ e~oNalSl (1)
C

e Numerical simulation on the lattice after imposing the Maximal Abelian gauge (MAG):
for the SU(2) Cartan decomposition: 7, = AZ"; + Ai"; (a=1,2), o, — Ai%?’

MAG
Abelian-projected Wilson loop <exp {297{ da:“Ai(x)} >YM ~ e oabellS] 17 (2)
C

The continuum form of MAG is [0,,09° — ge*** A% (x)] Al (x) = 0 (a,b=1,2).
- Abelian dominance < g ape; ~ on 4 (92£4)% [Suzuki & Yotsuyanagi,PRD42,4257,1990]

Ai — Monopole part + Photon part, (3)

- Monopole dominance < G monopote ~ Tabel (95)%
[Stack, Neiman and Wensley, hep-lat/9404014][Shiba & Suzuki, hep-lat/9404015]



Maximal Abelian gauge = a partial gauge fixing G = SU(N) — H = U(1)N 1
the gauge freedom 7, (z) — o' (x) = Q(x)[y(x) + ig~10,]Q () is used to
transform the gauge variable as close as possible to the Abelian components for the
maximal torus subgroup H of the gauge group G.

The magnetic monopole of the Dirac type appears in the diagonal part Ai of @, (z)
as defects of gauge fixing procedure.

MAG is given by minimizing the function Fyiag w.r.t. the gauge transformation ().

: 1 a a 1 a a
m&nFMAg[dQ], Fyvagl| ] = §(AM,AM) — /de§Au(x)Au(x) (a=1,2) (4)
dulac =(0uAy, AY) = (Du[Aw)®, A7) = —(w*, D;’[A%]A}) (5)
The residual U(1) exists.
cf. Lorentz gauge (Landau gauge) G = SU(N) — H = {0}

min B[], Fylo/] := %(%A,%A) _ / d%%%f‘(x)ng(x) (A=1,23) (6)

SuFr =(0ua,, ) = (D[ |w)?, ) = —(w?, (Du],)?) = —(w?, 0,9,)
62F = — (wA,auaw%A) = (w?, (—=0,D,[«])*Pw?) FP operator



® Problems:
e The naive Abelian projection and the MAG break color symmetry explicitly.

e Abelian dominance in the string tension ... has never been observed in gauge
fixings other than MAG.

The criticism: The magentic monopole and the resulting dual superconductivity in
Yang-Mills theory might be a gauge artifact?

In order to establish the gauge-invariant dual superconductivity in Yang-Mills theory,
we must solve the questions:

1. How to extract the “Abelian” part responsible for dual superconductivity from the
non-Abelian gauge theory in the gauge-independent way (without losing characteristic
features of non-Abelian gauge theory, e.g., asymptotic freedom).

2. How to define the magnetic monopole to be condensed in Yang-Mills theory even in
absence of any matter field in the gauge-invariant way (cf. Georgi-Glashow model).

The second method a la Cho-Faddev-Niemi sweeps away all the criticism.
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3 Cho-Faddeev-Niemi decomposition

Question: If we

find the decomposition of the SU(2) gauge field A, (z) = Aﬁ(az)aA/Z

Ay(z) = Vi(z) + X, (2),

such that the field strength F,,[V] is proportional to the unit field n (i.e., n-n = 1):

Fuw [V

and that F,, [V

Fu

(#) = 0,V () = 0, Vyu(x) + gViu(x) x Vo, (2) = fu(z)n(z)
and n transform in the adjoint rep. under the gauge transformation:

V](z) = U(@)Fu [VI(2)U'(z), n(z) = U(z)n(z)U(z),

Then we can introduce a gauge-invariant magnetic monopole current by

since f,, 1s gau

ku(w) = 0,7 fuu(x) = (1/2) €0 pe 00 77 (2),
ge Invariant:

fur =0 -F,, V] = f.
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e Magnetic charge quantization: The non-vanishing magnetic charge is obtained without
introducing Dirac singularities in ¢,,. Even in the classical level, the magmetic charge
obeys the quantization condition of Dirac type.

nt(x) sin B(x) cos a(x)
n(z) = | n?(x) | = | sinB(z)sina(z) | € SU(2)/U(2)
n3(x) cos () S

The magnetic charge g,, is nothing but a number of times S? . is wrapped by a mapping
from S2, to S? .. [II2(SU(2)/U(1)) = 113(S?) = 7]

phys

G ;:/d%ko — /d%a < ek fan )
(8, a)

:% do'jkg_l’n . ((9]77, X 8kn) = g_lf dO'jlc Sinﬂ -
phy phy

xJ, k)

:g_lf sin fdBda = 4mwg™'n (n=0,%1,---)
S2

nt

where a((ﬁ’ %)_is the Jacobian: (xt,x¥) € S%,, — (B,a) € SZ,, ~ SU(2)/U(1) and

V)
S? . is a surface of a unit sphere with area 4.
12



Is such a decomposition (spin-charge separation) possible?

