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In December 2015 | gave a series of six lectures at the Indian Institute of Science in which |
sketched the thematic development of some of the main techniques and results of 20th-century
harmonic analysis. The subjects of the lectures were, briefly, as follows:

. Fourier series, 1900-1950.
. Singular integrals (part I).

. HP?, BMO, and singular integrals (part II).

1
2
3
4. Littlewood-Paley theory: the history of a technique.
5. Harmonic analysis on groups.

6

. Wavelets.

| emphasized interconnections, both the way in which the material in the first lecture provided
the roots out of which most of the developments in the other lectures grew, and the ways in which
those developments interacted with each other. | included sketches of as many proofs as the time
would permit: some very brief, but some fairly complete, especially those whose methodology
is an important part of the subject. Much was omitted, of course, and there was a natural bias
toward the areas where | have spent periods of my own mathematical life. Many developments,
particularly those of the final quarter-century, received at most a brief mention.

This paper is a written account of these lectures with a few more details fleshed out, a few topics
reorganized, and a few items added. | hope that others may find it an interesting narrative and
a useful reference, and that it may lead some of them to share my enjoyment of exploring the
original sources. | have tried to provide the references to those sources wherever possible, and
for the more recent developments | also provide references to various expository works as the
occasion arises. For the pre-1950 results discussed here and their proofs, however, there is one
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canonical reference, which | give here once and for all: Antoni Zygmund’s treatise [96]. (The
more fundamental ones can also be found in Folland [29].)

Key words : Fourier analysis; harmonic analysis; singular integral operators; Hardy spaces;
Littlewood-Paley theory; wavelets

1. SOME NOTATION AND TERMINOLOGY

We denote the circle group, considered eitheR@8x7Z with coordinated or as{z € C : |z| = 1}

with coordinatec?, by T; and we denote the unit disc in the plane, with polar coordinates written
either in real form agr, 0) or in complex form ag = r¢'?, by D. The Fourier series of an integrable
function f onT is

e}

. 1 [27 .
k0 _ —ik6
PO~ ene™ e = o /0 F(0)e= ™0 dp.

—0o0
(We write ~ rather than= because the convergence of the series is a major issue to be discussed
below.) The partial sums of this series are always taken to be the symmetric ones:

n

SIO) = cre™. (1)

—n

Associated to every such Fourier series is the series
e .
u(r,0) = chr‘k‘elke (0<r<1), 2
—0o0

which converges uniformly on compact subset®afo a harmonic function. For fixed < 1, the
seriesu(r, -) is called therth Abel mearof the Fourier series of.

The functionu can also be expressed as Basson integrabf f:

2
u(r, 0) = /0 P(r.0— 6)£($) do. 3)

whereP is thePoisson kernel

= ; 1—r?
P(r,0) = Zrlmema =
—00

. 4
1472 —2rcosé ()

We shall also need the analogue of this for function®Rén If f € LP(R") (1 < p < ), its
Poisson integrals the harmonic functiom on

R = {(t,z): t >0, z € R"}
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defined by
u(t,z) = (B f)(x),

whereP; is thePoisson kernel

I'((n+1)/2) t
A2 (|2 + 2) /2

Pi(x) = (5)

(see, for example, [28] or [87]) anddenotesonvolution
gxh(z) = /g(aj —y)h(y) dy = /g(y)h(w —y)dy.

If E ¢ TorE C R" yp denotes the characteristic function Bf xg(x) = 1if x € E,
xE(z) = 0 otherwise.

Although we follow the classical practice in taking Fourier series t@bgeriodic, for Fourier
transforms we shall prefer to put the factors2af in the exponents. Thus, we define the Fourier
transform of a functiorf € L*(R") by

F&) = Fre) = / ¢=2MET 1) i

n

The Fourier inversion formula (valid literally |f € L'(R") and suitably interpreted in the general

case) is then

fa) =7~ fw) = [ e fie)de,

n

We record here one specific Fourier transform that will be needed in several places: the Fourier
transform of the Poisson kernel (5) is

~

Py(€) = el (6)

2. FOURIER SERIES IN1900: POINTWISE CONVERGENCE

The year 1900 — or, better, 1902 — is a good starting point for the history of modern harmonic
analysis, because the latter is the year when the Lebesgue integral [51] was born. Before this funda-
mental tool became available, one did not have the conceptual machinery to state, much less prove,
most of the results that now form the basis of the subject. Of course, the use of trigonometric series
to solve problems coming from physics and other sciences goes back to Euler and the Bernoullis in
the 18th century, but before the Lebesgue revolution the development of a rigorous theory (apart from
results of an elementary nature) was largely restricted to questions about pointwise convergence.
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The first great advance in this direction was made by Dirichlet [16] in 1829. He proved that the
Fourier series of a periodic functigithat is piecewise continuous and piecewise monotone converges
to 3[f(6+) + f(6—)] at everyd, and in particular tof (¢) at everyd at which f is continuous. Once
the Riemann integral and the notion of “bounded variation” became available, it required only a slight
elaboration of Dirichlet’s argument to show that the hypothesis “piecewise continuous and piecewise
monotone” could be replaced by “of bounded variation[@r2x]”. This sufficient condition for
pointwise convergence remains unmatched for its combination of utility and generality.

The next major paper on the subject was Riemahiabilitationsschrift[69], which dates from
1854 although it was not formally published until after Riemann’s death in 1866. Riemann main con-
cern was the question of convergence of trigonometric s@fjese’*? withouta priori assumptions
on the nature of the coefficientg. The results that he considered the main point of the paper are no
longer of broad interest (though some of them are discussed in Chapter X of Zygmund [96]). How-
ever, the paper is significant as the birthplace of the Riemann integral as a precisely defined concept,
and two of its theorems are still widely used: the fact that the Fourier coefficigrita Riemann
integrable function tend to zero as— oo (which became the “Riemann-Lebesgue lemma” when
generalized to Lebesgue integrable functions), and the fact that the convergence or divergence of the
Fourier series of an integrable functigrat a pointzy depends only on the behavior $fin an arbi-
trarily small neighborhood afy. It also contains some notable counterexamples and a nice account
of the earlier work on trigonometric series and their applications.

The other landmark of the pre-1900 theory is the discovery by du Bois-Reymond in 1873 [18] of
a continuous periodic function whose Fourier series diverges at one point. (Simpler examples are now
known, and a fairly easy Baire-category argument shows that the Fourier series of “most” functions
in C(T) are not everywhere convergent.)

