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The right side of (56) tends to oo as R — co. Hence there exists R, such
that |P(z)| > p if |z] > Ry. Since |P| is continuous on the closed disc
with center at 0 and radius Ry, Theorem 4.16 shows that |P(z,)| = p for
some zg.

We claim that y = 0.

If not, put Q(z) = P(z + 2z,)/P(29). Then Q is a nonconstant poly-
nomial, 0(0) =1, and | Q(z)| = 1 for all z. There is a smallest integer k,
1 < k < n, such that

(57) 0@)=1+bz*+ " +b,2", b #0.
By Theorem 8.7(d) there is a real 6 such that
(58) b, = —|by|.

If r > 0 and r*|b,| < 1, (58) implies
ll +bkr"e"‘°| =]- rklbk|,

so that '

[Q(rew)l <1 ""k{|bk] = r|byyy| = o+ = r""Hb,|}

For sufficiently small r, the expression in braces is positive; hence
| Q(re'®)| < 1, a contradiction.
Thus u = 0, that is, P(zy) = 0.

Exercise 27 contains a more general result.

FOURIER SERIES

8.9 Definition A trigonometric polynomial is a finite sum of the form

N
(59) f(x)=ao+ Y (a,cos nx + b,sinnx)  (xreal),
n=1
where ag, ..., ay, by, ..., by are complex numbers. On account of the identities

(46), (59) can also be written in the form

(60) f(x) = fc,,e'"* (x real),

which is more convenient for most purposes. It is clear that every mgonometnc
polynomial is periodic, with period 2.

If n is a nonzero integer, e is the derivative of ¢"*/in, which also has
period 2z, Hence

L 1 s,
) Ef_," d"‘{o (PRS2, ...).
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Let us multiply (60) by e~ ™™, where m is an integer; if we integrate the
product, (61) shows that

(62) Cp = % J.:: f(x)e™ "™ dx

for |m| < N. If |[m| > N, the integral in (62) is 0.

The following observation can be read off from (60) and (62): The
trigonometric polynomial f, given by (60), is real if and only if c_, = ¢, for
n=0,..,N.

In agreement with (60), we define a trigonometric series to be a series of
the form

(63) i c,e™  (xreal);

the Nth partial sum of (63) is defined to be the right side of (60).

If £ is an integrable function on [—, #], the numbers c,, defined by (62)
for all integers m are called the(Fourier coejﬁcient}of 1, and the series (63) formed
with these coefficients is called the Fourier series of f.

The natural question which now arises is whether the Fourier series of f
converges to f, or, more generally, whether fis determined by its Fourier series.
That is to say, if we know the Fourier coefficients of a function, can we find
the function, and if so, how?

The study of such series, and, in particular, the problem of representing a
given function by a trigonometric series, originated in physical problems such
as the theory of oscillations and the theory of heat conduction (Fourier’s
“Théorie analytique de la chaleur” was published in 1822). The many difficult
and delicate problems which arose during this study caused a thorough revision
and reformulation of the whole theory of functions of a real variable. Among
many prominent names, those of Riemann, Cantor, and Lebesgue are intimately
connected with this field, which nowadays, with all its generalizations and rami-
fications, may well be said to occupy a central position in the whole of analysis.

We shall be content to derive some basic theorems which are easily
accessible by the methods developed in the preceding chapters. For more
thorough investigations,@is a natural and indispensable
tool. :

We shall first study more general systems of functions which share a
property analogous to (61).

8.10 Definition Let {¢,} (n =1, 2, 3,...) be a sequence of complex functions
on [a, b], such that

(64) [[6Bdx=0 (o #m
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Then {¢,} is said to be anml system of functir;rts n [a, b]. If, in addition,
—
(65) [ 1940012 dx =1

for all n, {¢,} is said to be@
For example, the functions (27)"#¢™* form an orthonormal system on
[—=m, n]. So do the real functions

1 cosx sinx cos2x sin2x
N 2 RN B TR B R

If {¢,} is orthonormal on [g, b] and if

(66) n =fbf(t)mdt M= 12,30,

we call ¢, the nth Fourier coefficient of f relative to {¢,}. We write

@ 7(x) ~ icn $u()

and call this series the Fourier series of f (relative to {¢,}).