Yes!: The answer to this question was given by Cho (1980) [Duan and De (1979)] as

Vu(x) = cu(z)n(z) + g~ '9,n(z) x n(x)(+ Cho connection)
cu(®) = Ay(z) - n(z),
Xu(z) = g7 'n(z) x Dy[Aln(z) (D,[A] := 0, + gh,x)

The field strength [, [V] is found to be proportional to n:
F..[V]:=08,V, —0,V,+¢gV, xV, =n[d,c, —0,c,—g 'n-(d,nx3d,n)]
Then we have a gauge-invariant field strength:
fuv i=n-F,,|V] =0,c, — Ovc, — g n- (Oun x Oyn)
Note: Remember this is the same form as the "tHooft-Polyakov tensor for the magnetic

monopole, if the color unit field is the normalized adjoint scalar field in the Georgi-
Glashow model: n(z) ++ ¢ (z) := ¢ (x)/||p(2)]].
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The role of the color field n(z) € G/H:

e The color field n(x) carries topological defects without introducing singularities
in the gauge potential, e.g., magnetic monopole, knot soliton, ...

e The color field n(x) recovers color symmetry which will be lost in the conventional
Abelian projection, the MA gauge.

n(z) =(0,0,1) = Au(aj) :Vﬂ(w) + XM(Z‘),
VH(SU) — (0,0,cu(a:)), C,u(aj) — Ai(w)a
Xu(@) = (A, (z), Al (2),0)

Suppose that n(x) is given as a functional of A, (), i.e., n(x) = ng(x). Then, by
solving two defining equations:

(i) covariant constantness (integrability) of color field nin V,: D, [Vin(z) =0

(i) orthogonality of X, (x) to n(x): X, () n(x)=0

V,, and X, are uniquely determined by A, (z) and n.
14



Chapter:
Reformulating
Yang-Mills theory
based on change of variables
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3 Reformulation in terms of new variables
We wish to obtain a new reformulation of Yang-Mills theory:

SU(2) Yang-Mills theory A reformulated SU(2) Yang-Mills theory
written in terms of — written in terms of new variables:
Al (x) (A=1,2,3)  change of variables n(x), cu(z), X3 (z) (A=1,2,3)

The following issues must be fixed for two theories to be equipollent in the quantum
level:

1. How n(x) is determined from A, (x)?

[This was assumed so far. We must give a procedure to achieve this.]

2. How the mismatch between two set of variables is solved?

[The new variables have two extra degrees of freedom which should be eliminated
by imposing appropriate constraints.]

e Counting the degrees of freedom: D-dim. SU(2) Yang-Mills
before MMA: 3D total 3D

after n®:3—1=2 | X;?: 3D — D =2D | Cu.. D | constrainty = 0: —2 tota1|63D



3. How the gauge transformation properties of the new variables are determined to
achieve the expected one?

[If n(z) transforms in the adjoint representation under the gauge transformation,
fuv(x) becomes gauge invariant.]

All of these problems have been simultaneously solved as follows.

e The reduction of enlarged gauge symmetry G x G/f] to the original one G"
[K.K.,Murakami & Shinohara, hep-th /0504107, Prog.Theor.Phys.115, 201-216 (2006)]
For a given Yang-Mills field A ,(x), the color field n(x) is obtained by minimizing

Fo= [ dPz5(D,[AJn() - (D,[Aln(x)

e The Jacobian associated with the change of variables:
[K.-I.K., Phys.Rev.D74, 125003 (2006)]

det] = [dn][dd][dX]T

J =1 by a suitable choice of the basis for X;j‘
17



A new viewpoint of the Yang—Mills theory
don(z) = gn(x) x O(x) = gn(x) x 0 (x)

