Recent progress in quark confinement based on dual superconductor picture (Gauge-invariant magnetic monopole dominance)

Kei-Ichi Kondo*

(Univ. of Tokyo/Chiba Univ., Japan)

Collaborators:

- A. Shibata (KEK, Computing Research Center, Japan)
- S. Kato (Takamatsu Natl. Coll. Tech., Japan)
- S. Ito (Nagano Natl. Coll. Tech., Japan)
- N. Fukui (Chiba Univ., Japan)
- T. Shinohara (Chiba Univ., Japan)

^{*} On sabbatical leave of absence from Chiba University

Chapter: Introduction Magnetic monopoles in gauge field theories

§ Dual superconductor picture for confinement

§ Magnetic monopoles in gauge field theories

- 1) In Electro-magetism,
 - Dirac magnetic monopole
- 2) In non-Abelian gauge theory with (adjoint) matter fields, e.g., Georgi-Glashow model, 't Hooft-Polyakov magnetic monopole
- 3) How can the magnetic monopole be defined in pure non-Abelian gauge theory (in absence of matter fields)?
- The magnetic monopole is a basic ingredient in dual superconductivity picture [Nambu 1974, Mandelstam 1976, 't Hooft 1978] for understanding quark confinement in QCD.
 - 1. 't Hooft (Abelian projection, partial gauge fixing) [Nucl. Phys. B190, 455 (1981)]
 - 2. Cho & Faddeev-Niemi (field decomposition, new variables) [Phys. Rev. D21, 1080 (1980)] [Phys. Rev. Lett. 82, 1624 (1999)]...

The purpose of this talk is to give a short review of recent developments on the second method from the viewpoint of quark confinement.

In particular, I emphasize some aspects of the second method superior to the first one.

§ 't Hooft Abelian projection and magnetic monopole

Consider the (pure) Yang-Mills theory with the gauge group G = SU(N) on \mathbb{R}^D .

(1) Let $\chi(x)$ be a Lie-algebra \mathscr{G} -valued functional of the Yang-Mills field $\mathscr{A}_{\mu}(x)$. Suppose that it transforms in the adjoint representation under the gauge transformation:

$$\chi(x) \to \chi'(x) := U(x)\chi(x)U^{\dagger}(x) \in \mathscr{G} = su(N), \quad U(x) \in G, \quad x \in \mathbb{R}^{D}.$$
 (1)

(2) Diagonalize the Hermitian $\chi(x)$ by choosing a suitable unitary matrix $U(x) \in G$

$$\chi'(x) = \operatorname{diag}(\lambda_1(x), \lambda_2(x), \cdots, \lambda_N(x)). \tag{2}$$

This is regarded as a partial gauge fixing, if $\chi(x)$ is a gauge-dependent quantity.

(2a) At non-degenerate points $x \in \mathbb{R}^D$ of spacetime, the gauge group G is partially fixed, leaving a subgroup H unfixed, i.e., a partial gauge fixing:

$$G = SU(N) \to H = U(1)^{N-1} \times \text{Weyl.}$$
 (3)

(2b) At degenerate points $x_0 \in \mathbb{R}^D$, $\lambda_j(x_0) = \lambda_k(x_0)$ $(j \neq k = 1, \dots, N)$, a magnetic monopole appears in the diagonal part of $\mathscr{A}_{\mu}(x)$ (gauge fixing defects).

G=SU(N) non-Abelian Yang-Mills field $o H=U(1)^{N-1}$ Abelian gauge field + magnetic monopoles + electrically charged matter field ['t Hooft, 1981] e.g., $\chi(x)=\mathscr{F}_{12}(x)$, $\mathscr{F}_{\mu\nu}^2$, $\mathscr{F}_{\mu\nu}(x)D^2\mathscr{F}_{\mu\nu}(x)$

For the SU(2) matrix $U(x)=e^{-i\gamma(x)\sigma_3(x)/2}e^{-i\beta(x)\sigma_2(x)/2}e^{-i\alpha(x)\sigma_3(x)/2}$ diagonalizing the Hermitian $\chi(x)$, the diagonal part of the gauge transformed Yang-Mills field

$$ig^{-1}U(x)\partial_{\mu}U^{\dagger}(x) = g^{-1}\frac{1}{2}\begin{pmatrix} \cos\beta\partial_{\mu}\alpha + \partial_{\mu}\gamma & [-i\partial_{\mu}\beta - \sin\beta\partial_{\mu}\gamma]e^{i\alpha} \\ [i\partial_{\mu}\beta - \sin\beta\partial_{\mu}\gamma]e^{i\alpha} & -[\cos\beta\partial_{\mu}\alpha + \partial_{\mu}\gamma] \end{pmatrix} = \mathscr{V}_{\mu}^{A}\sigma_{A}/2$$
(4)

contains the singular potential of the Dirac type.

$$\mathscr{V}_{\mu}^{3} = g^{-1}[\cos\beta\partial_{\mu}\alpha + \partial_{\mu}\gamma]. \tag{5}$$

The D=3 case agrees with the Dirac magnetic potential by choosing $\alpha=\varphi$, $\beta=\theta$, $\gamma=\gamma(\varphi)$ (expressing the degenerate point)

$$\mathscr{V}_{\mu}^{3} = \frac{g^{-1}\cos\theta + \partial_{\varphi}\gamma}{\sin\theta}\mathbf{e}_{\varphi} \tag{6}$$

Remarkable achievements in Abelian projection (Maximal Abelian gauge)

- Abelian dominance in the string tension
 - T. Suzuki and I. Yotsuyanagi, Phys.Rev.D42:4257-4260,1990.
- Magentic monopole dominance in the string tension
- J.D.Stack, S.D.Neiman, R.J.Wensley, Phys.Rev.D50:3399-3405,1994. hep-lat/9404014
 - H. Shiba and T. Suzuki, Phys.Lett.B333:461-466,1994. hep-lat/9404015
- Gribov copy effects
 - G.S. Bali, V. Bornyakov, M. Muller-Preussker and K. Schilling, Phys.Rev.D54:2863-2875,1996. hep-lat/9603012
- Off-diagonal gluon mass generation
 - K. Amemiya and H. Suganuma, Phys.Rev.D60:114509,1999. hep-lat/9811035
- Asymptotic freedom in an effective theory of dual Ginzburg-Landau type
- M. Quandt and H. Reinhardt, Int.J.Mod.Phys.A13:4049-4076,1998. hep-th/9707185
 - K.-I. Kondo, Phys.Rev.D57:7467-7487,1998. hep-th/9709109
- Hidden SUSY in a renormalizable MAG and dimensional reduction
 - K.-I. Kondo, Phys.Rev.D58:105019,1998. hep-th/9801024
 - K.-I. Kondo, Phys.Rev.D58:105016,1998. hep-th/9805153 :

§ Maximal Abelian gauge (MAG) and magnetic monopoles

• quark confinement follows from the area law of the Wilson loop average [Wilson, 1974]

Non-Abelian Wilson loop
$$\left\langle \operatorname{tr} \left[\mathscr{P} \exp \left\{ ig \oint_C dx^{\mu} \mathscr{A}_{\mu}(x) \right\} \right] \right\rangle_{\mathrm{YM}}^{\mathrm{no \ GF}} \sim e^{-\sigma_{NA}|S|},$$
 (1)

• Numerical simulation on the lattice after imposing the Maximal Abelian gauge (MAG):

for the SU(2) Cartan decomposition:
$$\mathscr{A}_{\mu}=A_{\mu}^{a}\frac{\sigma^{a}}{2}+A_{\mu}^{3}\frac{\sigma^{3}}{2}\;(a=1,2),\;\mathscr{A}_{\mu}\to A_{\mu}^{3}\frac{\sigma^{3}}{2}$$

Abelian-projected Wilson loop
$$\left\langle \exp\left\{ig\oint_C dx^\mu A_\mu^3(x)\right\}\right\rangle_{\rm YM}^{\rm MAG} \sim e^{-\sigma_{Abel}|S|}$$
 !? (2)

The continuum form of MAG is $[\partial_{\mu}\delta^{ab}-g\epsilon^{ab3}A^3_{\mu}(x)]A^b_{\mu}(x)=0$ (a,b=1,2).

