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§0 My research and interest

@ Functional inequalities (Embeddings)
* Optimal constant, (Non-)Existence of optimizer
* (Non-)Compactness of embedding
* The Sobolev inequality, The Hardy inequality etc.
* Their relationship, for example,
Hardy ineqg. can be derived from N-dim. Sobolev ineq.
as “N / «”". (Ref. S., 2020) > The derivation from Hardy
to Sobolev has been well-known for ages.

o Elliptic and parabolic PDEs
* (Non-)Existence, Regularity (Singularity), Stability and
Asymptotic behavior of solution etc.

@ Some “critical” situation o
* Sobolev embedding W'? ¢ Lv-» (HC”u”AI,V_p < ||Vull,, Yu)
-P

holds for p < N, but W'V ¢ L*. p = N is critical case!



Plan of my talk

o §1 Two Hardy type inequalities
- The classical Hardy inequality (H); : Interior sing.
- The geometric Hardy inequality (H)p : Boundary sing.

o §2 Main result
- Thm 1 (Improvements of (H); and (H)g)
- Known results

o §3 Proof of Thm 1
- Differences in use of the divergence thm.
- Thm 2 (Generalizations of (H); and (H)g)
- Relation between virtual optimizers

o §4 Higher order cases +a (Open problems)



§1 Two Hardy type inequalities

Let B be the unit ballin RY, N >2and 1 < p < co.

Interior singularity (@ < N)
N - a)” P O\

(H), (

B W r= g |x|*P 2 (Vu € C(l)(B))
Proof: [, :Z:a dx = [+~ le(lxla) |ul” dx = A lﬂfa (v ( x) dx

@ The constant (%)p is optimal and is not attained for u # 0.

@ |x|” % is so-called “the virtual optimizer.” (also, sol. of EL eq.)
If we assume that V attains the equality of (H),;. Then we have
V(x) = clx "7 (c € R). However, [ S dx = oo if ¢ # 0.

|x|o=?




§1 Two Hardy type inequalities

Boundary singularity (8 > 1)

B=1Y [l Vul? e
s ( P ) T = e @ (e G®)

@ The constant (‘%l)p is optimal and is not attained for u # 0.

o (1- |x|)% is the virtual optimizer. (3% not sol. of EL eq.)



§1 Two Hardy type inequalities

Boundary singularity (8 > 1)

B—-1Y u|P [Vul? v 1
s ( P ) T = e @ (e G®)

@ The constant (‘%I)P is optimal and is not attained for u # 0.

o (1- |x|)% is the virtual optimizer. (3¢ not sol. of EL eq.)

To combine (H); and (H)p including best constants




§2 Main result

Thm 1 (Improvements of (H); and (H)g, S., '22)
Leta<Nﬁ>1andye(O,ﬁ 1. Then ueC(B)

B-1 )pf |ua]” f |Vul?
— ——————dx < dx
( p V) @ P B 1x*7P(1 — |x)Pp

The constant (’%ly)l’ is optimal and is not attained for u # 0.




Thm 1 (Improvements of (H); and (H)g, S., '22)
Leta < N,5> 1 andye(O,ﬁ 1. Then "uecl o(B),

B-1 )p f |ua]” |Vul?
— —————dx < dx
( p V) @ P B 1x*7P(1 — |x)Pp

The constant (ﬁ%y)f” is optimal and is not attained for u # 0.

(i) LetB = p,y = M Then Thm 1 implies (H);. (' 7= \x| > 1)
(i) Leta = p,y = 1(< ==2). Then Thm 1 implies (H). ( - XL > 1)

(continued in the next slide | )



(i Leta=B=y=p=2(w N >4). Then Thm 1 implies

Jul?

Mébius trans. . .
Bmdx < L:qude. ( & (H)zin RY with g =p = 2)

Ref.(Remainder term) Hardy-Sobolev-Maz’ya inequality

(iv) Since 1 - |x]" = ylog i + o(y) (y — 0), Thm 1 implies

-1\ P Yul?
(ﬁ 1)[ u ﬁ"“f LU
P ) o (og ) I s log )




(i) The case @ = g = p in Thm 1 is known.

( > )l]?ﬁ}wm«xfwmmu ("u € Cy(Q), f20)

Ref. D’Ambrosio, ‘05, Li-Wang, '06(p = 2, f = Gq,: Green’s funct.),
Adimurthi-Sekar, '06(f = Gq,), D’Ambrosio-Dipierro, '14(—-A, f > 0)

oo |CF) b (p <N, Q=R

-1 >

(p ) | Q,0| — (N—p)p |x|_p(1 _ |x|%)—17 (p < N, Q = B)’
p Nlil N -N 1 \-N

(*F) witdog g™ (p=N.Q=B)

Letp<N,Q =B, f(x) = {7 = 1 (y > 0).
Then f satisfies —A,f > 0 for y < 7=F.



(i) Some generalization is known as follows.
-1-al\’ SIVfIP ;
(%) (—lp a|) f P g ax < f FE vl dx - ("u)
P o fP Q

Ref. D.,'05, D.-D., "14(~(p — 1 = @)A,f > 0, f > 0)

(?%) However, (%) # Thm 1 in general. This difference comes from
how to use the divergence thm.

(iii) The case y = % is shown by Fabricant-Kutev-Rangelov('13).
(?%) Attainability and remainder terms are not studied in this paper.

The case = p,y = I=t is shown by loku('19) via harmonic
transplantation.



§3 Proof of Thm 1

[Ineq.]