I |
| N A n :
! G= SU@ XISUQR) /UM 1 :
I

| | M- YM |
I ?0 I(iir n reduction I
Lo ncX !
| y N YM' I
I X " 7 I
| g = SU(Z)‘,_,eqm pol lent o :_SU Qs |
© 7 Tlendar 0 landew:

Y Y
YM at Landau) &= YM atLandau
equi pollent
5wAu(x> — DM[A]Q)(x) global SU(2) global SU(2)

By introducing a color field, the original Yang-Mills (YM) theory is enlarged to the
master Yang—Mills (M-YM) theory with the enlarged gauge symmetry G . By imposing
the reduction condition, it is reduced to the equipollent Yang-Mills theory (YM') with
the gauge symmetry G’. The overall gauge fixing condition can be imposed without
breaking color symmetry, e.g. Landau gauge.

[K.-1.K., Murakami & Shinohara, hep-th/0504107; Prog.Theor.Phys. 115, 201 (2006).]
[K.-I.K., Murakami & Shinohara, hep-th/0504198; Eur.Phys.C42, 475 (2005)](BRST)18



. = = . . P . D 1 2 2
As a reduction condition, we propose minimizing the functional [ d r59°X, w.r.t.

enlarged gauge transformations:

1
: D1 o2 . D 2
rg}gl/d 59 X —rg}gl/d (D, [An)”.

Then the infinitesimal variation reads
1
0= 5w,9/dD£U§Xi = _/dDCU(WJ_ — GJ_) . DM[V]X,U‘

For w, # 0, the minimizing condition yields the differential form:

x =D,VIX, =0.

This denotes two conditions, since n(z) - x(x) = 0 (following from n(x) - X, (x)

For w, = 6, , the minimizing condition imposes no constraint.

(1)

0).

Therefore, if we impose the reduction condition to the master-Yang—Mills
theory, G := SU(2), x [SU(2)/U(1)]s is broken down to the (diagonal) subgroup:

G' = SU(2).

19



We have thg equipollent Yang—Mills theory with the local gauge symmetry
G' = SU(2){ e With W'(z) = (w)|(z),wi(z) = 01 (T)).

loca

/

G = SU2)fe 1 G 1= SU@) 0 % [SUR) /U)ot 4 G = SURirew (4)

local local

The reduction condition has another expression in the differential form:
9D, |VIX, = gD, AIX, = Dy[A{n x (Dy[Aln)} =n x (D,[A]D,[An) =0 (5)

Thus, n(x) is determined by solving this equation for a given A, (z). This determines
the color field n(x) as a functional of a given configuration of A, ().

e Comparison between MAG and reduction condition:

Old MAG leaves local U(1)i5cai(C G = SU(2)10cat) and global U(1)406q: unbroken,
but breaks global SU(2)10ba1-

The reduction condition leaves local G'=SU(2);,cq; and global SU(2) 41061 unbroken
(color rotation invariant)

The MAG in the original formulation is equivalent to set n(x) = (0,0,1) (a gauge

fixing) in the new formulation.
20



® Gauge transformation of new variables:

dom =gn X w’, (6a)

0u!Cpy =1 - Oy, (6b)

5%, =gX,, X W, (6¢)
—06,/V, = D, [Vlw = § A, = D,[Alw’, (6d)

—> 0 F o [V] =gF ., [V] x W', (6e)

Hence, the inner product f,, =n-F,, V] is SU(2)" invariant.
Ow' fuv =0,  fu =0uc, — Ovcy — g n- (Oun x Oyn), c,=n-A,. (7)
and f7, =F,,[V]? is SU(2)" invariant: SU(2) invariant " Abelian” gauge theory!
0 Fun[V]? = 6, f, =0. (8)

Therefore, we can define the gauge-invariant monopole current by kH(x) :=
0,  fr(x) = (1/2)e*P?0, fpo(x), Moreover,

0.,X2 = 0. (9)
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Chapter:
Wilson loop
and
magnetic monopole
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3 Wilson loop and magnetic monopole
® Non-Abelian Stokes theorem for the Wilson loop

The Wilson loop operator for SU(2) Yang-Mills connection

Wele] i=tr [@exp {ig 7{} da:“du(az)}] Jtr(1), o (x) = S (2)o? )2

The path-ordering &2 is removed by a non-Abelian Stokes theorem for the Wilson loop
operator in the J representation of SU(2): J =1/2,1,3/2,2,---
[Diakonov & Petrov, PLB 224, 131 (1989); hep-th/9606104] >

Wel o] ::/d,ug(n) exp {z’Jg/ dS“VfW}, no path-ordering \’/
3:0¥=C

fuw(@) =0, (2)n? (2)] — 9, [ (x)n" (2)] — g~ AP (2)0n” ()9,nC (z),
n(z)o? :=UT(2)d®U(x), U(x) e SU2) (A,B,C € {l,2,3)})

and dug(n) is the product measure of an invariant measure on SU(2)/U(1) over S:

dus(n) = [[ du(n(@)),  dp(n(x) = >~ 250 @)n? (@) ~ 1) dn(a).