After 1900 the emphasis shifted from pointwise convergence to other types of convergence and
methods of summation, so we shall close the discussion of pointwise convergence of Fourier series
by citing three later major results. First, in 1914 Sergei Bernstein [1] showed that the Fourier series
of a function that is Hlder continuous of exponent % converges absolutely and hence uniformly
onT. (Such functions need not be of bounded variation on any interval.) Second, in 1923 A. N.
Kolmogorov [46] constructed a function i (T) whose Fourier series diverges almost everywhere,
and three years later [47] he outdid himself by producing a functiab {iT) whose Fourier series
divergeseverywhere After that, the outstanding open question was whether the Fourier series of a
function in LP(T) (p > 1), or even inC(T), necessarily converges almost everywhere; an affirmative
answer was given in 1966 by Lennart Carleson [6]foe 2 and extended shortly afterwards to all
p > 1 by Richard Hunt [40]; see also Fefferman [21].
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3. THE FIRSTDECADE: 1900-1910

The first major advance in the theory of Fourier series after 1900 did not actually make use of the
Lebesgue integral: itis L. Fej's theorem [24] on summability of Fourier series. Instead of evaluating

a Fourier series of a functiofias the limit of its partial sums? defined by (1), we evaluate it as the
limit of the averageof the firstn partial sums (theth Cesaro mean),

1
o (0) = ~[51(0) + -+ S1(0)],
or as the limit ofrth Abel mearu(r, #) defined by (2) as — 1.

Theoreml (Fejer,1903 — If f is Riemann integrable off, thena,{(e) — f(f#)asn — o
andu(r,0) — f(0) asr — 1 at everyd wheref is continuous. Iff is continuous everywhere, then
ol — fandu(r,-) — f uniformly.

Fejer proved the results aboaif much as we do today, by writingﬁ as the convolution of with
the so-called Fér kernel and examining the properties of the latter, then deduced the results about
by invoking the known connections between @esand Abel means.

Not long afterward, Fatou [19] investigated the boundary behaviar iafthe light of the new
Lebesgue integral and established a cluster of interesting results. By combining one of them with
Lebesgue’s version of the fundamental theorem of calculus, one obtains the following remarkable
improvement on Féj’s pointwise convergence theorem, involving the important notion of nontan-
gential convergence. Namely,gfr, ) is a function on the unit disc [respy(t, x) is a function on
R”*1], and h(9) is a function onT [resp.,h(z) is a function onR"], we say thatg(r, ) — h(6p)
nontangentiallyfresp.,g(t,z) — h(xo) nontangentially if, for every ¢ > 0, g(r,0) — h(6y) as
(r,0) — (1,6p) in the region wher¢d — 0y| < c¢(1 — r) [resp.,g(t,z) — h(zo) as(t,z) — (0, xo)
in the region wherér — x| < ct].

Theorem2 (Fatou, 190§ — If f € LY(T) and u is defined by(2), thenu(r,0) — f(6o)
nontangentially at almost evefly — more precisely, at evetly in the Lebesgue set ¢f

One of the fundamental properties of the Fourier b&sf¢'} is that it is orthonormal (with respect
to the measuréd/2r), as was recognized in the 19th century in connection with Sturm-Liouville
theory. This aspect of the theory was put in the spotlight in a paper of F.'Rig8zand almost
simultaneously in a paper of E. Fischer [25] concerning square-integrable functions (the collection
of which had not yet been named?” though we shall employ that notation). In modern language,

'The “F.” could stand for Frigyes, Friedrich, oréeéric, all linguistic variants of the same name, depending on whether
Riesz was writing in Hungarian, German, or French.
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Reisz’s and Fischer’s results both amount to the completendss biit here they are in their original
form.

Theorem3 (F. Riesz, Fischer1907) —

(a) (Fischer) If{ f,} is a sequence if>([a, b]) such thatff |fn(2) = fm(z)|?dz — 0asm,n —
oo, there is anf € L?([a, b]) such thatff |fn(x) — f(2)]? do — 0.

(b) (Riesz) If{¢y} is an orthonormal sequence X ([a, b)) and {c;} is a sequence of numbers
such thaty" |ex|? < oo, there is an functiorf € L?([a,b]) such that[” f ()¢ (x) dz = ¢ for all
k.

Riesz’s theorem is a corollary of Fischer’s, as Fischer pointed out; the function in question is, of
course,f = > cr¢, and the point is that the partial sums of this series satisfy Fischer’s hypothesis.
However, Riesz’s (slightly earlier) argument did not invoke this result explicitly, and it is easy to
deduce Fischer’s theorem from it.

The year 1910 witnessed several developments that are relevant to our story. First, Riesz [71]
inventedL? spacesi < p < oo) and developed their basic theory. It is then an easy corollary of
Fejér’s results on uniform convergence in Theorem 1, together with the dengitylofin LP(T), that
the analogous results hold for convergencéfnthat is, if f € LP(T) (p < o) thenHo—,{ —fllp—0
asn — oo and||u(r,-) — f|l, = 0asr — 1.

Second, Michel Plancherel published the memoir on integral representations of functions [67]
that led to the attachment of his name to the fact that the Fourier transform is a unitary operator on
L?(R). In fact, this result is not explicitly in Plancherel’s paper. His main results, in our context, are
a rigorous definition of the Fourier cosine transform

Fef(§) = /OOO f(x)cos(&x) dx

for f € L&(0, 00) (all of Plancherel's functions are real-valued) and a proof of the inversion formula
for it, namely, 72 = (n/2)I. The unitarity of 7. (up to a scalar factor) is, however, an imme-

diate consequence: singéF.f)g = [ f(z)g(&)cos(éx)dxdé = [ f(Feg), we have[(F.f)?
= [J(F2f) = (x/2) | f*.

The third development is Alfred Haar’s investigation [33] of expansion of functions in terms of
orthonormal bases (part of his doctoral thesis). The first part of this paper concerns the orthonormal
bases for.%([a, b]) consisting of eigenfunctions of Sturm-Liouville problems; Haar shows that they
share with the Fourier basis the property that the series associated to a continuous ffimetexh
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not converge pointwise but is always @es summable tg. (This is not unexpected, since the high-
frequency eigenfunctions of such problems tend to look a lot like sine waves.) He then asks whether
there is an orthonormal basis fé# ([0, 1]) with the property that the expansion of any continuous
function is uniformly convergent, and he produces the affirmative answer now known Hsdne

basis It is defined as follows; for future reference we consider its elements as functioRs on
although for the present we are interested in them onlof]. We set

Yo = X[o,1]» Y1 = X[o,1/2) — X(1/2,1]> (7)

and forn =2/ + kforj > 1and0 < k < 27,
U (x) = 229 (P2 — k) (8)

(Thatis, forn = 27 + k, 1,, is 2/2 on the left half off2=7k, 277 (k + 1)], —27/2 on the right half,
and 0 elsewhere.) It is an elementary exercise to check thai)s° is orthonormal inZ2([0, 1])
and (i) the linear span afy, . .., 1,;_; is the set of all functions ofo), 1) that are constant on each
subinterval2=7k, 277 (k + 1)) and satisfyf (z) = 3[f(z—) + f(z+)] at the break points = 27/k;
it follows easily that{v,}5° is an orthonormal basis fak?([0,1)). Moreover, since the),’s are
bounded, the coefficienty, ¢,,) = f01 f(z)vn(x) dr make sense for aff € L1([0,1]).