· Abelian dominance $\Leftrightarrow \sigma_{Abel} \sim \sigma_{NA} \ (92\pm4)\% \ [$ Suzuki & Yotsuyanagi,PRD42,4257,1990]

$$A_{\mu}^{3} = \text{Monopole part} + \text{Photon part},$$
 (3)

· Monopole dominance $\Leftrightarrow \sigma_{monopole} \sim \sigma_{Abel}$ (95)% [Stack, Neiman and Wensley, hep-lat/9404014][Shiba & Suzuki, hep-lat/9404015]

Maximal Abelian gauge \equiv a partial gauge fixing $G=SU(N)\to H=U(1)^{N-1}$: the gauge freedom $\mathscr{A}_{\mu}(x)\to\mathscr{A}_{\mu}^{\Omega}(x):=\Omega(x)[\mathscr{A}_{\mu}(x)+ig^{-1}\partial_{\mu}]\Omega^{-1}(x)$ is used to transform the gauge variable as close as possible to the Abelian components for the maximal torus subgroup H of the gauge group G.

The magnetic monopole of the Dirac type appears in the diagonal part A^3_{μ} of $\mathscr{A}_{\mu}(x)$ as defects of gauge fixing procedure.

MAG is given by minimizing the function $F_{\rm MAG}$ w.r.t. the gauge transformation Ω .

$$\min_{\Omega} F_{\text{MAG}}[\mathscr{A}^{\Omega}], \quad F_{\text{MAG}}[\mathscr{A}] := \frac{1}{2} (A_{\mu}^{a}, A_{\mu}^{a}) = \int d^{D}x \frac{1}{2} A_{\mu}^{a}(x) A_{\mu}^{a}(x) \quad (a = 1, 2) \quad (4)$$

$$\delta_{\omega} F_{\text{MAG}} = (\delta_{\omega} A_{\mu}^{a}, A_{\mu}^{a}) = ((D_{\mu}[A]\omega)^{a}, A_{\mu}^{a}) = -(\omega^{a}, D_{\mu}^{ab}[A^{3}]A_{\mu}^{b})$$
 (5)

The residual U(1) exists.

cf. Lorentz gauge (Landau gauge) $G = SU(N) \rightarrow H = \{0\}$:

$$\min_{\Omega} F_{L}[\mathscr{A}^{\Omega}], \quad F_{L}[\mathscr{A}] := \frac{1}{2} (\mathscr{A}_{\mu}^{A}, \mathscr{A}_{\mu}^{A}) = \int d^{D}x \frac{1}{2} \mathscr{A}_{\mu}^{A}(x) \mathscr{A}_{\mu}^{A}(x) \quad (A = 1, 2, 3) \quad (6)$$

$$\delta_{\omega} F_{L} = (\delta_{\omega} \mathscr{A}_{\mu}^{A}, \mathscr{A}_{\mu}^{A}) = ((D_{\mu}[\mathscr{A}]\omega)^{A}, \mathscr{A}_{\mu}^{A}) = -(\omega^{A}, (D_{\mu}[\mathscr{A}]\mathscr{A}_{\mu})^{A}) = -(\omega^{A}, \partial_{\mu} \mathscr{A}_{\mu}^{A})$$

$$\delta_{\omega}^{2} F_{L} = -(\omega^{A}, \partial_{\mu} \delta_{\omega} \mathscr{A}_{\mu}^{A}) = (\omega^{A}, (-\partial_{\mu} D_{\mu}[\mathscr{A}])^{AB} \omega^{B}) \quad \text{FP operator}$$

• Problems:

- The naive Abelian projection and the MAG break color symmetry explicitly.
- Abelian dominance in the string tension ... has never been observed in gauge fixings other than MAG.

The criticism: The magentic monopole and the resulting dual superconductivity in Yang-Mills theory might be a gauge artifact?

In order to establish the gauge-invariant dual superconductivity in Yang-Mills theory, we must solve the questions:

- 1. How to extract the "Abelian" part responsible for dual superconductivity from the non-Abelian gauge theory in the gauge-independent way (without losing characteristic features of non-Abelian gauge theory, e.g., asymptotic freedom).
- 2. How to define the magnetic monopole to be condensed in Yang-Mills theory even in absence of any matter field in the gauge-invariant way (cf. Georgi-Glashow model).

The second method $a\ la$ Cho-Faddev-Niemi sweeps away all the criticism.

§ Cho-Faddeev-Niemi decomposition

Question: If we find the decomposition of the SU(2) gauge field $\mathbb{A}_{\mu}(x) = \mathbb{A}_{\mu}^{A}(x)\sigma^{A}/2$,

$$\mathbb{A}_{\mu}(x) = \mathbb{V}_{\mu}(x) + \mathbb{X}_{\mu}(x),$$

such that the field strength $\mathbb{F}_{\mu\nu}[\mathbb{V}]$ is proportional to the unit field \mathbf{n} (i.e., $\mathbf{n}\cdot\mathbf{n}=1$):

$$\mathbb{F}_{\mu\nu}[\mathbb{V}](x) := \partial_{\mu}\mathbb{V}_{\nu}(x) - \partial_{\nu}\mathbb{V}_{\mu}(x) + g\mathbb{V}_{\mu}(x) \times \mathbb{V}_{\nu}(x) = f_{\mu\nu}(x)\mathbf{n}(x)$$

and that $\mathbb{F}_{\mu\nu}[\mathbb{V}]$ and $\mathbf n$ transform in the adjoint rep. under the gauge transformation:

$$\mathbb{F}_{\mu\nu}[\mathbb{V}](x) \to U(x)\mathbb{F}_{\mu\nu}[\mathbb{V}](x)U^{\dagger}(x), \quad \mathbf{n}(x) \to U(x)\mathbf{n}(x)U^{\dagger}(x),$$

Then we can introduce a gauge-invariant magnetic monopole current by

$$k_{\mu}(x) = \partial_{\nu}^* f_{\mu\nu}(x) = (1/2)\epsilon_{\mu\nu\rho\sigma}\partial_{\nu}f^{\rho\sigma}(x),$$

since $f_{\mu\nu}$ is gauge invariant:

$$f_{\mu\nu} := \mathbf{n} \cdot \mathbb{F}_{\mu\nu}[\mathbb{V}] \to f_{\mu\nu}$$

• Magnetic charge quantization: The non-vanishing magnetic charge is obtained without introducing Dirac singularities in c_{μ} . Even in the classical level, the magnetic charge obeys the quantization condition of Dirac type.