W -1y
5 7 (1= )P

Iull’ 1 div X B N dx
5 1] [ [y (a7 = 1DF1) (1= |xp)p-!
—p lulP~u ( ) {N—a—-@B-1y}u”
Vu - + dx
f lx|e= (1 — |x[7)p! |x] [x|o(1 — [x|r)8-!
|ul?~" [Vl .
B X171 (L = [x]7)p-!

1 1
@ M )17 ( \l )7’
< —dx dx
( B IX17(1 = [x])? B IX177P(1 = |x]r)p-p




[Equality condition] Assume that u attains the equality.
(1) = u: nonnegative, radially symmetric, decreasing, y = 2=¢.

-1
(2) = u satisfies —u'(r) = Ely0=, r € (0, 1).

= u(r) = c(|x[7” - 1) P (c € R) (virtual optimizer of Thm 1)

( p )pf |Vul? dx—f Juel” i
B=ly) Jpldder(=xrypr " Jplxlo(l = |xP)

bdr
:CplgN_]lf r(l—rV)

>C(s)f—+D(e)+E(s) li:oo if ¢ # 0.

—&

[Optimality of (52)7] Test fx(Ixl) = (1 = IxP)* ¢5 (1) (A > &2,
where ¢s =1 0on B\ B_s, s =00n B;_»5(0 <6 < 1).



If we use another identity:

: x (N = a)lul” (B — Ly ul”
div ulp = +
(IXI"(I =[xyt )' | el 0 S & A O el 0

(Case l) (Case ll)

and the divergence thm., then we get the followings.



If we use another identity:

div( x N -l Byl
bee(1

P —
=[xyt )l "= I e
(Case l) (Case ll)

and the divergence thm., then we get the followings.

Thm 2 (Generalizations of (H); and (H)g, S., '22)
(Casel:a<N,B>1,y>0) X (ThecaseB=1)=(H),

N-a f o va
X
e )t S S T Ty

(Casell:a<N,B>1,y>0) X (Thecasea=y=1)=(H)p

B-1 f ul? f Vul?
—_— dx < d
( p ) Je e = 1anE T S e oe (1 = A




’ Remark 2 (Relation between virtual optimizers) ‘

(Thm 2 Case |, (H);) |xl’¥ (Thm 2 Case Il, (H)p) (1 — |x|7)/%1

i gy N -
(Thm 1) (X7 = D7 =[5 (1 = )7 (when v=5o f)




’ Remark 2 (Relation between virtual optimizers) ‘

(Thm 2 Case |, (H);) |xl’¥ (Thm 2 Case I, (H)p) (1 — |x|7)/%1

_ Mo . N —
(Thm 1) (5 = D7 =[x 1= )7 (when V=5 fl’)

Letk,meN,k>2,p> 1, and

Vk A"u if Kk =2m, A Bk,p,m if k=2m,
u = =
VA"M ifk=2m+1, 7

R By i k= 2m+ 1,

m—1

g W —kp+2jpHN(p - D) +kp —2(j + Dp}
k,pm — 1—[ p2
j=0




§4 Higher order cases (Open problems)

Conjectures (k > 2: Improvements of (R); and (R)g)
N1<p< yeqo, A;;_klp]. Then Yu € CX(B),

p—1 A prdx<f|Vku|pdx
N—kp k| e -y S, '

N-k
1<p< ye(o, T 1- Then Yu e Ci(B),

-1 ) jup
L ViulP d
(H P 7] f Pt — e 4 f Vil dx

Constants of (I) and (Il) are optimal and are not attained for u # 0.

() The case u: radial or p = 2 is true. (Thm 3)

(Il) The case where k = p = 2 is true. (Thm 4)




As corollaries of Conjectures, we can get the followings.

|ul”

N
(R)I Ap Wd x < fIVkulpdx (1 <p< E)
B

(Ref. Rellich, '56, Davies, '98, Mitidieri, ‘00, Gazzola et.al, '03 etc.)

Sip=1) e N
R dx < | [VuP d (1 —)
o UJ P ] s [ mra (1<p<g

(Ref. Owen, '99 (p = 2), X Barbatis('07) mentioned that
even if k = 2, the case p # 2 is difficult to show the above ineq.)

(W f . N
R) 1 jimi Ap VulP d = —)
(R) 1 1imit |X|N(10g| |)p IV¥ul” dx P A

(Ref. Horiuchi et.al; 04, Nguyen,arXiv, 17, Ruzhansky-Suragan,19)
k. P

jp-1 o f ‘ N

(R)simi L Vel dx (p=7)

o HJ p] mm%lw k

X (R)pimic IS probably not known.




Remark 4 (Virtual minimizers of (R);jimit and (R) g timit)

N-k
N

1\" N
(Virtual minimizer of (R); imi) (10g m) ¢ Wé’f(B)

Il (if k =1)

N-1
k5

(Virtual minimizer of (R)pjimit) (log ﬁ
X

X (log ljc—|) € W% (By) (a < N]; k)

P (log |)17|) € W (B\ By_s) (a >k

N-1

) ¢ WoE (B)




Extra: Fractional case (Open problem)

The fractional Hardy inequality (Frank-Seiringer, 2008)
Lets e (0,1),1 < p <. Then Yu € W*P(R"),

|u|p Ju(x) —uI”
Cn,sp dx
RN |x|ps RVxRN X — )’|N+”S

The constant Cy , is optimal and is not attained for u # 0.

In the case p = % the non-sharp critical Hardy inequality:

P _ P
c f |u f f |u(x) Mg)l dx
B |x|N log F | RVRN X — Y]

is known by Edmund-Tribel, 1999, but its optimal constant and
non-attainability are open.



Thank you very much for your kind attention!