Theorem4 (Haar, 1910 — If f € L'([0,1]), the serieSy°(f, ¥n)1n(z) converges tof (z) at
everyx in the Lebesgue set ¢f(in particular, almost everywhere). |f is continuous ono, 1], the
convergence is uniform.

4. FOURIER SERIES AND COMPLEX ANALYSIS, 1915-1930

Many of the developments in Fourier analysis between the two world wars had to do, directly or
indirectly, with the connection between Fourier seriesToand holomorphic or harmonic functions
onD. We have already encountered the harmonic extensgia) of a functionf (#), defined by (2).

The harmonic conjugate afthat vanishes at the origin is

s , k/|k| if k#0,
v(r,0) = %Z cr(sgn k)r!Fletkf sgnk = {0/ | - 7 . 9
= if k=0.

(By “harmonic conjugate” we mean a functian that satisfies the Cauchy-Riemann equations
vy = —Uy, Vy = Uy. This makes sense eveniis complex-valued, although the original researchers
generally had in mind that andu are real-valued.) It is known (see Zygmund [8&]1.1]) that
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lim,_; v(r, ) exists almost everywhere; it is formally given by the se(ig&) >~ ¢ (sgn k)e?*?. We

denote this function by (#) and call it the Fourier) conjugatefunction of f:

£(6) = lim v(r,8) ~ 1§:ck(sgn k)etk?. (10)

r—1

One of the main lines of development concerns what we nowHalspaces or Hardy spaces.
There are now several types of Hardy spaces, but the original ones are defined as

HP(D) = { F holomorphic orD : ||F||z, = sup[MI{i(r)]l/p < oo} 0<p<oo), (12)
r<l

where
1

ME(r) = - / " P(re®) P do. (12)
2m Jo

(I | , is @a norm only fop > 1.) These spaces are named in honor of G. H. Hardy, but Hardy did not

invent them. Rather, in a 1915 paper [36] he proved thaY i) is holomorphic in the dis¢:| < R,

thenM7.(r) is an increasing function of for » < R, and moreover log/%.(r) is a convex function

of logr. The spacedi?(D) were first formally defined, and namédd@ in recognition of Hardy’s

theorem, in a 1923 paper of F. Riesz [72].

The first serious work on these spaces, however, came several years earlier, in the Riesz broth-
ers’ only joint paper [73]. In the first part of this paper they showed that the boundary values of a
holomorphic function o, under suitable hypotheses including & condition forp > 1, cannot
vanish on a set of positive linear measurelinThey then turned to the cage= 1 and proved the
following fundamental result:

Theorem5 (F. and M. Riesz1916 — A holomorphic functiod”(z) = > ° aiz* onD belongs
to H1(D) if and only if}c° ae™*? is the Fourier series of a functiofi(¢?) in L(T). In this case,
F and f determine each other by the relations

F(z) = 1/| Sw) dw, f(e) = lim F(re) for a.e. 6.

20 Jp=1 W — 2 r—1

The “if” implication of Theorem 5 is quite easy, faf can be derived fromy not only by
the Cauchy integral as above but by the Poisson integral (3). The fact®tha?) > 0 and
foz’r P(r,0)d9 = 1 forall r < 1 (see (4)) then easily imply that ¢ H'(D). The converse is
the hard part; the essential ingredient in its proof is the following result, which is of interest in its own
right:
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Theorem6 (F. and M. Riesz1916 — Letu be a complex Borel measure @h If the Fourier
coefficientse, = (1/27) fo% e~™*9d,(0) vanish fork < 0, theny is absolutely continuous with
respect to Lebesgue measure.

The reader of [73], however, may have trouble locating this result therein. What is actually stated
and proved there is as follows: Suppd&é:) is bounded oD and its boundary valueB(e*) on
T exist and constitute a function of bounded variation. Then this function is continuous (this was
already known), so that the imageDfunder it is a rectifiable curvé'(T); and the image of any set
of measure zero ifi has measure zero #(T). (To obtain Theorem 6 from this, one takiéz) to be
the integrated seri€s o cx 21/ (k + 1), so thatdu(0) is the Lebesgue-Stieltjes measdi(e?).)

Theorem 5 can be restated in the following way, which we present as a corollary. f(iFhe
Theorem 5 corresponds fo+ i f here.)

Corollary 7 — Supposef € L'(T), and letu, v, and f be defined by (2), (9) and (10). Then
u+iv € HY(D) ifand only if f € L!(T).

Corollary 7 remains true it.! and H' are replaced by.? and H? with p > 1, but it is easier in
the latter case. In fact, there it is a corollary of the analogous result for harmonic functions; namely,
a harmonic functionu(r, #) on D satisfiessup,. .y [|u(r, -)|[zr(1y < 00 (1 < p < oc) if and only if u
is the Poisson integral of ah e LP(T). The “if” implication follows from elementary properties of
the Poisson kernel as above, and for the converse, one can use the weak compactness of the closed
unit ball of L? (proved by F. Riesz in [71]) to show that as— 1, u(r,-) converges weakly id? to
an f € LP(T) of whichu is the Poisson integral. Fer= 1, however, this breaks down and one can
conclude only that: is the Poisson integral of a measureTan

There is more to the story, of course. Simple examples show that the conjugaté ‘ofuanction
need not be in!, but what abouf? for p > 1? The case = 2 is obvious: since the Fourier basis
is orthogonal, from (10) we havef||2 = 2r > ko lek> < |If13- Butforp # 2, the answer lies
deeper. It was announced by Marcel Riesz in 1924 [74], though he did not get around the publishing
the details of his proof until 1927 [75]:

Theorem8 (M. Riesz1924 — The magf — f is bounded oriL?(T) for 1 < p < .

This result is now seen as the prototype example of the theory of singular integrals, which we
shall discuss ir7, but the tools needed to build that theory did not yet exist in 1924. (The weak-
type estimate fop = 1 was proved by Kolmogorov [48] in 1925, but the interpolation theorem from
which the L? estimate then follows came considerably later; &g Rather, Riesz devised a clever
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argument that exploited the connection with complex analysis. It has the disadvantage that it does not
generalize at all, but it is still worth a little attention for its esthetic value. It shows thaafdv are
the Poisson integrals gfand f, then

2 2w
/ lo(r,0)P df < Cp/ lu(r, 0)|P do 0<r<1) (13)
0 0
with C, independent of and f, and the result follows by letting — 1.
We explain the idea by working out the case- 4. We may assume thdtis real-valued (so that
u andv are too) and that the constant teegin the Fourier series of vanishes. Lef’ = u + iv.
ThenF(0) = ¢p = 0, so by the Cauchy integral formula,
F 4 27
0= / ﬁ dz = / (u(r,0) +iv(r,0))* db.
|z|=r 0

(74

Taking real parts yields

/v4:6/uzvz_/u4g6Uuzx/&]“

(with obvious abbreviations), and this immediately gives (13) with= 36.