$$\boldsymbol{n}(x) := \begin{pmatrix} n^1(x) \\ n^2(x) \\ n^3(x) \end{pmatrix} = \begin{pmatrix} \sin\beta(x)\cos\alpha(x) \\ \sin\beta(x)\sin\alpha(x) \\ \cos\beta(x) \end{pmatrix} \in SU(2)/U(2) \overset{\boldsymbol{o}}{\rightleftharpoons} \overset{\boldsymbol{o}}{\searrow} \overset{\boldsymbol{o}}{\Longrightarrow} \overset{\boldsymbol{o}$$

The magnetic charge g_m is nothing but a number of times S^2_{int} is wrapped by a mapping from S^2_{phys} to S^2_{int} . $\left[\Pi_2(SU(2)/U(1)) = \Pi_2(S^2) = \mathbb{Z}\right]$

$$g_{m} := \int d^{3}x k_{0} = \int d^{3}x \partial_{i} \left(\frac{1}{2} \epsilon^{ijk} f_{jk} \right)$$

$$= \oint_{S_{phy}^{2}} d\sigma_{jk} g^{-1} \boldsymbol{n} \cdot (\partial_{j} \boldsymbol{n} \times \partial_{k} \boldsymbol{n}) = g^{-1} \oint_{S_{phy}^{2}} d\sigma_{jk} \sin \beta \frac{\partial(\beta, \alpha)}{\partial(x^{j}, x^{k})}$$

$$= g^{-1} \oint_{S_{int}^{2}} \sin \beta d\beta d\alpha = 4\pi g^{-1} \boldsymbol{n} \quad (n = 0, \pm 1, \cdots)$$

where $\frac{\partial(\beta,\alpha)}{\partial(x^{\mu},x^{\nu})}$ is the Jacobian: $(x^{\mu},x^{\nu})\in S^2_{phy}\to (\beta,\alpha)\in S^2_{int}\simeq SU(2)/U(1)$ and S^2_{int} is a surface of a unit sphere with area 4π .

Is such a decomposition (spin-charge separation) possible?

Yes!: The answer to this question was given by Cho (1980) [Duan and De (1979)] as

$$\mathbb{A}_{\mu}(x) = \mathbb{V}_{\mu}(x) + \mathbb{X}_{\mu}(x),$$

$$\mathbb{V}_{\mu}(x) = c_{\mu}(x)\mathbf{n}(x) + g^{-1}\partial_{\mu}\mathbf{n}(x) \times \mathbf{n}(x) (\leftarrow \text{Cho connection})$$

$$c_{\mu}(x) = \mathbb{A}_{\mu}(x) \cdot \mathbf{n}(x),$$

$$\mathbb{X}_{\mu}(x) = g^{-1}\mathbf{n}(x) \times D_{\mu}[\mathbb{A}]\mathbf{n}(x) \quad (D_{\mu}[\mathbb{A}] := \partial_{\mu} + g\mathbb{A}_{\mu} \times)$$

The field strength $\mathbb{F}_{\mu\nu}[\mathbb{V}]$ is found to be proportional to \mathbf{n} :

$$\mathbb{F}_{\mu\nu}[\mathbb{V}] := \partial_{\mu}\mathbb{V}_{\nu} - \partial_{\nu}\mathbb{V}_{\mu} + g\mathbb{V}_{\mu} \times \mathbb{V}_{\nu} = \mathbf{n}[\partial_{\mu}c_{\nu} - \partial_{\nu}c_{\mu} - g^{-1}\mathbf{n} \cdot (\partial_{\mu}\mathbf{n} \times \partial_{\nu}\mathbf{n})]$$

Then we have a gauge-invariant field strength:

$$f_{\mu\nu} := \mathbf{n} \cdot \mathbb{F}_{\mu\nu}[\mathbb{V}] = \partial_{\mu}c_{\nu} - \partial_{\nu}c_{\mu} - g^{-1}\mathbf{n} \cdot (\partial_{\mu}\mathbf{n} \times \partial_{\nu}\mathbf{n})$$

Note: Remember this is the same form as the 'tHooft-Polyakov tensor for the magnetic monopole, if the color unit field is the normalized adjoint scalar field in the Georgi–Glashow model: $\mathbf{n}^A(x) \leftrightarrow \hat{\phi}^A(x) := \phi^A(x)/||\phi(x)||$.

The role of the color field $\boldsymbol{n}(x) \in G/\tilde{H}$:

- The color field n(x) carries topological defects without introducing singularities in the gauge potential, e.g., magnetic monopole, knot soliton, ...
- The color field n(x) recovers color symmetry which will be lost in the conventional Abelian projection, the MA gauge.

$$\mathbf{n}(x) = (0, 0, 1) \Longrightarrow \mathbb{A}_{\mu}(x) = \mathbb{V}_{\mu}(x) + \mathbb{X}_{\mu}(x),$$

$$\mathbb{V}_{\mu}(x) = (0, 0, c_{\mu}(x)), \quad c_{\mu}(x) = \mathbb{A}^{3}_{\mu}(x),$$

$$\mathbb{X}_{\mu}(x) = (\mathbb{A}^{1}_{\mu}(x), \mathbb{A}^{2}_{\mu}(x), 0)$$

Suppose that $\mathbf{n}(x)$ is given as a functional of $\mathbb{A}_{\mu}(x)$, i.e., $\mathbf{n}(x) = \mathbf{n}_{\mathscr{A}}(x)$. Then, by solving two defining equations:

- (i) covariant constantness (integrability) of color field \mathbf{n} in \mathbb{V}_{μ} : $D_{\mu}[\mathbb{V}]\mathbf{n}(x) = 0$
- (ii) orthogonality of $\mathbb{X}_{\mu}(x)$ to $\mathbf{n}(x)$: $\mathbb{X}_{\mu}(x) \cdot \mathbf{n}(x) = 0$ \mathbb{V}_{μ} and \mathbb{X}_{μ} are uniquely determined by $\mathbb{A}_{\mu}(x)$ and \mathbf{n} .

Chapter:
Reformulating
Yang-Mills theory
based on change of variables

§ Reformulation in terms of new variables

We wish to obtain a new reformulation of Yang-Mills theory:

SU(2) Yang-Mills theory A reformulated SU(2) Yang-Mills theory written in terms of \iff written in terms of new variables: $\mathbb{A}^A_\mu(x) \; (A=1,2,3)$ change of variables $n^A(x), c_\mu(x), \mathbb{X}^A_\mu(x) \; (A=1,2,3)$

The following issues must be fixed for two theories to be equipollent in the quantum level:

1. How $\mathbf{n}(x)$ is determined from $\mathbb{A}_{\mu}(x)$?

[This was assumed so far. We must give a procedure to achieve this.]

2. How the mismatch between two set of variables is solved?

[The new variables have two extra degrees of freedom which should be eliminated by imposing appropriate constraints.]

• Counting the degrees of freedom: D-dim. SU(2) Yang-Mills before $\parallel \mathscr{A}_{n}^{A}$: 3D

before \mathscr{A}_{μ}^{A} : 3D \qquad total 3D after n^{A} : n^{A} : n

3. How the gauge transformation properties of the new variables are determined to achieve the expected one?

[If $\mathbf{n}(x)$ transforms in the adjoint representation under the gauge transformation, $f_{\mu\nu}(x)$ becomes gauge invariant.]

All of these problems have been simultaneously solved as follows.

