A mathematical analysis of the mean field equations with variable
Intensities
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1 Introduction

[MFE: Mean Field Equation]
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[Onsager(Eyink-Srenivasan(2006)), Sawada-Suzuki(2008)]
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v=0 on 0f).

QC R2' bounded domain with smooth boundary 0f
v(x) = —pY(x), Y = Y(x): stream function of the Euler flow
A= —0, B € R: inverse temperature
P € M(|—1,1]): Borel probability measure defined on [—1, 1]
M([—1,1]): space of measures on [—1,1]

(0SS)



Liouville equation
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u = const. on 0f), / e'dr < +o0.
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u:v+log)\—log/ e’dx
(L) = (MF):

N _ u
V=U— Ulyg )\—/Qedaz

(L)



[Nagasaki-Suzuki (1990)] {(Ag,ux)} with Ag | O: sol. seq. of

—Au=Xe"inQ, u=0o0n09dN

Passing to a subseq. (still denoted by the same notation), we have

Jo Awe“sdx — 8xl for some | € N U {0, +oco} and either of (a)-(c) below:
(@) I =0 = ug — 0 unif. on

(b) | = 400 = up — +o0 loc. unif. in €

()leN=35={20}'_, CQ (2 #2) ifi #j) st

l
up — SWZG(',ZU?) loc. unif. in €,

j=1
Ve, ZR% - Z G(z;,x;) =0 (j=1,...
Isi<y<l (X15emy)=(x?,...,2D)
Green function: — AG(-,y) =9, inQ, G(,y)=00n09Q (foryec Q)
1 1
Robin function: R(x) = G(x,y) — — log :
2 7z = ylly=



Simple cases [Caglioti-Lions-Marchioro-Pulvirenti (1992)]
Consider (MF).

(1) Q@ = By: unit disk, where B = {z € R? | |z| < R} (R > 0)
[Gidas-Ni-Nirenberg (1979)] = sol. is radial: v =v(x) = v(r), r = |z|
We solve the ODE and then obtain

v(r) = 2log N

A > 81 = A sol. (by the Pohozaev identity).

’U

A T 8T = )\fQ v dr =: Px N 871'5() n M(Bl) — [C(Bl)]/7
1 e
Y — %log = loc. unif. in By \ {0}.

Here, “ps — 87l in M(B1)" < "I, pe()p(x)dr — 810 (0), Vo € C(By)."
This property is that of (c) for £ =1 in the theorem of [Nagasaki-Suzuki (1990)].



(2) Q= B;\ By (0 << 1): annulus = T radial sol. for YA € R.

More precisely,
(14 A)?“*/ﬁ/2

r(1+ Arv2E)’
where A = A(¢,\) and E = E(¢, \) are the functions satisfying

lim A(l,\) =+o00, lim E({,\) =+oc0

A—+o0 A—+o00

for every 0 < £ < 1.
This property is that of (b) in the theorem of [Nagasaki-Suzuki (1990)].

v(r) = 2log

Entire solutions for (L) [Chen-Li (1991)]

—Au =e" in R?, / e’ < 400,
R2

dzo € R?, Ju > 0 s.t.

12
u(x) = log - 5 = U o / e'dr = 8w
<1+%|£B—$0’2> {2




Local properties [Brezis-Merle (1991)] & [Li-Shafrir (1994)]
Consider (L) without the boudary condition.
{ug}: sol. seq. with

/ e < 3C :indep. of k
Q

Passing to a subseq. (still denoted by {uy}), we have the following alternatives:
(i) {ug}: loc. unif. bdd. in €.
(ii) ux — —oo loc. unif. in €.
(iii) Define the blow-up set by

Yi={xo € Q| Q> dxx > x9 st ug(rr) — +oo}.

Then, X # (), 3 < +00, ux — —oo loc. unif. in Q\ ¥, and

ek Z m(xg)dy, in M(Q) with m(xg) € 87N,
:L'QEE

ie., /Qe“kgp(a:)dx — Z m(xo)p(xg), Ve € Co(R).
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Profile of blow-up solution sequences
[Y.Y. Li (1999)] Assume that (iii) above occurs. Furthermore,

xr — xg = 0 € S: local maximizer of u; around 0,

drg > 0 s.t. By, NS = {0}, max uj, — Imax uy < 3C’ :indep. of k

2rg 27rg

= dC > 0:indep. of £ s.t.
(uk(z + 1) — Upyp o (@ +21)| < C, Vo € By, Yk,

where
pp = e @) g, =U, .. (x): entire sol. above.