The same idea, with some elaboration, works whés any even integer, and Riesz managed
to push it further so that it works whenis anything except an odd integer. (The emergence of an
inconvenient factor ofos(mp/2) at a certain point spoils the argument in these exceptional cases.)
Butif p > 1 is an odd integer, its conjugate expongptp — 1) lies in the interval1, 2), where the
result is valid, so a simple duality argument completes the proof.

As Riesz observed, his theorem has the following important consequence that has no apparent
connection to complex analysis:

Corollary9 — If f € LP(T) with 1 < p < oo, the partial sums;, of its Fourier series given by
(1) converge tof in the L norm asn — oo.

The proof is easy. Since the trigonometric polynomials are denké fa consequence of Fajs
theorem), by the usuajf 3-argument it is enough to show tHHf’,{Hp < Gyl f I, with C,, independent
of n. ButS} = (E_, PE,—En1PE_(,,1))f whereP(X cre’*?) = S5 e’ andE,, £ (6) =
e (0). Clearly E,, is an isometry orL? for everyn, andPf = %(f + z‘f) (assuming, as above,
thatcy = 0); the result therefore follows from Theorem 8.

The L? convergence of a Fourier series is, of course, unaffected by the order in which the terms are
added up, as any rearrangement of an orthonormal basis is again an orthonormal basis; but the validity
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of Corollary 9 is strongly dependent on the fact that the partial sifrare taken to be the standard
ones. Itis well known that in any Banach spate serie$ [° x,, converges unconditionally (that is,
Do T4 (n) CONVerges to the same sum for any permutatiarf Z) if and only the seried"(° €,z
converges for all choices ef, € {—1, 1}. (See, for example, [42].) In 1930 Littlewood [52] showed
that this is not the case whéh= LP(T) (p # 2) andx,, = S — 57

n—1"

and shortly afterward Paley
and Zygmund [63] obtained the following remarkable generalization of Littlewood’s result.

Paley and Zygmund made use of the convenient encoding of sequenté's &y means of the
Rademacher functionfirst studied in [68]. They are most easily defined analytically as

T (t) = sgn[sin(2" 1 7t)] (0<t<1.) (14)

In other words, as long asis not a dyadic rational;, (t) = (—1)%+(*) whered,(t) € {0,1}
is the nth digit in the base-2 decimal expansion tofbut r,(j/2¥) = 0 for n > k). Thus any
sequencge, } of £1's except those that contain only finitely many Os or finitely many 1s can be
written as{r,(¢)} for a uniquet € (0,1). Moreover, it is easily seen that the map- {r,(t)}
is measure-preserving from Lebesgue measuré)oh) (with the dyadic rationals omitted) to the
natural probability measure drj;°{—1, 1} determined by a sequence of tosses of a fair coin.

Theorem10 (Paley-Zygmund1930 — Given a sequencgr, }>°, of complex numbers, let

An(0) = cpe™ + ¢,

(@) If Y |en]? < oo, for almost every € (0, 1) the seriesy o° r,,(t) A, (#) converges a.e. ofi to
a function in(), ., L*(T).

(b) If 3" |en|* = oo, for almost every € (0, 1) the seriesy ° r,,(¢) A, (0) diverges (and indeed
is not Cearo or Abel summable) a.e. dh

Thus, by taking the:,’s to be the Fourier coefficients of a function ir¥ \ L? (if p > 2) or in
LP\ L? (if p < 2), one obtains examples of functionsiifi such that the’.”? convergence of their
Fourier series is destroyed by suitable insertions of facto#islof

The proof of Theorem 10 is a rather easy consequence of Fubini’s theorem together with the
following properties of the Rademacher functions, which we shall meet ag§itOinrsee Zygmund
[96, §V.8] for details.

Lemmall — If Y% |a,|? < oo, the seriesy a,r,(t) converges a.e. oft, 1] to a function
f € MNp<oo LP([0,1]); moreover, there are constants, and B, depending only orp such that
Ap Y lanl® < |IfII2 < ByY lan|®. On the other hand, 737 |a,|* = oo, the series)” anrn(t)
diverges (and indeed is not Gaee or Abel summable) for a.e< [0, 1].
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The situation withL? convergence of Fourier series is quite different if one considers not the
whole sequence of partial sunsg but only a subsequenc&rfz(m) wheren(m), roughly speaking,
grows exponentially withn. To be specific, lek(m) = 2™; thusSfb(m) is themth partial sum of the
seriesc + Y°;% Af whereAf = Y, 1 <o cxe’™. It tumns out that the series + Y Af does
converge unconditionally ih? whenf € LP(T), 1 < p < oo, and the same is true for other similar
choices ofi(m). But this is a small part of a much longer story, the “Littlewood-Paley theory,” which
we shall recount i§10.

The final development from this period on our agenda is the great 1930 paper of Hardy and Lit-
tlewood [37]. In it they begin by introducing the concept of nonincreasing rearrangements and prove
some fundamental results about them; then they introduce the Hardy-Littlewood maximal function
for functions inL!(T),

t
M10) = swp [ 150+ 0) do.

o<|t|l<m
and the nontangential maximal functions for functiondign

ug(0) = sup u(r,9)] (0<ce<1), (15)
(r,p)€Sc(0)

where the nontangential approach regii¢) may be taken to be the convex hull of the dis€ ¢

and the point(1,0). (The precise shape &f.(0) outside a neighborhood @1, 6) is unimportant,
as is the value ot, except that wher = 0 u; becomes the radial maximal functiar§(f) =

SUPg<r<1 |u(r, #)|.) The main results are as follows:

Theorem12 (Hardy-Littlewood,1930 —
(a) For1 < p < oo there is a constantl,, such that| M f||, < A, f||, forall f € LP(T).

(b) For 0 < ¢ < 1 there is a constanB, such thatu*(6) < B.M f(0) wheneverf € L'(T) and
w is its harmonic extension ; consequentlyj ||, < A,Bc| f|l, forp > 1.

(c) For0 < p < oo and0 < ¢ < 1 there is a constant’, . such that| F*||,, < C,, .|| F|| zz» for all
F € HP(D). (Here, of courseF* = u} whereu(r, ) = F(re'?)).