• The reduction of enlarged gauge symmetry $G \times G/\tilde{H}$ to the original one G: [K.K.,Murakami & Shinohara, hep-th/0504107, Prog.Theor.Phys.115, 201-216 (2006)] For a given Yang-Mills field $\mathbf{A}_{\mu}(x)$, the color field $\mathbf{n}(x)$ is obtained by minimizing

$$F_{\rm rc} = \int d^D x \frac{1}{2} (D_{\mu}[\mathbf{A}] \mathbf{n}(x)) \cdot (D_{\mu}[\mathbf{A}] \mathbf{n}(x))$$

• The Jacobian associated with the change of variables: [K.-I.K., Phys.Rev.D74, 125003 (2006)]

$$[d\mathscr{A}] = [dn][dc][dX]J$$

J=1 by a suitable choice of the basis for X_{μ}^{A}

A new viewpoint of the Yang-Mills theory

$$\delta_{\theta} \mathbf{n}(x) = g\mathbf{n}(x) \times \theta(x) = g\mathbf{n}(x) \times \theta_{\perp}(x)$$

By introducing a color field, the original Yang-Mills (YM) theory is enlarged to the master Yang-Mills (M-YM) theory with the enlarged gauge symmetry \tilde{G} . By imposing the reduction condition, it is reduced to the equipollent Yang-Mills theory (YM') with the gauge symmetry G'. The overall gauge fixing condition can be imposed without breaking color symmetry, e.g. Landau gauge.

[K.-I.K., Murakami & Shinohara, hep-th/0504107; Prog.Theor.Phys. **115**, 201 (2006).] [K.-I.K., Murakami & Shinohara, hep-th/0504198; Eur.Phys.C**42**, 475 (2005)](BRST)

As a reduction condition, we propose minimizing the functional $\int d^D x \frac{1}{2} g^2 \mathbb{X}_{\mu}^2$ w.r.t. enlarged gauge transformations:

$$\min_{\omega,\theta} \int d^D x \frac{1}{2} g^2 \mathbb{X}_{\mu}^2 = \min_{\omega,\theta} \int d^D x (D_{\mu}[\mathbb{A}] \boldsymbol{n})^2. \tag{1}$$

Then the infinitesimal variation reads

$$0 = \delta_{\omega,\theta} \int d^D x \frac{1}{2} \mathbb{X}_{\mu}^2 = -\int d^D x (\boldsymbol{\omega}_{\perp} - \boldsymbol{\theta}_{\perp}) \cdot D_{\mu}[\mathbb{V}] \mathbb{X}_{\mu}. \tag{2}$$

For $\omega_{\perp} \neq \theta_{\perp}$, the minimizing condition yields the differential form:

$$\chi := D_{\mu}[\mathbb{V}]\mathbb{X}_{\mu} \equiv 0. \tag{3}$$

This denotes two conditions, since $n(x) \cdot \chi(x) = 0$ (following from $n(x) \cdot \chi(x) = 0$). For $\omega_{\perp} = \theta_{\perp}$, the minimizing condition imposes no constraint.

Therefore, if we impose the reduction condition to the master-Yang–Mills theory, $\tilde{G}:=SU(2)_\omega\times [SU(2)/U(1)]_\theta$ is broken down to the (diagonal) subgroup: G'=SU(2)'.

We have the equipollent Yang-Mills theory with the local gauge symmetry $G':=SU(2)_{local}^{\omega'}$ with $\omega'(x)=(\omega_{||}(x),\omega_{\perp}(x)=\theta_{\perp}(x))$.

$$G = SU(2)_{local}^{\omega} \uparrow \tilde{G} := SU(2)_{local}^{\omega} \times [SU(2)/U(1)]_{local}^{\theta} \downarrow G' := SU(2)_{local}^{\omega'}$$
(4)

The reduction condition has another expression in the differential form:

$$gD_{\mu}[\mathbb{V}]\mathbb{X}_{\mu} = gD_{\mu}[\mathbb{A}]\mathbb{X}_{\mu} = D_{\mu}[\mathbb{A}]\{\mathbf{n} \times (D_{\mu}[\mathbb{A}]\mathbf{n})\} = \mathbf{n} \times (D_{\mu}[\mathbb{A}]D_{\mu}[\mathbb{A}]\mathbf{n}) = 0 \quad (5)$$

Thus, $\mathbf{n}(x)$ is determined by solving this equation for a given $\mathbb{A}_{\mu}(x)$. This determines the color field $\mathbf{n}(x)$ as a functional of a given configuration of $\mathbb{A}_{\mu}(x)$.

Comparison between MAG and reduction condition:

Old MAG leaves local $U(1)_{local} (\subset G = SU(2)_{local})$ and global $U(1)_{global}$ unbroken, but breaks global $SU(2)_{global}$.

The reduction condition leaves local $G'=SU(2)_{local}$ and global $SU(2)_{global}$ unbroken (color rotation invariant)

The MAG in the original formulation is equivalent to set $n(x) \equiv (0,0,1)$ (a gauge fixing) in the new formulation.

• Gauge transformation of new variables:

$$\delta_{\omega'}\mathbf{n} = g\mathbf{n} \times \boldsymbol{\omega'},\tag{6a}$$

$$\delta_{\omega'}c_{\mu} = \mathbf{n} \cdot \partial_{\mu}\omega', \tag{6b}$$

$$\delta_{\omega'} \mathbb{X}_{\mu} = g \mathbb{X}_{\mu} \times \boldsymbol{\omega'}, \tag{6c}$$

$$\Longrightarrow \delta_{\omega'} \mathbb{V}_{\mu} = D_{\mu}[\mathbb{V}] \boldsymbol{\omega'} \Longrightarrow \delta_{\omega'} \mathbb{A}_{\mu} = D_{\mu}[\mathbb{A}] \boldsymbol{\omega'}, \tag{6d}$$

$$\Longrightarrow \delta_{\omega'} \mathbb{F}_{\mu\nu} [\mathbb{V}] = g \mathbb{F}_{\mu\nu} [\mathbb{V}] \times \boldsymbol{\omega}', \tag{6e}$$

Hence, the inner product $f_{\mu\nu}=\mathbf{n}\cdot\mathbb{F}_{\mu\nu}[\mathbb{V}]$ is $\mathsf{SU}(2)'$ invariant.

$$\delta_{\omega'} f_{\mu\nu} = 0, \quad f_{\mu\nu} = \partial_{\mu} c_{\nu} - \partial_{\nu} c_{\mu} - g^{-1} \mathbf{n} \cdot (\partial_{\mu} \mathbf{n} \times \partial_{\nu} \mathbf{n}), \quad c_{\mu} = \mathbf{n} \cdot \mathbb{A}_{\mu}.$$
 (7)

and $f_{\mu\nu}^2 = \mathbb{F}_{\mu\nu}[\mathbb{V}]^2$ is SU(2)' invariant: SU(2) invariant "Abelian" gauge theory!

$$\delta_{\omega'} \mathbb{F}_{\mu\nu} [\mathbb{V}]^2 = \delta_{\omega'} f_{\mu\nu}^2 = 0. \tag{8}$$

Therefore, we can define the gauge-invariant monopole current by $k^{\mu}(x):=\partial_{\nu}*f^{\mu\nu}(x)=(1/2)\epsilon^{\mu\nu\rho\sigma}\partial_{\nu}f_{\rho\sigma}(x)$, Moreover,

$$\delta_{\omega'} \mathbb{X}_{\mu}^2 = 0. \tag{9}$$

Chapter:
Wilson loop
and
magnetic monopole

§ Wilson loop and magnetic monopole

Non-Abelian Stokes theorem for the Wilson loop

The Wilson loop operator for SU(2) Yang-Mills connection

$$W_C[\mathscr{A}] := \operatorname{tr} \left[\mathscr{P} \exp \left\{ ig \oint_C dx^{\mu} \mathscr{A}_{\mu}(x) \right\} \right] / \operatorname{tr}(\mathbf{1}), \quad \mathscr{A}_{\mu}(x) = \mathscr{A}_{\mu}^A(x) \sigma^A / 2$$