A7
xEeS
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® The geometric and topological meaning of the Wilson loop operator
[K.-1.LK., arXiv:0801.1274, Phys.Rev.D77:085029 (2008)] [K.-l.K., hep-th/0009152]

Welef) = [ dus(U) exp{iJg(Es. ) + iJg(Ns. )} C =08
k:=6"f="*df, Zy:=00gA '+ (D-3)-forms
ji=06f, Ny :=080xA 1< 1-forms (D-indep.)

0 (a) = [ d*5"(a(0))6"(a - a(o)

k and j are gauge invariant and conserved currents, 0k = 0 = 97.

The magnetic monopole is a topological object of co-dimension 3.
D=3: 0-dimensional point defect — point-like agnetic monopole (cf. Wu-Yang type)
D=4: 1-dimensional line defect — magnetic monopole loop (closed loop)

We do not need to use the Abelian projection ['t Hooft,1981] to define magnetic
monopoles in Yang-Mills theory!

The Wilson loop operator knows the (gauge-invariant) magnetic monopole!

24



For D = 3, |
K(2) = 50 f1(x) = pm ()

denotes the magnetic charge density at z, and

Zx(z) = Qs(z)/(47)

agrees with the (normalized) solid angle at the point x subtended by the surface X
bounding the Wilson loop C'. The magnetic part reads

2
W2 .=exp{iJg(Es,k)} = exp {iJg/dSCUpm(x)QE(w)} 2 _ _ _

47 ~ )
The magnetic charge ¢,, obeys the Dirac-like quantization condition : . !
\\O'QZ“(X)
3 _1 q.®
Gm = | d’xpm(x) =4ngn (n € Z) m X

[Proof] The non-Abelian Stokes theorem does not depend on the surface ¥ chosen for
spanning the surface bounded by the loop C,
See [K.-I.K., arXiv0801.1274, Phys.Rev.D77:085029 (2008)]
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For D = 4, the magnetic part reads using Qf.(x) is the 4-dim. solid angle

W™ — exp {iJg / d4ng(az)ku(x)}

Suppose the existence of the ensemble of magnetic monopole loops C/,

k' (x) = Z qf,fl]{ dyts W (z — x,), ¢% = 4ng 1n,
a=1 e

a=1 a=1

— W1 =exp {z’JngfnL(Z, C’C’L)} = exp {47TJ’iZnaL(Z, C;)} , ng €7

where L(X,C") is the linking number between the surface 3 and the curve C".

where the curve C’ is identified with the trajectory of a magnetic monopoleand the

surface X with the world sheet of a hadron (meson) string for a quark-antiquark pair.
26



Chapter:
Lattice reformulation of
Yang-Mills theory
and numerical simulations
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3 Lattice formulation and numerical simulations

e Non-compact lattice formulation

[Kato, K.K., Murakami, Shibata, Shinohara and Ito, hep-lat/0509069, Phys.Lett.B 632,
326-332 (2006).]

- generation of color field configuration — Figure
- restoration of color symmetry (global gauge symmetry) — Figure
- gauge-invariant definition of magnetic monopole charge

e Compact lattice formulation:

[Ito, Kato, K.K., Murakami, Shibata and Shinohara, hep-lat/0604016, Phys.Lett.B 645,
67-74 (2007).]

- magnetic charge quantization subject to Dirac condition gg,,/(47) € Z — Table
- magnetic monopole dominance in the string tension — Table

[Shibata, Kato, K.K., Murakami, Shinohara and lto, arXiv:0706.2529[hep-lat], Phys.
Lett. B653, 101 (2007).]