Part (c) is a corollary of part (b) when> 1, for thenF' is the harmonic extension of ghe LP(T)
and||F'||g» = || f||p, butforp < 1 it expresses a special property of holomorphic functions that is not
shared by all harmonic functions.
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5. INTERPOLATION THEOREMS

Among the powerful tools in the more modern development of harmonic analysis are some theorems
to the effect that if one hak? estimates on an operator for two different valueg,aine also obtains

such estimates for the intermediate valuep.oT he first such theorem was proved by Marcel Riesz
[76]. Let us first state it in the general form in which it is now familiar:

Theorem13 (M. Riesz, 1927 Thorin, 1939 — Let(X, 1) and (Y, v) be measure spaces and
D0, P1, 90,1 € [1,00]. Supposé’ is a linear map fromLPo(u) + LP* (u) to L (v) + L9 (v) that is
bounded fronL.?i (1) to L% (v) for j = 0, 1. ThenT is bounded froni.?t (1) to L9 (v) for0 < t < 1,
wherep, ! = (1 —t)p,* +tp;t andg, ' = (1 —t)gy* + tq; . More precisely, if

M(p,q) = sup{[|Tfllq : Ifllp = 1},
thenlog M (py, q;) is a convex function af

As Riesz observed, this general theorem is a corollary of the following, apparently much more
special, result in finite-dimensional linear algebra:

Theorem14 — Let(A; ;) be a complexn x n matrix, and fora, 8 € [0, 1] let

n m

M(e, 3) = sup ‘ZAjkyjfEk‘ DY aMe = P =1
Jk 1 1
(If @« = 0 or 8 = 0, the condition one or y is interpreted asnax |z;| = 1 or max |y;| = 1.) Then
log M(«, [3) is a convex function on the squdfe 1] x [0, 1].

To make the connection, observe that fti¢p, ¢) in Theorem 13 can be rewritten as

M(p.q) = s [ @] 171 = lglle =1},

whereq’ = ¢/(q — 1) is the conjugate exponent goand moreover it is enough to tafeandg to be
simple functions, i.e.f = Y 1 a;xg, andg = 31" by xr, Where theE)’s (resp. theF,’s) are disjoint
subsets ofX (resp. ofY") of finite measure. But for sucfi andg (for a fixed set ofE;'s and F},’s)

the quantityM (p, q) reduces to a quantity of the formt («, 5) with « = 1/p and = 1/¢/, and the
result follows.

Riesz proved Theorem 14 only féw, 3) in the triangle{(«, 8) € [0,1]? : a + 3 > 1}, which
yields Theorem 13 only under the condition tlgat> p; for j = 0,1. The lovely proof via the
“three lines theorem” of complex analysis, which renders this restriction superfluous, was discovered
by Riesz’s student G. Thorin [92].
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Thorin’s argument points the way toward a powerful and wide-ranging generalization of Theorem
13, due to Elias M. Stein [79] (see also [87]), in which the single opefatsreplaced by an analytic
family of operators:

Theorem15 (Stein, 1956 — Let (X, u), (Y,v), pt, and ¢; be as in Theorem 13, and let
Y ={xz+iy:x €[0,1], y € R}. Suppose that for eache X we have a linear maff, from simple
functions onX to locally integrablé functions ony” such that: — [ (7% f)g is continuous ort and
holomorphic on its interior for all simple functionson X andg onY. Assume that

1Ty fllae < Mol fllpo @ ([ Tayiy fllgr < Mi(y)l flps

and there are constantsy, C1, Cy, > 0 anda < 7 such that

/(Tx+iyf)g‘ < exp[Cree™™], Mo(y) < exp[Coe],  Mi(y) < exp[Cre].

Then for0 < t < 1 there is a constand/; (which can be estimated in terms of the functidig(y)
and M, (y)) such that|T: flg, < M| f]|p,-

The conditions on the growth off(T}1i, f)g, Mo(y), andM; (y) in y are extremely weak; they
are needed to guarantee the hypotheses of the PBragmdebf-type theorem on which the proof
rests. If these quantities are bounded uniformlyjlone can use the three lines theorem instead to
conclude thatog M, is a convex function of.

As a simple illustration of the use of Theorem 15, we consider operatat$ Sobolev spaces. If
k is a positive integer, thBobolev spacé?* = L>*(R") is defined to be the space of glkc L?(R")
whose distribution derivative®* f are also in.?(R") for |a| < k. (We are employing the usual multi-
index notation as in [29]« is ann-tuple of nonnegative integers ahel = «; + - - - + «,.) Since
(0¥fY(E) = (2wi§)0‘f(§), by the Plancherel theorem we hafe= L7 if and only if the functions
£ £of(€) areinL? for |o| < k. But it is easily verified tha} o< |a<k |¢%|? is bounded above and
below by constant multiples @t + [£|?)*, soL?* = L? where, for anys € R, we define

LI={f:N°f €L}, where (A°fYT)=(1+[¢)°f(&) (16)
(Whens > 0, the elements oA? are L2 functions, but when < 0, they are tempered distribu-
tions whose Fourier transforms are locally functions. The spacg? is often denoted byi,.)

Proposition16 — Suppose, < s; andrg < r1, and supposé’ is a bounded linear map from
L2 to L2 whose restriction td.?, is bounded fromL? to L2 . Then the restriction of to L7, is
bounded fromL2, to L for 0 < ¢ < 1, wheres; = (1 — t)so + ts1 andry = (1 — t)rg + try.

2j.e., integrable on sets of finite measure
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Indeed, since\® is an isomorphism fronL? = L% to L? for everys € R, T is bounded from
L2 to L? if and only if A"T'A=* is bounded orl.2, so Theorem 16 follows by applying Theorem 15
to T, = A" TA—5*) wheres(z) = (1 — 2)sg + zs1 andr(z) = (1 — 2)ro + zr1. The necessary
estimates aklm z| — oo are trivial sinceA**% = AA® and A% is unitary onL2.

For anyp € [1, co] we can defind.” Sobolev spacek?* and L% just as above, simply replacing
L? by L” (but keepingA® unchanged), and the analogue of Proposition 16 generalizes provided that
we have appropriate estimates. . However, forp # 2 these estimates are no longer obvious, nor
is it obvious thatLP* = L? —and indeed these claims are no longer validfer 1 orp = co. They
are, however, valid fot < p < oo, and we shall indicate the proofs§id and§10.

We now turn to the other major interpolation theorem, whose setting is as folloWg:) and
(Y, v) are again measure spaces, dhid now a map from some spaeof measurable functions on
X to the space of measurable functionsothat isquasi-linear that is, there is & > 0 such that
IT(f+9g)| < K(|Tf|+|Tg|) forall f,g € D. Forl < p,q < oo we say thafl’ is strong type(p, q)
if LP(u) C D and there is a constaat such that|7'f||, < C|| f|l,, andweak type(p, q) (¢ < o) if
LP(u) C D and there is a consta6t such that

(s 171> o) < ¢ (1) a7

we also agree that “weak tyge, co)” means “strong typép, co).” We observe that the quantity on
the left of (17) is at most||7' f||,/a)? (Chebyshev’s inequality), so strong tyfye ¢) implies weak

type (p, q).