The path-ordering \mathscr{P} is removed by a non-Abelian Stokes theorem for the Wilson loop operator in the J representation of SU(2): $J=1/2,1,3/2,2,\cdots$ [Diakonov & Petrov, PLB 224, 131 (1989); hep-th/9606104]

[Diakonov & Fetrov, FED 224, 131 (1909), hep-th/9000104]

$$\begin{split} W_C[\mathscr{A}] &:= \int d\mu_S(\boldsymbol{n}) \exp\left\{iJg\int_{\Sigma:\partial\Sigma=C} dS^{\mu\nu}f_{\mu\nu}\right\}, \text{ no path-ordering} \\ f_{\mu\nu}(x) &:= \partial_{\mu}[\mathscr{A}_{\nu}^A(x)\boldsymbol{n}^A(x)] - \partial_{\nu}[\mathscr{A}_{\mu}^A(x)\boldsymbol{n}^A(x)] - g^{-1}\epsilon^{ABC}\boldsymbol{n}^A(x)\partial_{\mu}\boldsymbol{n}^B(x)\partial_{\nu}\boldsymbol{n}^C(x), \\ n^A(x)\sigma^A &:= U^{\dagger}(x)\sigma^3U(x), \quad U(x) \in SU(2) \quad (A,B,C \in \{1,2,3\}) \end{split}$$

and $d\mu_S(n)$ is the product measure of an invariant measure on SU(2)/U(1) over S:

$$d\mu_S(\mathbf{n}) := \prod_{x \in S} d\mu(\mathbf{n}(x)), \quad d\mu(\mathbf{n}(x)) = \frac{2J+1}{4\pi} \delta(\mathbf{n}^A(x)\mathbf{n}^A(x)-1)d^3\mathbf{n}(x).$$

The geometric and topological meaning of the Wilson loop operator
 [K.-I.K., arXiv:0801.1274, Phys.Rev.D77:085029 (2008)] [K.-I.K., hep-th/0009152]

$$\begin{split} W_C[\mathscr{A}] &= \int d\mu_\Sigma(U) \exp\left\{iJg(\Xi_\Sigma,k) + iJg(N_\Sigma,j)\right\}, \quad C = \partial \Sigma \\ k &:= \delta^* f = {}^* df, \quad \Xi_\Sigma := \delta^* \Theta_\Sigma \triangle^{-1} \leftarrow \quad \text{(D-3)-forms} \\ j &:= \delta f, \quad N_\Sigma := \delta \Theta_\Sigma \triangle^{-1} \leftarrow \quad \text{1-forms (D-indep.)} \\ \Theta_\Sigma^{\mu\nu}(x) &= \int_\Sigma d^2 S^{\mu\nu}(x(\sigma)) \delta^D(x - x(\sigma)) \end{split}$$

k and j are gauge invariant and conserved currents, $\delta k = 0 = \delta j$.

The magnetic monopole is a topological object of co-dimension 3.

D=3: 0-dimensional point defect \rightarrow point-like agnetic monopole (cf. Wu-Yang type)

D=4: 1-dimensional line defect \rightarrow magnetic monopole loop (closed loop)

We do not need to use the Abelian projection ['t Hooft,1981] to define magnetic monopoles in Yang-Mills theory!

The Wilson loop operator knows the (gauge-invariant) magnetic monopole!

For D=3,

$$k(x) = \frac{1}{2} \epsilon^{jk\ell} \partial_{\ell} f_{jk}(x) = \rho_m(x)$$

denotes the magnetic charge density at x, and

$$\Xi_{\Sigma}(x) = \Omega_{\Sigma}(x)/(4\pi)$$

agrees with the (normalized) solid angle at the point x subtended by the surface Σ bounding the Wilson loop C. The magnetic part reads

$$W_{\mathscr{A}}^{m} := \exp\left\{iJg(\Xi_{\Sigma}, k)\right\} = \exp\left\{iJg\int d^{3}x \rho_{m}(x) \frac{\Omega_{\Sigma}(x)}{4\pi}\right\}$$

The magnetic charge q_m obeys the Dirac-like quantization condition :

$$q_m := \int d^3x \rho_m(x) = 4\pi g^{-1} n \quad (n \in \mathbb{Z})$$

[Proof] The non-Abelian Stokes theorem does not depend on the surface Σ chosen for spanning the surface bounded by the loop C,

See [K.-I.K., arXiv0801.1274, Phys.Rev.D77:085029 (2008)]

For D=4, the magnetic part reads using $\Omega^{\mu}_{\Sigma}(x)$ is the 4-dim. solid angle

$$W_{\mathscr{A}}^{m} = \exp\left\{iJg\int d^{4}x\Omega_{\Sigma}^{\mu}(x)k^{\mu}(x)\right\}$$

Suppose the existence of the ensemble of magnetic monopole loops C'_a ,

$$k^{\mu}(x) = \sum_{a=1}^{n} q_m^a \oint_{C_a'} dy_a^{\mu} \delta^{(4)}(x - x_a), \quad q_m^a = 4\pi g^{-1} n_a$$

$$\Longrightarrow W_{\mathscr{A}}^m = \exp\left\{iJg\sum_{a=1}^{n} q_m^a L(\Sigma, C_a')\right\} = \exp\left\{4\pi Ji\sum_{a=1}^{n} n_a L(\Sigma, C_a')\right\}, \quad n_a \in \mathbb{Z}$$

where $L(\Sigma, C')$ is the linking number between the surface Σ and the curve C'.

$$L(\Sigma,C'):=\oint_{C'}dy^{\mu}(\tau)\Xi^{\mu}_{\Sigma}(y(\tau)) \qquad \qquad \sum$$

where the curve C' is identified with the trajectory of a magnetic monopole and the surface Σ with the world sheet of a hadron (meson) string for a quark-antiquark pair.

Chapter: Lattice reformulation of Yang-Mills theory and numerical simulations

§ Lattice formulation and numerical simulations

Non-compact lattice formulation

[Kato, K.K., Murakami, Shibata, Shinohara and Ito, hep-lat/0509069, Phys.Lett.B 632, 326-332 (2006).]

- \cdot generation of color field configuration o Figure
- \cdot restoration of color symmetry (global gauge symmetry) o Figure
- · gauge-invariant definition of magnetic monopole charge

• Compact lattice formulation:

[Ito, Kato, K.K., Murakami, Shibata and Shinohara, hep-lat/0604016, Phys.Lett.B 645, 67-74 (2007).]

- · magnetic charge quantization subject to Dirac condition $gg_m/(4\pi)\in\mathbb{Z} o \mathsf{Table}$
- \cdot magnetic monopole dominance in the string tension o Table

[Shibata, Kato, K.K., Murakami, Shinohara and Ito, arXiv:0706.2529[hep-lat], Phys. Lett. B653, 101 (2007).]