Note that the symbol ~ used in (67) implies nothing about the conver-
gence of the series; it merely says that the coefficients are given by (66).

The following theorems show that the partial sums of the Fourier series
of f have a certain minimum property. We shall assume here and in the rest of
this chapter that fe £, although this hypothesis can be weakened.

8.11 Theorem Let {¢,} be orthonormal on [a, b]. Let

(68) (00 = 3. e bn)
be the nth partial sum of the Fourier series of f, and suppose
(69) 1(x) = Zlvm Gu().
Then
b b
(70) [1f=si?ax< [1f=tl2dx,

and equality holds if and only if
(71) Tm=Cn (m=1,...,n).

That is to say, among all functions 1,, s, gives the best possible mean
square approximation to f. ———— -—
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Proof Let [ denote the integral over [a, b], Z the sum from 1 to #. Then

by the definition of {c,},
[162 = [t = [T tndn T 5= T |7ml’

since {¢,,} is orthonormal, and so

[lr=t2 =112 = [12 = [0+ [ 1)
=j 17 = cnn= L enn+ X tnn
=[ 1112 = Z leal® + X 19m = cal?,

which is evidently minimized if and only if y, =¢,. /
Putting y,, = ¢, in this calculation, we obtain

b n b
(72) [Isl2dx = leal? < [ ()] ax,
a 1 a
since [|f—t,|2 =2 0. g
8.12 Theorem If {¢,} is orthonormal on [a, b}, and if
f(x) ~"§lcn d’n(x)’
then
0 b
(73) Y lal? < [ 171 .
In particular,
(74) limc, =0.

Proof Letting n— o0 in (72), we obtain (73), the so-called “Bessel
inequality.” ==

8.13 Trigonometric series From now on we shall deal only with the trigono-
metric system. We shall consider functions f that have period 2n and that are
Riemann-integrable on [—=, #] (and hence on every bounded interval). The
Fourier series of f is then the series (63) whose coefficients ¢, are given by the
integrals (62), and

N
(75) sn(x) = sy(f; x) = ;vc,.e'""
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is the Nth partial sum of the Fourier series of /. The inequality (72) now takes
the form

1 o7 N 1 p=
(76) sel_ @2 dx =3 lal?s 5 [ 170)* dx.

In order to obtain an expression fo hat is more manageable than (75)
we introduce the Dirichlet kerne
e R 4

Rl N
@ Dylx)mi- ) ¢/t sn;i(n (;2i))x'

The first of these equalities is the definition of D,(x). The second follows if
both sides of the identity

(el’x = I)DN(X) o ei(N+l)x e e—le
are multiplied by e~ /2,
By (62) and (75), we have
Dbsgy|

sf(fix)=Y =— J.j”f(t)e""" dt e

=N 2n
1 ] Nee 5

&S in(x—1t) d
2| TOY 0 a,

so that

bl
L08) | swfsm=5 [ SOy~ dt=5 [ Jtx=0DyD)dr

The periodicity of all functions involved shows that it is immaterial over which
interval we integrate, as long as its length is 2z. This shows that the two integrals
in (78) are equal.

We shall prove just one theorem about the pointwise convergence of
Fourier series. S R

8.14 Theorem Jf, for some x, there are constants & >0 and M < o such that

@

(79) [fCx+ )= f(x)| < M|t
Jor all t € (=6, ), then
(80) lim sy(f; x) = f(x).
N-w®
Proof Define
81 —~t) -
(81) s TE=D =1

sin (¢/2)
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for 0 < |t| < «, and put g(0) = 0. By the definition (77),

1 T
ﬁf_”DN(x) dx = 1.

Hence (78) shows that
1 P 4 : 1
s\(f3 %) =) =5~ f_"g(t) sin (N + E)t dt

il o) 8 Lt” o
e f_“ [g(t) cos 5] sin Nt dt -+ o f_, [g(t) sin 5] cos Nt dt.