Theorem17 (Marcinkiewicz, 1939 — Supposé’ is weak typespo, o) and(p1, q1) wherepy <
0, p1 < q1, andqg # q1. ThenT is strong typep;, ¢;) for 0 < ¢t < 1, wherep, ' = (1—t)p51+tp1‘1
andg, ' = (1 —t)gy ' +tq; "

This result was announced by J. Marcinkiewicz in a short note [59] in 1939. Not long afterwards,
his career was cut short by World War Il, and he left only a brief sketch of a proof in a letter to
Zygmund. Marcinkiewicz’s theorem languished in obscurity for 17 years — in their fundamental
paper [4] Caldeyn and Zygmund derived the special case they needed without quoting [59] — until
Zygmund wrote up a full account in [95]. Since then it has become part of the analysts’ standard
toolkit.

6. THE TRANSITION TOR"”

Much of the development of harmonic analysis in the second half of the 20th century had roots in
the material we discussed #2, but with some shifts of focus. The earlier work concerned Fourier
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series as a technique of studying functions on the cifcend harmonic and analytic functions on

the disclD. In many respects it is quite easy to shift attention to Fourier transforms as a technique for
studying functions ofR and harmonic and analytic functions on the upper half-plane. We shall not
go into detail about all the analogous results that can be obtained in this setting, singling out only one
for particular attention. Namely, the analogue®mf the mapf — ftaking a Fourier series to its
conjugate is thédilbert transformH, the unitary operator oh?(RR) defined by

~

L sene) F(0),

i

Hf(€)

which can also be defined without reference to the Fourier transform as

1 —
Hf(x)=—1lim fle=y) dy,
T €—0 |y‘>€ y
where the limit exists in th&? norm. (It also exists pointwise whefhis also Hlder continuous.) As
Marcel Riesz [75] showed, his theorem on conjugate series remains valid in this setting, with much
the same proof:

Theorem18 (M. Riesz1924 — H is bounded ol for 1 < p < oc.

Of greater significance than the shift frdinto R is the shift fromR to R™, which necessitates
weaning oneself away from a reliance on complex function theory and developing a new set of tools
to replace it, but which also offers a wealth of new applications. This will be the main theme of the
next few sections.

In the early days, one obstacle to unleashing the power of the Fourier transform was that its use
seemed to be restricted to functions that are rather tame at infinity, so that all the integrals in question
converge. Various mathematicians in the 1930s made attempts to resolve such issues as well as related
ones concerning notions of “generalized derivatives.” In part they were goaded by the physicists who
refused to be limited by scruples about rigor and employed formulas such as

/ 2 Je — §(z) (6 = Dirac “delta-function”) (18)
R

with great success. But it was Laurent Schwartz who, in the 1940s, developed a conceptual framework
that offered a simple and painless resolution of most of these difficulties: his theory of distributions.
The basic ideas were presented in [77] and [78], and the theory gained immediate popularity when
more extensive expository accounts became available soon afterwards.

The basics of this theory are sufficiently accessible (see, for example, [29]) that we shall not go
into any detail here. However, the Schwartz spdce- S(R™) of C*° functions which, together
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with all their derivatives, decay faster than polynomially at infinity, and its dual sgadbe space

of tempered distributions, will occasionally enter the discussion (they already did so in the previous
section). We recall that among the operationsSaimat extend continuously to operations &hare

the Fourier transform, differentiation, translation, composition by invertible linear transformations
of R™, and multiplication byC'* functions which, together with all their derivatives, grow at most
polynomially at infinity. In particular, the constant function 1 and the point mass at the origin are
Fourier transforms of each other (the rigorous interpretation of (18)). Moreover, composition with
dilations is well defined o', so it makes sense to say that a distribution is homogeneous of degree
a (namely,F o §, = r*F for r > 0, whered,(z) = rz), and it is easily verified that its Fourier
transform is then homogeneous of degree— «.

We shall denote the action of a distributiéh € S’ on a test functiony € S by (F, ¢). This
pairing is bilinear. In§11 and§12 we also use the notatidn -) for the sesquilinear inner product on
L?, but the meaning will be clear from the context.

7. SINGULAR INTEGRALS

One of the most significant milestones in the development of harmonic analy®8 imas the
Caldebn-Zygmund theory of singular integral operators, a far-reaching generalization of the the-
ory of the Hilbert transform, particularly Theorem 18. Various types of singular integrals — that is,
operators such as the Hilbert transform involving integrals that are not absolutely convergent, usu-
ally defined in some principal-value sense — had previously been studied by several people, notably
Tricomi, Giraud, and Mikhlin; but Alberto Caldén and Antoni Zygmund were the first to make a
systematic study of”? boundedness, and the techniques they developed have proved to be of wider
importance.

Their initial paper [4] of 1952 deals with convolution operators of the f@rgf = f x K on
functions onR"™, whereK is a distribution that is homogeneous of degreeand agrees away from
the origin with a function possessing some mild smoothness properties. In more detail, skipipose
a function that is of clas€! onR" \ {0} and homogeneous of degree (i.e., K (rz) = r "K ()
for » > 0), and that possesses tmean-zero property

K(z)do(z) =0 (o = surface measure on the unit sphere) (29)

|z|=1

The smoothness condition can be relaxed, as we shall discuss later. We also observe that (19) is
equivalent to
/ K(x)dzr =0 (0<a<b< o) (20)
a<|z|<b
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Such aK fails to be integrable near the origin and near infinity, as integration in polar coordinates
shows thagfa<‘x|<b | K (z)|dz is proportional toff dt/t =log(b/a). However,K defines a tempered
distribution (still denoted byx) by the formula

(K. ¢)=lim | K(z)¢(x)dx
|z|>€ (21)
= K(z)[op(x) — ¢(0)] dz + K(z)¢(x) dx.
|| <1 |z|>1
The two formulas agree because of (20), and the integrals in the second one are absolutely con-

vergent for anyp € S because decays rapidly at infinity anfi(x) — ¢(0)| = O(|z|).

It is easily checked thak is homogeneous of degree: as a distribution and hence its Fourier
transformK is homogeneous of degree 0. MoreovErjs not merely a distribution but a function
that is continuous except at the origin. To see this, pickafunction ¢ with ¢(x) = 1 for |z| < 1
and¢(z) = 0 for |z| > 2, and writeK = ¢K + (1 — ¢) K. ¢ K has compact support, so its Fourier
transform isC>°. Moreover,V K is homogeneous of degree:— 1, so|V[(1—¢)K](x)| < c|z| ™}
for || large; hencé&V[(1 — ¢)K] € L', so its Fourier transformric[(1 — ¢) K](€) is a continuous
function; but therj(1 — ¢) KT is itself continuous except gt= 0.