[Y.Y. Li (1999)] “---, we tend to believe that a good enough pointwise estimate
of blowup solutions {uy} as A — 8mm is the most crucial step in evaluating the
jump-value of d) at 8mm. Once we know the jump-values for m less than some
mg, we obtain a formula of dy in (—oo,8mmg) \ Uﬁozzl{&rm} The main
purpose of this paper is to start making good pointwise estimates for blowup
solutions {uy} as A — 8mm."

[Chen-Lin (2002, 2003)] - -+ This conjecture is positive if 2 is not a simply

connected domain: dy = ,,Cp41-4 # 0.
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2 A simple case

In this section, we assume that Q2 = D (unit disk) and
P(da) = 71 (dar) + (1 — 7)d4 (da),

where 7,7 € (0, 1).
Then, (N) and (OSS) take the form

v . v
SN W Rk in D
Jp{re? + (1 —1)e}da (Np)
v =0 on 0D

and

(OSSp)

respectively.



We organize [Neri (2004)], [Ricciardi-Zecca (2012)], [Ricciardi-Suzuki (2014)] and [Ricciardi-T
(2019)] to get the following theorem.

Theorem

(1) For any 7,7 € (0,1), I sol. of (OSSp) & A < Ar ~.
Note that 5\7-,7 is the optimal constant of the Trudinger-Moser inequality:

871 \/_
_ 1 1 ==, ifo<y <
AT,’Y = 8w mln{ 1 2 _} - i 8 . \/_,y VT
{T+ A —71)7} rasaa s <<l
— f M\
nf J>(\d) (v) > —oo for A < i\ R
veHE(Q) = —oo for A > Ar -,
(d) 1 2 v Yv
Jy'(w)== [ [Vu[®dx —ArIn | edr —A(1—7)In [ 7" dx.
2 /a Q Q

(2) vy € (0,1), 3., € (0,1) s.t. forall 7 € (0,7,), 3 sol. of (Np) even if 0 <A — 87 < 1.
Note that 87 is the optimal constant of the Trudinger-Moser inequality:

= —oo for A > 8,

J(S)(v /|VU\2da:—)\ln( /e”daz—k(l—T)/eVUd:c).
Q Q

‘nf J(s) (v) {> —oo for A\ < 87



3 Concentration and compactness

We organize [Ohtsuka-Suzuki (2006)], [Ohtsuka-Ricciardi-Suzuki (2010)],
[Ricciardi-Zecca (2012)], [Suzuki-Zhang (2013)], [Ricciardi-T. (2016)] and related works
to get the following theorem.

Theorem

(Ak,vk): sol. seq. of (N) or (OSS) with A\, — INo >0

Then, passing to a subsequence, we have the following alternatives:
[I] Compactness: lim sup ||vk||cc < +00 (S = 0)

k— oo

Jv € Hy(Q) s.t. veg — vin HY(Q) & v: sol. of (N) or (OSS)

[ll] Concentration: lim sup ||vg||cc = 00 (S # 0)

k— o0

S < oo and SNIN =10

Here, S is the blow-up set:

S:=8, U8, St :={z0€Q |3z € Vs.t. 1 — zo & vi(xx) — Foo}.



a) 0 <3dsy € LY Q) NL®

loc

(Q\S) s.t.

Vi 4 = Ak |V (v, v) e  Pda) = vy = 54 + Z M4 (29)dz, in M(Q)

It ToESL

with m4 (xg) > 4m for every zo € S+, where

I, =100,1, I_=[-1,0), V(a,v)= {(ff[l,leaerP(do‘)d$> (for (N))
(fQ eV d:v) (for (OSS))

b) 3¢, € M(I) and 0 < Fr € LY(I x Q) stt.
tr = AV (a, vg) e P(da)dx
5= p(dadr) = r(a, 2)P(do)dx + Z Coo ()b, (dx) in M(I x Q),

€S
where [ =1, UI_=[-1,1].

For both of (N) and (OSS), they are rewritten by the common form

—Avk =V, 4+ — Vg, — in €.



c) For every gy € S,

SW/ICxo(da) = (/I oszO(doz))2 ((weak) mass relation),

my(zo) = [ |alCy(da),  si(r) = [ |a|r(e,z)P(da),

Iy Iy
m+(xg) -+ as in a), Czo and r =7r(a,x) --- asin b).
Also, for every zo € S1 \ S+,

e (20) = / 0]Cao (dar) = 0.

:F

In particular,

m4(z0)? = SW/CxO(da) (weak mass relation).
T



In addition, the following properties hold for (N).