 $M_X=1.2\sim 1.3 {
m GeV}~(M_A=0.6 {
m GeV}?$ in the Landau gauge) ightarrow Figure

• color field configuration

"hist.txt" matrix

Figure 1: hedgehog (?) configurations of color field in SU(2) Yang-Mills theory

Color symmetry (restoration) and the dynamical color field

Figure 2: The plots of two-point correlation functions $\langle n_x^A n_0^B \rangle$ for A, B = 1, 2, 3 along the lattice axis on the 16^4 lattice at $\beta = 2.4$.

[Kato, K.K., Murakami, Shibata, Shinohara and Ito, hep-lat/0509069]

$$\langle n_x^A \rangle = 0 \quad (A = 1, 2, 3).$$

 $\langle n_x^A n_0^B \rangle = \delta^{AB} D(x) \quad (A, B = 1, 2, 3).$

The global SU(2) symmetry (color symmetry) is unbroken in our simulations.

• Magnetic charge quantization:

$$K(s,\mu) := 2\pi k_{\mu}(s) = \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} \partial_{\nu} \bar{\Theta}_{\rho\sigma}(x+\mu),$$

Table 1: Histogram of the magnetic charge (value of $K(s,\mu)$) distribution for new and old monopoles on 8^4 lattice at $\beta=2.35$.

Charge	Number(new monnopole)	Number(old monopole)
-7.5∼-6.5	0	0
$-6.5\sim -5.5$	299	0
$-5.5\sim$ -4.5	0	1
-4.5∼-3.5	0	19
-3.5~-2.5	0	52
-2.5∼-1.5	0	149
$-1.5\sim$ -0.5	0	1086
$-0.5 \sim 0.5$	15786	13801
$0.5 {\sim} 1.5$	0	1035
$1.5 \sim 2.5$	0	173
$2.5 \sim 3.5$	0	52
$3.5 \sim 4.5$	0	16
$4.5 \sim 5.5$	0	0
$5.5 \sim 6.5$	299	0
$6.5 {\sim} 7.5$	0	0

• String tension: magnetic monopole dominance

$$W_m(C) = \exp\left\{2\pi i \sum_{s,\mu} k_{\mu}(s) \Omega_{\mu}(s)\right\},$$

$$\Omega_{\mu}(s) = \sum_{s'} \Delta_L^{-1}(s - s') \frac{1}{2} \epsilon_{\mu\alpha\beta\gamma} \partial_{\alpha} S_{\beta\gamma}^J(s' + \hat{\mu}), \quad \partial_{\beta}' S_{\beta\gamma}^J(s) = J_{\gamma}(s), \tag{1}$$

$$V_i(R) = -\log\left\{\left\langle W_i(R,T)\right\rangle / \left\langle W_i(R,T-1)\right\rangle\right\} = \sigma_i R - \alpha_i / R + c_i \quad (i = f, m), \quad (2)$$

Table 2: String tension and Coulomb coefficient I

β	σ_f	α_f	σ_m	α_m
$2.4(8^4)$	0.065(13)	0.267(33)	0.040(12)	0.030(34)
2.4(16 ⁴)	0.075(9)	0.23(2)	0.068(2)	0.001(5)

Table 3: String tension and Coulomb coefficient II MAG+DeGrand-Toussaint (reproduced from [Stack et al., PRD 50, 3399 (1994)]

eta	σ_f	$lpha_f$	σ_{DTm}	α_{DTm}
$2.4(16^4)$	0.072(3)	0.28(2)	0.068(2)	0.01(1)

quark-antiquark potential

Figure 3: The full SU(2) potential $V_f(R)$, "Abelian" potential $V_a(R)$ and the magnetic-monopole potential $V_m(R)$ as functions of R at $\beta=2.4$ on 16^4 lattice. monopole part[Ito, Kato, K.K., Murakami, Shibata and Shinohara, hep-lat/0604016] "Abelian" part[in preparation]

Table 4: String tension and Coulomb coefficient

eta	σ_f	$lpha_f$	σ_{DTm}	$lpha_{DTm}$	σ_a	α_a
$2.4(16^4)$	0.072(3)	0.28(2)	0.068(2)	0.01(1)	0.071(3)	0.12(1)

• magnetic-monopole loops

Figure 4: The magnetic-monopole loops on the 4 dimensional lattice where the 3-dimensional plot is obtained by projecting the 4-dimensional dual lattice space to the 3-dimensional one, i.e., $(x,y,z,t) \rightarrow (x,y,t)$.

histogram of monopole loops numbers

Figure 5: The number vs. length of the magneic monopole loops

length of loop

Two-point gluon correlation functions

Figure 6: Logarithmic plots of scalar-type two-point correlation functions $D_{OO'}(r) := \langle \mathcal{O}(x)\mathcal{O}'(y) \rangle$ as a function of the Euclidean distance $r := \sqrt{(x-y)^2}$ for \mathcal{O} and \mathcal{O}' . (Left panel) $\mathcal{O}(x)\mathcal{O}'(y) = \mathbb{V}_{\mu}^A(x)\mathbb{V}_{\mu}^A(y)$, $\mathbb{A}_{\mu}^A(x)\mathbb{A}_{\mu}^A(y)$, $-\mathbb{V}_{\mu}^A(x)\mathbb{X}_{\mu}^A(y)$, $\mathbb{X}_{\mu}^A(x)\mathbb{X}_{\mu}^A(y)$, (Right panel) $\mathcal{O}(x)\mathcal{O}'(y) = \mathbf{n}^A(x)\mathbf{n}^A(y)$, $c_{\mu}(x)c_{\mu}(y)$, $\mathbb{X}_{\mu}^A(x)\mathbb{X}_{\mu}^A(y)$, from above to below using data on the 24^4 lattice ($\beta = 2.3, 2.4$), 32^4 lattice ($\beta = 2.3, 2.4$), 36^4 lattice ($\beta = 2.4, 2.5$), and 48^4 lattice ($\beta = 2.4, 2.5, 2.6$). Here plots are given in the physical unit [fm] or in unit of square root of the string tension $\sqrt{\sigma_{\rm phys}}$. [Shibata, Kato, K.K., Murakami, Shinohara and Ito, arXiv:0706.2529 [hep-lat]] cf.[Amemiya and Suganuma, hep-lat/9811035] in mAG

• Infrared Abelian dominance

Figure 7: Logarithmic plots of the rescaled correlation function $r^{3/2}D_{OO}(r)$ as a function of r for $O=\mathbb{V}_{\mu}^{A},\mathbb{A}_{\mu}^{A},c_{\mu},\mathbb{X}_{\mu}^{A}$ (and \mathbb{X}'_{μ}^{A}) from above to below, using the same colors and symbols as those in Fig. 6. Here two sets of data for the correlation function $D_{XX}(x-y)$ are plotted according to the two definitions of the \mathbb{X}_{μ}^{A} field on a lattice.