Being homogeneous of degree 0 and continuous away from the oﬁ’giﬂ, bounded, and it
follows thatthe operatorT initially defined onS by

(Txfy = KT,

or, equivalently,
Tx f(z) = [ K(z) = lim flz—y)K(y)dy, (22)

=0 Jjy|>e
extends to a bounded operator 84. (Incidentally, if K is continuous and homogeneous of degree
—n onR™\ {0} but does not satisfy the mean-zero property, the second formula in (21) still defines a
tempered distribution, but it is not homogeneous and its Fourier transform is not a bounded function.)

The fundamental theorem of Caléerand Zygmund generalizes thiské:

Theorem19 (Caldebn-Zygmund;1952 — SupposeX is of classC')) and homogeneous of
degree—n onR"™ \ {0} and thatK satisfies (19). Then the operatd defined by (22) is weak type
(1,1) and bounded oi.” for 1 < p < occ.

The proof of Theorem 19 is just as important as the result, so we sketch the ideas. The main
point is the weak typé1,1) estimate. Sincd is bounded orn.?, as we have just observed, the
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Marcinkiewicz interpolation theorem then implies tiats bounded orl.? for 1 < p < 2; and since
J(Txf)g= [ f(Tgy) whereK (z) = K (—z) (which satisfies the same hypotheseg@sa simple
duality argument yields the boundednesddrfor 2 < p < oo.

The main tool for obtaining the weak tygé, 1) estimate is the following lemma, which is also
useful in other situations. Some notation: Af C R™ is a measurable set, we recall that is its
characteristic function, and we denote its Lebesgue measuf&|byBy a cubewe shall mean a
translate of a set of the for@ = [0, 7)™ C R™, and we call- theside lengttof Q. If Q is a cube and
f is alocally integrable functiony f will denote the mean value gfon Q:

1
mof = 15 /Q /(@) da.

Also, 2Q) will denote the cube with the same centeraand side length twice as big. Finally, for
m € Z, Q,, will denote the collection of cubes with side len@th™ and vertices if2=™Z)". (Thus
the cubes inR,,,+1 are obtained from the cubes @,, by bisecting their sides.)

Lemma20 (Caldedn-Zygmund, 1952) — Given a nonnegatikec L' anda > 0, there is a
sequencg; } of disjoint cubes such that @ < mg,h < 2"« forall 7, (i) > [Q;| < ||A1/a, and
(iii) h(z) < afora.e.x € R"\ JQ;.

To prove the lemma, one picke/ < 0 so thatmgh < 2"« for all Q@ € Qs (possible since
mqh < 2M7| k||, for Q € Qu), and one puts thosg € Q, into the sequence that satishiph > o
(there are only finitely many). One then proceeds inductivelyrior M: having put some cubes
from Q,, into the sequence, one puts those cubes 9,,,+1 into the sequence that are not contained
in previously accepted cubes and satisfyyh, > a. Then (i) is true by construction, (ii) is true since
Al > ZfQj h > a)|Q;|, and (iii) follows from the Lebesgue differentiation theorem since
mqf < aforall @ € |J Q,, that containe.

Returning to Theorem 19, givefic L' anda > 0, we wish to show that
Hz : Tk f(z)| > a}| < C||f|l1/c. Let{Q;} be asin Lemma 20 with = | f|, and set

mQ‘jf forz € Qj,
flz) forz ¢ Q.

It is enough to show thafx : |Txg(x)| > a}| and|{z : |Tkb(z)| > «}| are dominated by
| £ll1/c. But by a simple calculatio, € L? and||g||3 < (22" +1)a/|| f||1, andT is bounded ord.?,
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so the estimate fo{x : [Tk g(z)| > a}| follows from Chebyshev’s inequality. On the other hand, let
By ={x:|Tgb(x)| > a}, O =|]20Q;

and lety; andr; be the center and side length@f. Then|B,| < || +|B, \ |, and|Q| < 2"|Q| =
2" 3 71Q ] < 2™ f]l1 /e, so it is enough to estimatés,, \ Q|. Butforz ¢ Q andy Q; we have
|z —y;| > 2r; > 2|y — y;| and (by the mean value theorem, sifé&’ is homogeneous of degree
—n—1)

|K(z—y) — K(z — y;)| < Cly—yjlle —y;| 7" (23)

Thus, sincef,, b; = 0 for all j, forz ¢ 2 we have

ITh()| = |3 Thi()| <

S [ K= 9) - Ko = b dy

<OX [ lv=ulle = o)l .
J

and hence

~ 1 C
B, \ Q g/ Th(z)|dr < — / / y — yjllz —y;1 7" b (y)| dy da.
BBl < [ b@lde < TRT ) sl =l )
But
/ ]y—yj||w—yj_"_1d$§rj/ |z|_”_1dz§crj-r;1, (24)
Rn\QQ] |Z|>2T‘j
SO ! /!
~ C C
B, \ Q| < — b; dy < —
BN < S [ iy < TS
and we are done.

The great feature of this argument is that it is extremely robust and can easily be generalized,
provided one has the? boundedness df as a starting point.

In the first place, one can replace the integral kerAgls — y) by more general kernels (z, y).
The only property of needed here is an analogue of (23) or (24):

K(2,y) — K(2.50) < Cly — olle —yol ™ for |z —yol > 2ly—wl,  (25)
/ K (2,y) — K(2.p0)| do < c. (26)
|z—yo|>2]y—yo|

together with a similar estimate with the roles of the two arguments sWitched (in order to apply
duality to obtain thel? boundedness fgr > 2). One could replace the quantity on the right of (25)
by Cly — yo|*|z — yo| "« for somea > 0, which still yields (26).
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Moreover, one can replade” equipped with the Euclidean distandér,y) = |z — y| and
Lebesgue measure by a metric spacequipped with its distance functiei{x, y) and a measurg
that has theloubling propertywith respect tai: that is, there is a constadtindependent ot andr
such thatu(Ba,(x)) < Ap(By(x)), whereB,(z) = {y : d(z,y) < r}. (One can even weaken the
triangle inequality and assume only that there is a cond&tanich thati(x, z) < Bld(x,y)+d(y, 2)].)
It might appear that Lemma 20 is special to Euclidean space, but the use of cubes is a convenience
rather than a necessity. One can replace the sequence of@ubgs sequence of balls; that have
only a controlled amount of overlap so thgl J B;) is comparable tQ _ 1.(B;); the functions); are
then supported in sets obtained by “disjointifying” tBg’s. The argument in this general setting was
worked out by Coifman and Weiss [10] and Kowi and Vagi [49]; see also Stein [84].