By (79) and (81), g(t) cos (¢/2) and g(t) sin (#/2) are bounded. The last
two integrals thus tend to 0 as N — oo, by (74). This proves (80).

Corollary If f(x) =0 for all x in some segment J, then lim sy(f; x) =0 for
every x € J.

Here is another formulation of this corollary:
Iff(t) = g(t) for all t in some neighborhood of x, then
sy(f3 x) — sy(g; x) = sy(f— g; x) »0as N - co.

This is usually called thetheorem. It shows that the behavior
of the sequence {sy(f’; x)}, as far as convergence is concerned, depends only on
the values of f in some (arbitrarily small) neighborhood of x. Two Fourier
series may thus have the same behavior in one interval, but may behave in
entirely different ways in some other interval. We have here a very striking
contrast between Fourier series and power series (Theorem 8.5).

We conclude with two other approximation theorems.

8.15 Theorem If f is continuous (with period 2m) and if & > 0, then there is a
trigonometric polynomial P such that

|P(x) —f(x)| < &

Jor all real x.

Proof If we identify x and x + 2m, we may regard the 27-periodic func-
tions on R! as functions on the unit circle 7, by means of the mapping
x —¢'*, The trigonometric polynomials, i.e., the functions of the form
(60), form a self-adjoint algebra &, which separates points on 7, and
which vanishes at no point of 7. Since T is compact, Theorem 7.33 tells
us that & is dense in €(7T). This is exactly what the theorem asserts.

A more precise form of this theorem appears in Exercise 15.
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8.16 Parseval’s theorem \Suppose f and g are Riemann-integrable Junctions
with period 2r, and

) SO~ S e, g~ 3 e
Then = 5

3 tim o= [ 15G) = (/3 91 di =0,

(54) 32| 105G dx = § 3.,
) s el ax=5 e

Proof Let us use the notation

(36) @= {51; IR dx}m.

Let ¢ > 0 be given. Since fe & and f(n) = f(—r), the construction
described in Exercise 12 of Chap. 6 yields a continuous 2z-periodic func-
tion A4 with

@Mk o bz If=hl; <e.

By Theorem 8.15, there is a trigonometric polynomial P such that
[h(x) — P(x)| <& for all x. Hence [[h—P|, <e. If P has degree @,

( !§eorem 8.11] shows that

(88) Ih—sn(B)ll, < |h— Pl <e
for all . By (72), with h — f'in place of f,
(89) lsn(h) = su(Nl2 = llsyth =Nl < b = £, <ce.

Now the triangle inequality (Exercise 11, Chap. 6), combined with
(87), (88), and (89), shows that

(90) If=sv(NNl2<3e (N2 N).
This proves (83). | Next,
1) ITJ Jare oy o e g dx = 3,5
i;f_”sN(f)g x"‘_chn ﬂf_”e g(x) x__chn‘yn»

and the Schwarz inequality shows that

0 | f5a~ [sna|s [17-stol < ([17- 501 [1012)"




192 PRINCIPLES OF MATHEMATICAL ANALYSIS

which tends to 0, as N = oo, by (83). Comparison of (91) and (92) gives
(84). Finally, (85) is the special case g = f of (84).

THE GAMMA FUNCTION

This function is closely related to factorials and crops up in many unexpected
places in analysis. Its origin, history, and development are very well described
in an interesting article by P. J. Davis (Amer. Math. Monthly, vol. 66, 1959,
pp. 849-869). Artin’s book (cited in the Bibliography) is another good elemen-
tary introduction.

Our presentation will be very condensed, with only a few comments after
each theorem. This section may thus be regarded as a large exercise, and as an
opportunity to apply some of the material that has been presented so far.

8.17 Definition For 0 < x < oo,
93) I(x) = j 5=1e=t d1,
0

The integral converges for these x. (When x < 1, both 0 and oo have to
be looked at.)