• Gluon "mass" generation

Figure 8: Gluon "mass" and decay rates (in units of GeV and $\sqrt{\sigma_{\rm phys}}$) as the function of the inverse lattice volume 1/V in the physical unit. (Left panel) for $\mathcal{O} = \mathbb{X}_{\mu}^{A}, (\mathbb{X}'_{\mu}^{A}), c_{\mu}, \mathbb{A}_{\mu}^{A}$ from above to below extracted according to the fitting: $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle \sim r^{-3/2}\exp(-M_{\mathcal{O}}r)$, (Right panel) for $\mathbf{n}^{A}(x)$ extracted according to the fitting: $\langle \mathbf{n}^{A}(x)\mathbf{n}^{A}(y)\rangle \sim \exp(-M_{n}r)$.

$$M_X \simeq 2.98 \sqrt{\sigma_{\rm phys}} \simeq 1.31 {\rm GeV},$$

$$M_{X'} \simeq 2.69 \sqrt{\sigma_{\rm phys}} \simeq 1.19 {\rm GeV}. \tag{3}$$

$$M_n \simeq 2.24 \sqrt{\sigma_{\rm phys}} \simeq 0.986 {\rm GeV},$$

 $M_c \simeq 1.94 \sqrt{\sigma_{\rm phys}} \simeq 0.856 {\rm GeV},$
 $M_A \simeq 1.35 \sqrt{\sigma_{\rm phys}} \simeq 0.596 {\rm GeV}.$ (4)

	lattice spacing ϵ		lattice size $L~[{ m fm}]$			
β	$[1/\sqrt{\sigma_{phys}}]$	[fm]	24^4	32^{4}	36^{4}	48^{4}
2.3	0.35887	0.1609	3.8626	5.1501	5.7939	7.7252
2.4	0.26784	0.1201	2.8828	3.8438	4.3242	5.7657
2.5	0.18551	0.08320	1.9967	2.6622	2.9950	3.9934
2.6	0.13455	0.06034	1.4482	1.9309	2.1723	2.8964

Table 5: The lattice spacing ϵ and the lattice size L of the lattice volume L^4 at various value of β in the physical unit [fm] and the unit given by $\sqrt{\sigma_{phys}}$.

Chapter:
The relationship
between magnetic monoole
and instanton, merons,

\S Magnetic loops exist in the topological sector of YM $_4$

In the four-dimensional Euclidean SU(2) Yang-Mills theory, we have given a first* analytical solution representing circular magnetic monopole loops joining two merons: [K.-I. K., Fukui, Shibata & Shinohara, arXiv:0806.3913, Phys.Rev.D78,065033 (2008)]

Our method reproduces also the previous results based on MAG (MCG) and LAG:

(i) A magnetic straight line can be obtained in the one-instanton or one-meorn background. \rightarrow It disappears in the infinite volume limit.

[Chernodub & Gubarev, hep-th/9506026, JETP Lett. **62**, 100 (1995).] [Reinhardt & Tok, hep-th/0011068, Phys.Lett.B**505**, 131 (2001). hep-th/0009205.]

(ii) A magnetic closed loop can NOT be obtained in the one-instanton background. [Brower, Orginos & Tan, hep-th/9610101, Phys.Rev.D **55**, 6313–6326 (1997)] [Bruckmann, Heinzl, Vekua & Wipf, hep-th/0007119, Nucl. Phys.B**593**, 545–561 (2001)]

^{*[}Bruckmann & Hansen, hep-th/0305012, Ann.Phys.**308**, 201–210 (2003)] $Q_P = \infty_{_{41}}$

§ What are merons?

	instanton	meron
discovered by	BPST 1975	DFF 1976
$D_{\nu}\mathscr{F}_{\mu\nu} = 0$	YES	YES
self-duality $*\mathscr{F}=\mathscr{F}$	YES	NO
Topological charge Q_P	$(0),\pm 1,\pm 2,\cdots$	$(0), \pm 1/2, \pm 1, \cdots$
charge density D_P	$\frac{6\rho^4}{\pi^2} \frac{1}{(x^2 + \rho^2)^4}$	$\frac{1}{2}\delta^4(x-a) + \frac{1}{2}\delta^4(x-b)$
solution $\mathscr{A}_{\mu}^{A}(x)$	$g^{-1}\eta_{\mu\nu}^{A} \frac{2(x-a)_{\nu}}{(x-a)^{2}+\rho^{2}}$	$g^{-1} \left[\eta_{\mu\nu}^{A} \frac{(x-a)_{\nu}}{(x-a)^{2}} + \eta_{\mu\nu}^{A} \frac{(x-b)_{\nu}}{(x-b)^{2}} \right]$
Euclidean	finite action	(logarithmic) divergent actio
	$S_{\rm YM} = (8\pi^2/g^2) Q_P $	
tunneling	between $Q_P=0$ and $Q_P=\pm 1$	$Q_P=0$ and $Q_P=\pm 1/2$
	vacua in the $\mathscr{A}_0=0$ gauge	vacua in the Coulomb gauge
multi-charge solutions	Witten, 't Hooft,	???
	Jackiw-Nohl-Rebbi, ADHM	not known
Minkowski	trivial	everywhere regular
		finite, non-vanishing action

An instanton dissociates into two merons?

§ Relevant works (excluding numerical simulations)

papers	original configuration	dual counterpart	method
CG95	one instanton	a straight magnetic line	MAG (analytical)
ВОТ96	one instanton	no magnetic loop	MAG (numerical)
BHVW00	one instanton	no magnetic loop	LAG (analytical)
RT00	one meron	a straight magnetic line	LAG (analytical)
ВОТ96	instaton-antiinstanton	a magnetic loop	MAG (numerical)
	instaton-instaton	a magnetic loop	MAG (numerical)
RT00	instaton-antiinstanton	two magnetic loops	LAG (numerical)
Ours KFSS08	one instanton	no magnetic loop	New (analytical)
0806.3913	one meron	a straight magnetic line	New (analytical)
[hep-th]	two merons	circular magnetic loops	New (analytical)

CG95=Chernodub & Gubarev, [hep-th/9506026], JETP Lett. **62**, 100 (1995).

BOT96=Brower, Orginos & Tan, [hep-th/9610101], Phys.Rev.D **55**, 6313–6326 (1997).

BHVW00=Bruckmann, Heinzl, Vekua & Wipf, [hep-th/0007119], Nucl.Phys.B **593**,

545–561 (2001). Bruckmann, [hep-th/0011249], JHEP 08, 030 (2001).

RT00=Reinhardt & Tok, Phys.Lett. B**505**, 131–140 (2001). hep-th/0009205.

BH03=Bruckmann & Hansen, [hep-th/0305012], Ann. Phys. **308**, 201–210 (2003).

We solved the reduction: For a given Yang-Mills field $\mathbf{A}_{\mu}(x)$, minimize

$$F_{\rm rc} = \int d^D x \frac{1}{2} (D_{\mu}[\mathbf{A}] \mathbf{n}(x)) \cdot (D_{\mu}[\mathbf{A}] \mathbf{n}(x))$$

The local minimum is obtained by solving the reduction differential equation (RDE):

$$\mathbf{n}(x) \times D_{\mu}[\mathbf{A}]D_{\mu}[\mathbf{A}]\mathbf{n}(x) = \mathbf{0}.$$

We consider a pair of merons at x=a and x=-a

$$\mathbf{A}_{\mu}^{\text{MM}}(x) = g^{-1} \left[\eta_{\mu\nu}^{A} \frac{(x+a)_{\nu}}{(x+a)^{2}} + \eta_{\mu\nu}^{A} \frac{(x-a)_{\nu}}{(x-a)^{2}} \right] \frac{\sigma_{A}}{2},$$

topological charge density

$$D_P(x) := \frac{1}{16\pi^2} \operatorname{tr}(\mathbf{F}_{\mu\nu} * \mathbf{F}_{\mu\nu}) = \frac{1}{2} \delta^4(x+a) + \frac{1}{2} \delta^4(x-a)$$

smeared meron pair of Callan, Dashen, Gross \rightarrow conformal transformation + singular gauge transformation