Mx =12~ 1.3GeV (M4 = 0.6GeV? in the Landau gauge) — Figure

28



e color field configuration

"hist.t=xt" matrix

Figure 1: hedgehog (?) configurations of color field in SU(2) Yang-Mills theory

29



e Color symmetry (restoration) and the dynamical color field

Q35|
<nlnil>
<nln2>
03 4<n1n3>

<n2nl>

0.25

<n3nl>
<n3n2>
0.2 + 4<n3n3>

0.15

<n(xX)n(x+l)>

0.1
0.05

= 2 &
O @ & ® = © & & & & & & % ¢ ¥ & =

-0.05

1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
distance(l)

Figure 2: The plots of two-point correlation functions <nfn£3> for A, B = 1, 2, 3 along the lattice
axis on the 16* lattice at 8 = 2.4.

[Kato, K.K., Murakami, Shibata, Shinohara and lto, hep-lat/0509069]
(n2)=0 (A=1,2,3).
<nfné3> =048D(z) (A,B=1,2,3).

The global SU(2) symmetry (color symmetry) is unbroken in our simulations.
30



e Magnetic charge quantization:

K(Shu) = 271']6“(3) — %

€,u1/p0'al/®p0' (3j + ,u) '

Table 1: Histogram of the magnetic charge (value of K (s, pu)) distribution for new and
old monopoles on 8* lattice at 8 = 2.35.

Charge

Number(new monnopole)

Number(old monopole)

-7.5~-6.5
-6.5~-5.5
-5.5~-4.5
-4.5~-3.5
-3.5~-2.5
-2.5~-1.5
-1.5~-0.5
-0.5~0.5
0.5~1.5
1.5~2.5
2.5~3.5
3.5~4.5
4.5~5.5
5.5~6.5
6.5~7.5

0
299

O O O O o

15786

o O O O o

299

0
0
1
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e String tension: magnetic monopole dominance
W, (C) = exp { 2mi Z ku(5)Qu(s) v,

ZA 6#@573 SB’)/( + i), 8IBSBJ')/(S) = Jy(s), (1)

Vi(R) = —log {(Wi(R,T)) /| (Wi(R, T — 1))} =0iR—a;j/R+c¢; (i=f,m), (2)

Table 2: String tension and Coulomb coefficient |

6 O f & f Om (87%%
2.4(8%)  0.065(13) 0.267(33) 0.040(12) 0.030(34)
2.4(16%) 0.075(9) 0.23(2) 0.068(2) 0.001(5)

Table 3: String tension and Coulomb coefficient I
MAG+DeGrand—Toussaint (reproduced from [Stack et al., PRD 50, 3399 (1994)]

I} o Qf O DTm X DTm
2.4(16%) 0.072(3) 0.28(2) 0.068(2) 0.01(1)
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e quark-antiquark potential

14

T

"y

Y RV
"monopole" +-x-—

LT

0.8
— - F <
o I
0.6 - T x
,i/ ,/”’(
_ k-
X -
0.4 BT
s e % -
-7 /*/
02} A
///‘*(/"”
0 ] 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

R

Figure 3: The full SU(2) potential V((R), “Abelian” potential V,(R) and the
magnetic-monopole potential V,,,(R) as functions of R at 3 = 2.4 on 16* lattice.
monopole part[lto, Kato, K.K., Murakami, Shibata and Shinohara, hep-lat/0604016]
“Abelian” part[in preparation]

Table 4: String tension and Coulomb coefficient

B of af ODTm O DTm Oq Qg

2.4(16%) | 0.072(3) 0.28(2) | 0.068(2) 0.01(1) | 0.071(3) 0.12(1)
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e magnetic-monopole loops

#163
#144
#67
#97
e L) #179

Figure 4: The magnetic-monopole loops on the 4 dimensional lattice where the
3-dimensinal plot is obtained by projecting the 4-dimensional dual lattice space to the

3-dimensional one, i.e., (z,y,z,t) = (x,y,1).
34



numbers

histogram of monopole loops

1000 |
100 |

10 |

AN

‘ U

I 1 111

10

length of loop

100

1000

Figure 5: The number vs. length of the magneic monopole loops
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e Two-point gluon correlation functions
r [fm] r [fm]
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Figure 6: Logarithmic plots of scalar-type two-point correlation functions

Door(r) := (O(x)O'(y)) as a function of the Euclidean distance r := /(x — y)?
for O and O'. (Left panel) O(z)O'(y) = Vﬁ(m)Vf}(y), AZ‘( )AA( ), —VA( )X;‘(y)
X/ (@)X}, (y), (Right panel) O(2)0'(y) = n(z)n’(y), cu(@)c,(y ) X (z )XA( ), from
above to below using data on the 24* lattice (8 = 2.3,2.4), 324 Iattlce (6 =2.3,2.4),
36% lattice (8 = 2.4,2.5), and 48 lattice (8 = 2.4,2.5,2.6). Here plots are given in
the physical unit [fm] or in unit of square root of the string tension /G pys.