8.18 Theorem
(a) The functional equation

I'(x + 1) = xI'(x)

holds if 0 < x < 0.
b) Tn+1)=nlforn=1,2,3,....
(c¢) log T is convex on (0, o).

Proof An integration by parts proves (a). Since I'(1) =1, (a) implies

(b), by induction. If 1 <p < oo and (1/p) + (1/g) =1, apply Holder’s
inequality (Exercise 10, Chap. 6) to (93), and obtain

r(’i = 3) < I(x)!/?T(p)!le.
P q
This is equivalent to (c).

It is a rather surprising fact, discovered by Bohr and Mollerup, that
these three properties characterize I' completely.
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INTEGRATION OF COMPLEX FUNCTIONS

Suppose f is a complex-valued function defined on a measure space X, and
S =u+iv, where u and v are real. We say that f is measurable if and only if

both # and v are measurable.
It is easy to verify that sums and products of complex measurable functions

are again measurable. Since
11 = @ + %),

Theorem 11.18 shows that |f| is measurable for every complex measurable f.

Suppose u is a measure on X, E is a measurable subset of X, and fis a
complex function on X. We say that f € £ (u) on E provided that fis measurable
and

o7 fm du < + o,
E
and we define
dy = dj j d|
fEf u fEu u+szv u

if (97) holds. Since [u| < |f], |v| < |f], and |f| < |u| + |v], it is clear that
(97) holds if and only if u € £(u) and v € & (1) on E.

Theorems 11.23(a), (d), (e), (f), 11.24(b), 11.26, 11.27, 11.29, and 11.32
can now be extended to Lebesgue integrals of complex functions. The proofs
are quite straightforward. That of Theorem 11.26 is the only one that offers

anything of interest:
If fe £(u) on E, there is a complex number ¢, [¢| = 1, such that

cffduzo.
E
Put g =c¢f=u+ iv, u and v real. Then
du| = dp=| gdp=| udu< du.
fEfu ‘fsf” ny i fEu n fE!fl u

The third of the above equalities holds since the preceding ones show that
fg du is real.

d 7.
EUNETIaNs o Al £ )

As an application of the Lebesgue theory, we shall now extend the Parseval
theorem (which we proved only for Riemann-integrable functions in Chap. 8)
and prove the Riesz-Fischer theorem for orthonormal sets of functions.
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11.34 Definition Let X be a measurable space. We say that a complex
function fe £%*(u) on X if f is measurable and if

fx If]2 du < + co.

If u is Lebesgue measure, we say fe€ £2. For fe £*(u) (we shall omit the
phrase “on X from now on) we define

1/2
=] 1717 d)
and call ||f| the £*(u) norm of f.

11.35 Theorem Suppose fe £*(u) and g € L*(u). Then fg € L (), and

98) [ 171 du<1f1 gl

This is the Schwarz inequality, which we have already encountered for
series and for Riemann integrals. It follows from the inequality

0 [ (If] + gl du=IfI? +24 [ |fg] du+Algl?,
X X

which holds for every real A.

If+ gl < IfIl + lgll.
Proof The Schwarz inequality shows that
If +a12 = [1f12+ [ + [Ja + [ 1912

S UFI? + 2071 gl + lgll?
=(If1l + lgh)*.

11.37 Remark If we define the distance between two functions f and g in
L) to be ||f — gll, we see that the conditions of Definition 2.15 are satisfied,
except for the fact that [|f — g|| =0 does not imply that f(x) = g(x) for all x,
but only for almost all x. Thus, if we identify functions which differ only on a

set of measure zero,(¥*(u) is a metric space
We now consider &2 on an interval of the real line, with respect to

Lebesgue measure.

11.38 Theorem The continuous functions form a dense subset of £* on [a, b].
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More explicitly, this means that for any f e &% on [a, b}, and any ¢ > 0,
there is a function g, continuous on [a, b], such that

If =gl = U: If=gl? dx}m <e.

Proof We shall say that fis approximated in £2 by a sequence {g,} if
I.f = gall 0 as n - co.