The analytical solution representing a loop of magentic monopole: Using the conformal transformation and the singular gauge transformation,

$$\bar{\mathbf{n}}(x)_{\text{II}'} = \frac{2a^2}{(x+a)^2} \hat{b}_{\nu} \eta^A_{\mu\nu} z_{\mu} U^{-1}(x+a) \sigma_A U(x+a) / \sqrt{z^2 - (\hat{b} \cdot z)^2},$$

where

$$z_{\mu} = 2a^{2} \frac{(x+a)_{\mu}}{(x+a)^{2}} - a_{\mu}, \quad U(x+a) = \frac{\bar{e}_{\alpha}(x+a)_{\alpha}}{\sqrt{(x+a)^{2}}},$$

One-instanton limit: $|R_1 - R_2| \downarrow 0$ $(R_2/R_1 \downarrow 1)$. $S_{YM}^{sMM} = \frac{8\pi^2}{g^2}$ finite One-meron limit: $R_2 \uparrow \infty$ or $R_1 \downarrow 0$ $(R_2/R_1 \uparrow \infty)$. S_{YM}^{sMM} logarithmic divergence

Chapter:
Some open question
SU(2) case
(Preliminary results)

§ Numerical search for magnetic monople loops (Preliminary)

Figure 9: The plot of marginalized topological index density P(z,t) generated by a pair of (smeared) merons in 4-dimensional Euclidean space, where plot is obtained by the projection to z-t plane by integrated out for x and y variables (marginal-distribution).

Figure 10: The plot of a magnetic-monopole loop generated by a pair of (smeared) merons in 4-dimensional Euclidean space where the 3-dimensional plot is obtained by projecting the 4-dimensional dual lattice space to the 3-dimensional one, i.e., $(x,y,z,t) \rightarrow (y,z,t)$. The positions of two meron sources are described by solid boxes, and the monopole loop by red solid line. In the lattice of the volume $[-10, 10]^3 \times [-16, 16]$ with a lattice spacing $\epsilon=1$, the two-merons are located at $(-1,-1,-1,-1\pm6.078)$, and are smeared with the instanton cap of size R=3.0 (d=12, R1=2.833 and R2=50.833). The monopole loop is confined in the 3-dim. space x=-1 and in a 2-dim. plane rotated about t-axis by 0.46rad. (For guiding the eye, the monopole loop is fitted by an ellipsoid curve (blue dotted line) with the long radius 6 and the short radius 4.)

Figure 11: The 3-dimensional projection of a magnetic-monopole loop generated by two-instanton of the JNR type in 4 dimensional lattice $[-15,15]^2 \times [-30,30]^2$ with its spacing $\epsilon=1$. The monopole loop is written by a red solid curve and the two-instanton solution is parametrized by the "size" a and the "position" denoted by a box: a=4 at (0,0,0,10.851), a=4 at (0,0,-13.-10.9), a=4 at (0,0,12,-10.9).

Figure 12: The 3-dimensional projection of two collapsed magnetic-monopole loops generated by the two-instanton of the 't Hooft type in 4 dimensional lattice $[-12,12]^2 \times [-20,20]^2$ with its spacing $\epsilon=1$. The monopole loop is written by a red solid curve and the two-instanton solution is parametrized by the "size" a and the "position" denoted by a box: a=4 at (0,0,-3,0) a=4 at (0,0,2,0).

§ Adjoint quark potential and String breaking

Figure 13: S. Kratochvila and Ph. de Forcrand, String breaking with Wilson loops?, hep-lat/0209094, Nucl.Phys.Proc.Suppl.119:670-672,2003

D=3, G=SU(2); The adjoint and $\frac{8}{3}$ fundamental static potentials V(R) vs R. The horizontal line at 2.06(1) represents twice the energy of a gluelump.

Figure 14: Our preliminary result.

Abelian dominance in the adjoint Wilson loop? Casimir scaling, string breaking monopole dominance in the adjoint Wilson loop?

For the ensemble of point-like magnetic charges:

$$k(x) = \sum_{a=1}^{n} q_m^a \delta^{(3)}(x - z_a)$$

$$\Longrightarrow W_{\mathscr{A}}^m = \exp\left\{iJ\frac{g}{4\pi}\sum_{a=1}^n q_m^a\Omega_{\Sigma}(z_a)\right\} = \exp\left\{iJ\sum_{a=1}^n n_a\Omega_{\Sigma}(z_a)\right\}, \quad n_a \in \mathbb{Z}$$

The magnetic monopoles in the neighborhood of the Wilson surface Σ ($\Omega_{\Sigma}(z_a)=\pm 2\pi$) contribute to the Wilson loop

$$W_{\mathscr{A}}^{m} = \prod_{a=1}^{n} \exp(\pm i2\pi J n_{a}) = \begin{cases} \prod_{a=1}^{n} (-1)^{n_{a}} & (J = 1/2, 3/2, \cdots) \\ = 1 & (J = 1, 2, \cdots) \end{cases}$$

⇒ N-ality dependence of the asymptotic string tension [K.-I. K., arXiv:0802.3829, J.Phys.G35:085001,2008]

§ Conclusion and discussion

The second method a la Cho & Faddeev-Niemi has been fully developped in the last decade:

- Path integral formulation is completed (action and measure for new field variables).
- The relevant lattice gauge formulation are available for numerical simulations.

In particular,

- The gauge-invariance of the magnetic monopole is guaranteed from the begining by construction.
- The direct relevance of the magnetic monopole to the Wilson loop and "Abelian" dominance in the operator level are manifest via a non-Abelian Stokes theore.

The second method have already reproduced all esssential results obtained so far by the first method, i.e., Abelian projection by 't Hooft.

- "Abelian" dominance in the string tension (Wilson loop average)
- magnetic monopole dominance in the string tension (Wilson loop average)

The first method (Abelian projection) is included as a special limit of the second method (Cho & Faddeev-Niemi). The first method is nothing but a gauge-fixed version of the second method.

- Extending our results to SU(3):
- Continuum formulation

[K.-I. K., arXiv:0801.1274, Phys.Rev.D 77, 085029 (2008)]

[K.-I. K., Shinohara & Murakami, arXiv:0803.0176, Prog.Theor.Phys. 120, 1–50 (2008)] For SU(3), there are two options for introducing the color field.

For the Wilson loop in the fundamental rep.,

$$n \in G/\tilde{H} = SU(3)/U(2) \neq SU(3)/[U(1) \times U(1)]$$

Quarks in the fundamental rep. can be confined by a non-Abelian magnetic monopole described by a single color field for any N in SU(N) against the Abelian projection scenario.

Lattice formulation [K-I.K., Shibata, Shinohara, Murakami, Kato and Ito, arXiv:0803.2451 [hep-lat], Phys.Lett.B669, 107-118 (2008)]
Preliminary numerical simulations e-Print: arXiv:0810.0956 [hep-lat] (Lattice 2008)

reliminary numerical simulations e-Print: arXiv:0810.0956 [hep-lat] (Lattice 2008)

55

non-Abelian magnetic monopole dominance in the string tension

color confinement

It is desirable to make clear the relationship between color confinement in general and quark confinement based on dual superconductor picture. Our approach opens a path to investigate this issue, since we have recovered color symmetry in this approach of deriving the dual superconductor picture.

Thank you for your attention!

お知らせ:

集中講義

京都大学 大学院理学研究科

12月2日午後

12月3日午前・午後

12月4日午前・午後