[Shibata, Kato, K.K., Murakami, Shinohara and lIto, arXiv:0706.2529 [hep-lat]]
cf.[Amemiya and Suganuma, hep-lat/9811035] in mAG
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e Infrared Abelian dominance
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Figure 7: Logarithmic plots of the rescaled correlation function 73/2Doo(r) as a
function of r for O = V4, A, ¢,, X} (and X'}) from above to below, using the same
colors and symbols as those in Fig. 6. Here two sets of data for the correlation function

Dx x(x —y) are plotted according to the two definitions of the Xf} field on a lattice.
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e Gluon “mass’ generation

4 : 4
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Figure 8: Gluon “mass” and decay rates (in units of GeV and ,/opLys) as the
function of the inverse lattice volume 1/V in the physical unit. (Left panel) for
O = XZ‘,(X’Z‘),(:M,AZ‘ from above to below extracted according to the fitting:
(O(2)O(y)) ~ r~3/2exp(—Mor), (Right panel) for n?(z) extracted according to
the fitting: (n®(z)n"(y)) ~ exp(—M,r).
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M, >~ 2.24, /0pnys =~ 0.986GeV,
M. ~1.94,/0phys =~ 0.856GeV,
Ma ~1.35,/0phys =~ 0.596GeV.

Mx ~ 2.98,/0phys =~ 1.31GeV,
Mxr >~ 2.69,/0phys ~ 1.19GeV.

lattice spacing ¢ lattice size L [fm]

8 | [1/\/Ophys) [fm] 244 324 36* 48*
2.3 0.35887 0.1609 | 3.8626 | 5.1501 | 5.7939 | 7.7252
2.4 0.26784 0.1201 | 2.8828 | 3.8438 | 4.3242 | 5.7657
2.9 0.18551 0.08320 | 1.9967 | 2.6622 | 2.9950 | 3.9934
2.6 0.13455 0.06034 | 1.4482 | 1.9309 | 2.1723 | 2.8964

Table 5: The lattice spacing € and the lattice size L of the lattice volume L* at various
value of (3 in the physical unit [fm] and the unit given by | /o,pys.

39



Chapter:
The relationship
between magnetic monoole
and instanton, merons, ....
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3 Magnetic loops exist in the topological sector of YM,

In the four-dimensional Euclidean SU(2) Yang-Mills theory, we have given a first*

analytical solution representing circular magnetic monopole loops joining two merons:
[K.-I. K., Fukui, Shibata & Shinohara, arXiv:0806.3913, Phys.Rev.D78,065033 (2008)]

Our method reproduces also the previous results based on MAG (MCG) and LAG:
(i) A magnetic straight line can be obtained in the one-instanton or one-meorn
background. — It disappears in the infinite volume limit.
[Chernodub & Gubarev, hep-th /9506026, JETP Lett. 62, 100 (1995).]
[Reinhardt & Tok, hep-th/0011068, Phys.Lett.B505, 131 (2001). hep-th/0009205.]

(i) A magnetic closed loop can NOT be obtained in the one-instanton background.
[Brower, Orginos & Tan, hep-th/9610101, Phys.Rev.D 55, 6313-6326 (1997)]

[Bruckmann, Heinzl, Vekua & Wipf, hep-th/0007119,Nucl.Phys.B593, 545-561 (2001)]
*[Bruckmann & Hansen, hep-th/0305012, Ann.Phys.308, 201-210 (2003)] Qp =
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3 What are merons?