Let A4 be a closed subset of [a, b], and K, its characteristic function.
Put

tx)=inf |[x—y| (yed)
and

g,(x) = =123, )%

1
1 + nt(x)
Then g, is continuous on [a, ], g,(x) =1 on 4, and g,(x) =0 on B,
where B = [a, b] — A. Hence

lon = Kall = {[, 2 ) " 0

by Theorem 11.32. Thus characteristic functions of closed sets can be
approximated in %2 by continuous functions.

By (39) the same is true for the characteristic function of any
measurable set, and hence also for simple measurable functions.

If />0 and fe &2, let {s,} be a monotonically increasing sequence
of simple nonnegative measurable functions such that s,(x)—f(x).
Since |f— s,|? <f?, Theorem 11.32 shows that | f — s,| —0.

The general case follows.

11.39 Definition We say that a sequence of complex functions {¢,} is an
orthonormal set of functions on a measurable space X if

a0 ),
(/fxlﬁ..;ﬁmdﬂ—{l (nf/”})/}
In particular, we must have ¢, € £%(4). If f € () and if
c,=f fBadn.  (n=1,2,3,..),
X

we write
[}
f~ Z Cons
n=1

as in Definition 8.10.
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The definition of a trigonometric Fourier series is extended in the same
way to £? (or even to &) on [—n, n]. Theorems 8.11 and 8.12 (the Bessel
inequality) hold for any fe £?*(u). The proofs are the same, word for word.

We can now prove the Parseval theorem.

61/40 Theoregjﬁ Suppose

99) 10~ 3 cie,
where f € ¥? on [—mn, ). Let s, be the nth partial sum of (99). Then
(100) lim |/~ 5,] =0,
(1o Slalz=g [ 1f12ax
&t 7 n

Proof Let ¢ >0 be given. By Theorem 11.38, there is a continuous
function g such that

e
If =gl =3

Moreover, it is easy to see that we can arrange it so that g(rn) = g(—n).
Then g can be extended to a periodic continuous function. By Theorem
8.16, there is a trigonometric polynomial T, of degree N, say, such that

e
-7 <=.
lg =T 5

Hence, by Theorem 8.11 (extended to £%), n > N implies

lsn =Sl < IT—fll <e,

and (100) follows. Equation (101) is deduced from (100) as in the proof of
Theorem 8.16.

Corollary) If fe £?* on [—n, n}, and if

)

JJ fGe ™ dx=0 (n=0,+1,+2,..),
then ||f|| = 0.

Thus if two functions in £? have the same Fourier series, they differ at
most on a set of measure zero.
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1141 Definition Let / and f, € £* () (n=1,2,3,...). We say that {f}}
converges to fin £2(y) if ||f, — f] >0. We say that (£} is a Cauchy sequence
in #%(u) if for every & > 0 there is an integer N such that n > N, m = N implies
s = full <e.

1142 Theorem! If {f,} is a Cauchy sequence in L), then there exists a
Junction f € L*(u) such that {f;} converges to f in L(ji).

This says, in other words, thai@)is a complete metric ‘S@‘

Proof Since {f,} is a Cauchy sequence, we can find a sequence {n,},
k=1,2,3,..., such that

1
Wi = Laisll < 5 (1% g e

Choose a function g € #%(u). By the Schwarz inequality,

lol
[ 190~ fus )l du <5

Hence

(102) 5 [ 1o~ Foel ds < gl
k=1YX

By Theorem 11.30, we may interchange the summation and integration in
(102). It follows that

(103) 1961 3. 1109 = fuer D] < + 0

almost everywhere on X. Therefore

(104 S 1) 1ol < + o0

almost everywhere on X. For if the series in (104) were divergent on a
set E of positive measure, we could take g(x) to be nonzero on a subset of
E of positive measure, thus obtaining a contradiction to (103).