Mass relation For every zg € S, we have

(m(z0) — m—(20))* = 87(B4(x0)m+ (o) + B (zo)m—(z0)),

where

|ozf|:|_1 if xo0 € S+ . ) .
_ , oa_ = minsuppP, o = maxsuppP.
0 20 & Sa ppP, ol pp

B+(z0) = {

Residual vanishing

s+ =0 and r =0,

or Vg = Vg4 — Vp— — > (my(20) — m—(20))6z, in M(Q).
xpES

Location of the blow-up points For every zg € S, we have

» et —m @) ]
Vet 2 o = (o) ) "

where H = H(x,y) is the regular part of the Green function:

1 1




4  Known results

type (+1,—1) or sinh

— Av = hie” — hge™° in 2
e’ — (1 —7)e™"

TS A e T (I=T)e ) da

in 2

e’ e’
—Av =\ —(1=7)— in €}
’ (T Jq €¥dx (1=7) Joev d:r;) "

[Ohtsuka-Suzuki (2006)] — quantization (conjecture)
[Jost-Wang-Ye-Zhou (2008)] — quantization (proof)
[Jevnikar-J.Wei-Yang (2018)] — quantization (a generalization)
[Jevnikar-J.Wei-Yang (2018)] — degree: (OSS)
[Bartolucci-Pistoia (2007)] — examples (concentration): (sinh)
[Grossi-Pistoia (2013)] — examples (concentration): (sinh)
[Esposito-Wei (2009)] — examples (concentration): (OSS)
[Ao-Jevnikar-Yang (2022)] — examples (concentration): (OSS)
and so on...




type (+1,—v) (v € (0,1))

— Av = h1e¥ — hoe™ 77 in

7€’ — (1 — 7)ye 7"

—Av =\ in
Y fQ{Te’U + (1 —7)e "}dr n
e e T
— Av =)\ — (1 — in 2
v (T Jo v dx ( T)fny e daz) "

[Ricciardi-Zecca (2016)] — existence: (OSS)
[Ricciardi-T.-Zecca-Zhang (2016)] — existence: (OSS)

[Jevnikar (2017)] — existence: (OSS)

[Jevnikar-Yang (2017)] — existence: (Liouville)

[Pistoia-Ricciardi (2016)] — examples (concentration): (Liouville)
[Pistoia-Ricciardi (2017)] — examples (concentration): (Liouville)
[Figueroa (2024)] — examples (concentration): (OSS)
[Esposito-Figueroa-Pistoia (2020)] — examples (pierced domains): (OSS)
[Figueroa (2021)] — examples (pierced domains): (Liouville)
[Figueroa (2023)] — examples (pierced domains): (Liouville & OSS)
and so on...



type (+1,+v) (v € (0,1))

\ Te’ + (1 — 7)ye?”
Jo{me? + (1 —1)e} da

Av=A(r— (1=
Jo €¥dx foQ eV dx

[Suzuki-Zhang (2013)] — various: (OSS)
[Ricciardi-T.-Zecca-Zhang (2016)] — existence: (OSS)
[Gui-Jevnikar-Moradifam (2018)] — uniqueness: (N)
[Jevnikar-Yang (2019)] — existence: (OSS)

— Av =

in 2
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[Ricciardi-Zecca (2016)] — existence (positive & general & non-degenerate)
[De Marchis-Ricciardi (2017)] — existence (positive & general)
[Toyota (2022)] — pointwise estimates (positive & general)

Onsager, Sawada-Suzuki

anz’U
—Av = )\/ ——P(do in 2
[_171] fQ eavda) ( )

[Suzuki-Toyota (2018)] — pointwise estimates (positive & continuous)
[Suzuki-Toyota (2019)]
— bounds below of the functional at the critical value (positive & continuous)



5 Quantization for (OSS) of type (+1, +7)

eUk eV Uk _
_A’Uk :)\k (TW + ’}/(1 - T) fQ e’YUI-c> in 2

v =0 on 0f2.

(0SS)

where 7 € (0,1), v € (0,1) and A\ — JAg > 0.
In this section, we assume that concentration occurs:

evk % _ _
AT — m(xg)dg, + 7 in M(Q)
Jo €V da :coze:s
ek _
Apy(1—7) SN m (w0)0ay + 1 in M(Q),

fQ ek ToES
recall S denotes the blow-up set:
S={xy € Q| Q> 3z — 20 s.t. vx(x) = +oo}.

We know
S ={x1,x2,...,xn} CQ forsome N € N.