instanton meron
discovered by BPST 1975 DFF 1976
D,%#,,=0 YES YES
self-duality *.% = % YES NO
Topological charge Qp || (0),+1,42,--- (0),+1/2,+1,---
charge density Dp ff; (w2jp2)4 204z —a) + 20%(z — b)
solution 7! () R g Ay 4,
Euclidean finite action (logarithmic) divergent actio
Svym = (87%/9%)|Qp]
tunneling between Qp =0and Qp=+1 | Qp=0and Qp = +1/2

vacua in the @y = 0 gauge

vacua in the Coulomb gauge

multi-charge solutions

Witten, 't Hooft,
Jackiw-Nohl-Rebbi, ADHM

77?7
not known

Minkowski

trivial

everywhere regular
finite, non-vanishing action

An instanton dissociates into two merons?
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8 Relevant works (excluding numerical simulations)

papers original configuration | dual counterpart method
CG95 one instanton a straight magnetic line | MAG (analytical)
BOT96 one instanton no magnetic loop MAG (numerical)
BHVWO00 one instanton no magnetic loop LAG (analytical)
RTOO one meron a straight magnetic line | LAG (analytical)
BOT96 instaton-antiinstanton | a magnetic loop MAG (numerical)
instaton-instaton a magnetic loop MAG (numerical)
RTOO instaton-antiinstanton | two magnetic loops LAG (numerical)
Ours KFSS08 | one instanton no magnetic loop New (analytical)
0806.3913 one meron a straight magnetic line | New (analytical)
[hep-th] two merons circular magnetic loops | New (analytical)

CG95=Chernodub & Gubarev, [hep-th/9506026], JETP Lett. 62, 100 (1995).
BOT96=Brower, Orginos & Tan, [hep-th/9610101], Phys.Rev.D 55, 6313-6326 (1997).
BHVWO00=Bruckmann, Heinzl, Vekua & Wipf, [hep-th/0007119], Nucl.Phys.B 593,
545-561 (2001). Bruckmann, [hep-th/0011249], JHEP 08, 030 (2001).
RT00=Reinhardt & Tok, Phys.Lett. B505, 131-140 (2001). hep-th/0009205.
BHO03=Bruckmann & Hansen, [hep-th/0305012], Ann.Phys. 308, 201-210 (2003).
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We solved the reduction: For a given Yang-Mills field A, (x), minimize

Fo= [ d°z5(D,[Aln() - (D,[Aln(x)

The local minimum is obtained by solving the reduction differential equation (RDE):

n(z) x D,[A]D,[A]n(z) = 0.

We consider a pair of merons at t = a and z = —a
_ +a) ( — CL) O A
AMM () — =1 [pA ( A
Lo () =g nuy(w+a)2+nw( 2| 2

topological charge density

44



smeared meron pair of Callan, Dashen, Gross — conformal transformation 4+ singular
gauge transformation

The analytical solution representing a loop of magentic monopole: Using the
conformal transformation and the singular gauge transformation,

_ 2a° - _ ~
n(x) = o a>2bynfyzuU Yo +a)oaU(x + a)/\/z2 — (b-2)2,
where
2 —2a2(x+a)“—a U(x+a)—éa(x+a)a
: (z+a)? V(x4 a)?

One-instanton limit: |Ry — Ry | 0 (Ry/Ry | 1). SSAM = 89%2 finite
One-meron limit: Ry 1 0o or Ry | 0 (R2/Ry 1 o0). SSHM logarithmic divergence
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Chapter:

Some open question
SU(2) case
(Preliminary results)
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Numerical search for magnetic monople loops
(Preliminary)

Toplogical density
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0 0.005

-0.005 | 0
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Figure 9: The plot of marginalized topological index density P(z,t) generated by a pair
of (smeared) merons in 4-dimensional Euclidean space, where plot is obtained by the

projection to z-t plane by integrated out for x and y variables (marginal-distribution).
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10

Figure 10: The plot of a magnetic-monopole Iooop generated by a pair of (smeared)
merons in 4-dimensional Euclidean space where the 3-dimensinal plot is obtained
by projecting the 4-dimensional dual lattice space to the 3-dimensional one, i.e.,
(x,y,2,t) = (y,2,t). The positions of two meron sources are described by solid boxes,
and the monopole loop by red solid line. In the lattice of the volume [-10, 10]°x [-16, 16]
with a lattice spacing € = 1, the two-merons are located at (—1,—1,—1,—1 £ 6.078),
and are smeared with the instanton cap of size R = 3.0 (d = 12, R1 = 2.833 and
R2 = 50.833). The monopole loop is confined in the 3-dim. space x = —1 and in a
2-dim. plane rotated about t-axis by 0.46rad. (For guiding the eye, the monopole loop
is fitted by an ellipsoid curve (blue dotted line) with the long radius 6 and the short
radius 4.)
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,10.851)