Since the kth partial sum of the series

3 Vo) £,

which converges almost everywhere on X, is

f;un :(x) _f;u(x),
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we see that the equation

£ = lim £,9

defines f(x) for almost all x € X, and it does not matter how we define
f(x) at the remaining points of X. |

We shall now show that this function f has the desired properties.
Let ¢ >0 be given, and choose N as indicated in Definition 11.41. If

n, > N, Fatou’s theorem shows that
Ladsh R o

1f=Jdl < lifn inf || fo, = full <&

Thus f — f,, € £*(u), and since f = (f - £,,) + /., We see that f € L*(u).
Also, since ¢ is arbitrary,

:im If = fuell = 0.
Finally, the inequality

(105) If = £l < 1f = fall + W = Ful

shows that {f;} converges to f in £*(u); for if we take » and n, large
enough, each of the two terms on the right of (105) can be made arbi-
trarily small.

11.43 The Riesz-Fischer theorem Let {¢,} be orthonormal on X. Suppose
Z|c,|? converges, and put s, = ci¢y + *** + cu®,. Then there exists a Jfunction
1€ L) such that {s,} converges to f in £*(u), and such that

0

[~ 2 Cat-
n=1
Proof For n>m,
“sn = S,,,"2 = 'cm-HI2 A8 IC,,lz,

so that {s,} is a Cauchy sequence in £*(u). By Theorem 11.42, there is
a function /'€ £?(u) such that

lim |f = 5]l = O.

n=r oo

Now, for n > k,

fxf@ dp—c, = fxf$k dp — fxsn$k du,
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so that
[ o= | <1750 160 F17 - sl

Letting » — 00, we see that

ck=J‘xf$de' (k=1’2,3"")»

and the proof is complete.

11.44 Definition An orthonormal set {¢,} is said to be complete if, for
/€ £%(u), the equations

[ fudu=0 (n=1,23,..)
X

imply that ||f|| = 0.

In the Corollary to Theorem 11.40 we deduced the completeness of the
trigonometric system from the Parseval equation (101). Conversely, the Parseval
equation holds for every complete orthonormal set:

11.45 Theorem Let {$,} be a complete orthonormal set. If fe L) and if

(106) £~ 5 e,

then

(107) [ir12du= ¥ e
X n=1

Proof By the Bessel inequality, X|c,|? converges. Putting
Sp = cl¢l % 22 i cn¢n9

the Riesz-Fischer theorem shows that there is a function g € £%(y) such
that

(108) g~ Zlc,,qb,,,
and such that ||g — s,|| = 0. Hence ||s,| = |lg|l. Since

Isall? = Jer |2 + -+« + |eal?,
we have

(109) fx lg|? du =§llc,l2-
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{

Now (106), (108), and the completeness of {¢,} show that || f — g|| =0,
so that (109) implies (107).

Combining Theorems 11.43 and 11.45, we arrive at the very interesting
conclusion that every complete orthonormal set induces a 1-1 correspondence
between the functions fe £%(u) (identifying those which are equal almost
everywhere) on the one hand and the sequences {c,} for which Z|c,|? converges,
on the other. The representation

o0

S~ Z CnPns

n=1

together with the Parseval equation, shows that £%(u) may be regarded as an
infinite-dimensional euclidean space (the so-called “Hilbert space’), in which

the point f has coordinates c,, and the functions ¢, are the coordinate vectors.

EXERCISES

1. If f>0and [& fdp =0, prove that f(x) = 0 almost everywhere on E, Hint: Let E,
be the subset of E on which f(x) > 1/n. Write 4 = {JE,. Then u(A4) = 0if and only
if w(E,) = 0 for every n.

2, If [4 fdp. = 0 for every measurable subset 4 of a measurable set E, then f(x) =0
almost everywhere on E.

3. If {f} is a sequence of measurable functions, prove that the set of points x at
which {f,(x)} converges is measurable.

4. If fe Z(p) on E and g is bounded and measurable on E, then fg € & (p) on E.
5. Put

o 0<x<i),
Lt {1 G<x<l),
Sau(x) = g(x) 0<x<1),
fan(¥)=g(1—x) (O<x<L1).
Show that
lim inf f,(x)=0 0n<x<1),
but

f : fix)dx=14.

[Compare with (77).]