Theorem 1 Concentration & residual vanishing (r =" =0) =

81
{T+y(1-7)}*

Ao = AN with \ =

Theorem 2 Concentration & not residual vanishing =

_ _ 8
Ao = AN with X = -~

T

Remark \ = S\Tﬁ is the optimal constant of the Trudinger-Moser inequality.



Proof of Theorem 1 We introduce

v
wg = log ()\m'ef) = v, + log(AxT) — log/ e’k
Jo €k dx O

YUk
wy, = log ()\k'y(l —7) € ) = yuk + log(Aey(1 — 7)) — log/ e’k
fQ eYVk Q

Then, (OSS) reduces to

—Awy =e* + ek in O
: (OSSw)
—Awj, =y(e“* +e"*) in Q.
We can take 1o > 0 such that
Bury(z:) CQ, Vie{l,2,...,N}
B4T’O(wi)mB47‘0(xj):®7 V'L,]E{l,Q,,N}, Z#]
Let x,(f) € ) be the maximizer of wi on Bay,(z;). Note that CI?,(;) € () is also the

maximizer of wj, and vy on Ba,,(x;). The argument in [Suzuki-Toyota (2018)] shows

kgrfoowk(xk ) = kgrfwwk(xk ) =+o00, Vie{l,2,...,N}.

Therefore, we can develop a blow-up analysis for (OSS,,).



Key estimates ([C.S. Lin (2007)], [Suzuki-Toyota (2018) (2019)], [Toyota (2022)])

(i) 1 |z — x(i)|
@) w0 (o) = — o () + ' (22) + o(1) log (1 ' %) +o
Ok

as k — oo uniformly in x € B, (x,(;)) for every i{1,2,..., N}, where

J,Ef) — e~un(@)/2 (—0 ask — o0)



Since vy, is locally uniformly bounded in Q\ {z1,z2,...,zx} it holds

' 4 i v 1
) = wn(af?) = { () + log(ur) ~log [ %} 210z 5
Tk

1
= —log/ ek — 2logT + O(1)
Q o‘l;)

for any z = y(¥) € BBTO/Q(:B,(:)) (Jy(® — x](;)| =rp/2) and i € {1,2,..., N}. On the other
hand, the key estimates above give

wr () — wi (@) = = (m(es) + ' (20) + o(1) log (1 - 0%?) +0(1)
O
_ —%(m(:ﬁi) +m/ (2:) + o(1)) log j +0(1)

for any z = y(¥) € 8BT0/2(:E,(:)) (ly(») — xl(;)| =ro/2)and i€ {1,2,...,N}.
1 1
- log/ ek = — L (m(x;) +m’ (2;) — 47 + o(1)) log —55 + O(1) (1)
Q 27 O-k:z

for every i € {1,2,..., N}. Since the I.h.s. of (1) is independent i, we obtain



We now have

and the mass relation
(m(x;) +m/(x:))? = 8r(m(x;) +m'(x5)/7y), Vi€ {1,2,...,N}.

These properties imply

On the other hand

N N
Zm(:cz) = \o7 and Zm/(xi) = Xoy(1 —17)
i=1 i=1
by the residual vanishing and A\ — Ag.
A Ao~ (1 —
. m(a?l) — e = m(xN) = % and m/(xl) — _ m’(xN) _ OV(N 7')

Finally, we combine these properties and the mass relation to get

Ao Aoy(l—1T) }2 { Ao  Aoy(l —T) } 8o
{N'+ N "N T N / N

or
&

Ao = AN with X = :
) {rHa(-m)?




Proof of Theorem 2 It suffices to prove

m'(z;) =0, Vie{1,2,...,N}

thanks to the mass relation (m(z;) +m/(z;))? = 8n(m(z;) + m/(z;)/7).
If the residual vanishing does not occur then

lim e’k dr < 400 (%)
k—oco JO

by the Holder inequality after passing to a subsequence.

case 1: m(x;) +m/(x;) < 4w/~
The Brezis-Merle inequality shows that e?V% is uniformly bounded in LPi (B, ) for some p; > 1
and 0 < r; < 1, and so m/(z;) = 0 by the Hdlder inequality.

case 2: m(x;) +m/(x;) > 4w /vy
Actually, this case does not hold. The argument in [Brezis-Merle (1991)] shows that v, — Jv
a.e. in Be,(z;) (or locally uniformly in B, (x;) \ {x;}) for some 0 < ¢; < 1 s.t.

400 = / e’V dxr < liminf e’k dxr < lim ek dr < 400
Be, (z;) koo JBe, (2;) k=roo Ja

by (x), a contradiction. 0



Thank you for your attention |