Figure 11: The 3-dimensional projection of a magnetic-monopole loop generated by
two-instanton of the JNR type in 4 dimensional lattice [—15, 15]% x [—30, 30]% with its
spacing ¢ = 1. The monopole loop is written by a red solid curve and the two-instanton
solution is parametrized by the “size” a and the “position” denoted by a box: a =4 at
(0,0,0,10.851), a = 4 at (0,0,—13. —10.9), a =4 at (0,0,12,—-10.9).
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Figure 12: The 3-dimensional projection of two collapsed magnetic-monopole loops
generated by the two-instanton of the 't Hooft type in 4 dimensional lattice
[—12,12]? x [—20,20]? with its spacing ¢ = 1. The monopole loop is written by
a red solid curve and the two-instanton solution is parametrized by the “size” a and
the “position” denoted by a box: a =4 at (0,0,—3,0) a = 4 at (0,0,2,0).
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3 Adjoint quark potential and String breaking
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Figure 13: S. Kratochvila and Ph. de Forcr?nd, String breaking with Wilson loops?,
hep-lat /0209094, Nucl.Phys.Proc.Suppl.119:670-672,2003

D=3, G=SU(2); The adjoint and £ fundamental static potentials V/(R) vs R. The

horizontal line at 2.06(1) represents twice the energy of a gluelump.
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Figure 14: Our preliminary result.
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m Abelian dominance in the adjoint Wilson loop? [0 Casimir scaling, string breaking

m monopole dominance in the adjoint Wilson loop?
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For the ensemble of point-like magnetic charges:

b(r) = 3 @ (@ - 24)
a=1

m I B L
— W7 =exp {ZJM;meg(za)} — exp {zJZnan(za)} . Mg € 7

a=1

The magnetic monopoles in the neighborhood of the Wilson surface ¥ (Qx(z4)
+27) contribute to the Wilson loop

HZ:l(_Dna (J — 1/27 3/27 S )

Wi = ][ exp(iznna) = {_ 1 (J=1,2,---)

a=1

— N-ality dependence of the asymptotic string tension
[K.-I. K., arXiv:0802.3829, J.Phys.G35:085001,2008]
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3 Conclusion and discussion

The second method a la Cho & Faddeev-Niemi has been fully developped in the last
decade:

e Path integral formulation is completed (action and measure for new field variables).
e The relevant lattice gauge formulation are available for numerical simulations.
In particular,

e The gauge-invariance of the magnetic monopole is guaranteed from the begining
by construction.

e The direct relevance of the magnetic monopole to the Wilson loop and “Abelian”
dominance in the operator level are manifest via a non-Abelian Stokes theore.

The second method have already reproduced all esssential results obtained so far by
the first method, i.e., Abelian projection by 't Hooft.

e “Abelian " dominance in the string tension (Wilson loop average)

e magnetic monopole dominance in the string tension (Wilson loop average)
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The first method (Abelian projection) is included as a special limit of the second
mehtod (Cho & Faddeev-Niemi). The first method is nothing but a gauge-fixed version
of the second method.

e Extending our results to SU(3):

- Continuum formulation

[K.-l. K., arXiv:0801.1274, Phys.Rev.D 77, 085029 (2008)]

[K.-I. K., Shinohara & Murakami, arXiv:0803.0176, Prog.Theor.Phys.120, 1-50 (2008)]
For SU(3), there are two options for introducing the color field.

For the Wilson loop in the fundamental rep.,

n € G/H = SU(3)/U(2) £ SU(3)/[U(1) x U(1)]

Quarks in the fundamental rep. can be confined by a non-Abelian magnetic monopole
described by a single color field for any N in SU(NN) against the Abelian projection
scenario.

- Lattice formulation [K-1.LK., Shibata, Shinohara, Murakami, Kato and Ito,
arXiv:0803.2451 [hep-lat], Phys.Lett.B669, 107-118 (2008)]
Preliminary numerical simulations e-Print: arXiv:0810.0956 [hep-lat] (Lattice 2008)

non-Abelian magnetic monopole dominance in the string tension e



e color confinement

It is desirable to make clear the relationship between color confinement in general
and quark confinement based on dual superconductor picture. Our approach opens a
path to investigate this issue, since we have recovered color symmetry in this approach
of deriving the dual superconductor picture.

Thank you for your attention!
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