Finally, one can consider operators on vector-valued functions. That ¥, EtdX, be Banach
spaces. One considers a kerAelaking values in the space of bounded operators ffqrto X-; then
the operatofl'x mapsX;-valued functions td¢,-valued functions. To obtain the? boundedness of
Tk in a straightforward way one may ne&d and X, to be Hilbert spaces, but once this is done,
the proof of Theorem 19 (with absolute values replaced by norms in appropriate places) yields the
boundedness dfx from LP(R™, X;) to LP(R"™, X2) — or a generalization witfR™ replaced by a
metric space as above.

The most classical enlargement of the CabteZygmund theory, which came not long after
Theorem 19 in [5] and other papers, was to the “variable-coefficient singular integrals”

Tf(z) = lim K(z,r —y)f(y) dy (27)

0 Jja—y|>e

where, for each:, K(z,-) is smooth and homogeneous of degree on R™ \ {0} and has the
mean-zero property, anil (z, -) depends smoothly and boundedlyoim a suitable sense. (We are
being deliberately imprecise about the meaning of “smooth.” For some purposes minimal smoothness
conditions are important; for others it is best to assuifie) The operator (27) can be re-expressed

in terms of the Fourier transform as

Tf(a) = [ (e, OF () de (28)
where, for each, o(x, -) is the Fourier transform oK (z, -). As this is homogeneous of degree O,
the boundedness @f on L? is easy to establish, assuming only some boundedndssoid hence
in the first variable.

The representation (28) of singular integral operators leads directly to the theory of pseudo-
differential operators, which has become an essential tool in the study of partial differential equations.
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To be precise, a (classicalymbol of ordern (m € R) is aC*™ functions onR?" such that
08070 (x,€)| < Cap(L + €)™ (29)

for all multi-indicesa and 8 — that is,o behaves qualitatively like a homogeneous functiorg of
of degreem for large ¢ and is smooth for smaff. Examples include smooth functions that are
homogeneous of degree for large¢ (i.e.,o(z, 7€) = ro(z,§) forr > 1 and|¢| > ¢ > 0) and the
symbolo(z, £) = (1+ |€]>)™/? of the operatoA™ in (16). A (classicalpseudo-differential operator
of orderm is an operator of the form (28) wheeeis a symbol of ordern; the common notation
for the operatofl” associated to the symbelis o(z, D), whereD stands for(2xi)~1(9/0x). Such
operators are defined initially on the Schwartz spsicend under our hypothesis (29) erthey map

S into itself. (One can generalize by requiring the estimates (29) to hold ontyifocompact subsets
of an operf) C R", with C, 3 depending on the set; then the operator mgjasto C'*°(£2), and one
obtains only local.? estimates.)

The class of pseudo-differential operators includes all partial differential operators with coeffi-
cients that ar€’>° and bounded along with all their derivatives (the boundedness being inessential if
one only wants local estimates); they are the ones whose sympal§) are polynomials irg, thus
justifying the notatiorv(z, D) and the name “pseudo-differential.” Pseudo-differential operators of
order 0 are a mild generalization of singular integral operators of the form (27) or (28), modified so
that o is smooth neag¢ = 0. It is easy to see that they are bounded/@nand that the associated
kernelsK (z,x — y) (K (z,-) being the inverse Fourier transform ofz, -)) satisfy estimates of the
form (23), so the Caldén-Zygmund theory yield€.” boundedness for < p < oo. Moreover,
one can convert a pseudo-differential operator of arbitrary ordéy a pseudo-differential operator
of order 0 by composing with the operatdr™ defined by (16), and this yields boundedness of
pseudo-differential operators as maps betwkeSobolev spaces.

What makes pseudo-differential operators really useful is the fact that they feramlgebra
in which the product and adjoint can easily be calculated in terms of the symbols, up to error
terms of lower order. More precisely, éf, andoy are symbols of ordersy; andms, the product
o1(xz, D)os(x, D) is of the formr(z, D) wherer is a symbol of ordefn; + ms; moreover, there is
an asymptotic expansion efas a series of symbols of order; + ms — j (j = 0,1,2,...), con-
structed from products of derivatives®f andos, whose leading term i8,0-. A similar result holds
for the adjointo (x, D)*.

The symbolic calculus of pseudo-differential operators was developed by Joseph J. Kohn and
Louis Nirenberg [45], building on earlier results by Calaleiand Zygmund and their predecessors,
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and shortly afterward Lars#tmander [39] invented the somewhat more general and more convenient
form that we have just sketched. See Folland [28] for a quick introduction to pseudo-differential
operators and their applications and Taylor [91] for a more comprehensive account.

At this point we can resolve an issue left operg namely, the fact that whehis a positive
integer, the Sobolev spaé€, defined as\~*(L?) whereA* is given by (16), coincides with the space
LP* of functions whose distribution derivatives of orderk are inL?; more generallyf € L?_, if
and only ifo* f € L% for 0 < |a| < k.

By induction, it suffices to considdr = 1. The essential point is that the functiongx, &) =
0 (&) = 2mi&; (14 |€]?)~1/2 are symbols of order 0, so the associated operakgrs' = A~19; are
bounded ori?; also,A ! itself is of order—1, which is even better, so it is also bounded/én Thus,
if feLl |, thenAst1f e LP henceA®d;f = (;A )AT f e LP andAsf = A TASHf € LP,
hencef andd; f are inLk. Conversely, iff andd; f are inLk, thenA® f andA®9; f are inL?, and

hence so is

ATIASF — 4—12 (A719;)(A%0, f) = A [I — ﬁ Za}] f=ATIAZf = ASHLY
T 7I8

p
sofel.
8. HP SPACES THE REAL-VARIABLE THEORY

The theory ofH? spaces on the disc has an obvious analogue on the upper half-plane
U = {(z,y) € R? : y > 0}. To wit, one has the Hardy spaces

H?(U) = {F holomorphic orlU : SL;%)/R |F(z +1iy)|P do < oo} (0 < p < o0),
Y

and many results oi/?(ID) carry over toH?(U) with obvious modifications. For example, nontan-
gential convergence works much the same way, a nontangential approach region of (@@oint
on the real axis now being simply a cofér,y) : |z — x9| < cy}. Moreover, if f € LP(R)

(1 < p < x), f has a harmonic extensianto U such thatu(-,y) € L? for eachy > 0, given by the
Poisson integral.

This last fact generalizes immediately to functionsith the Poisson integral of ah e LP(R™)
is a harmonic function om’}jl. However, as i1, we denote the extra coordinate ]&ﬁ“ by ¢
rather thary and write it first; that is]R’}r+1 is taken to consist of poin{$, =) with ¢t > 0 andz € R™.
For future reference we note that the Poisson keFhelefined by (5) satisfieg P, = || P;||1 = 1 for
all ¢, sothatl| f * P, < | fllp-
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One possibility for generalizing/? spaces to higher dimensions is to study functions of several
complex variables on appropriate domain€ih see, for example, Stein-Weiss [87, Chapter Il1]. Our
concern here is with a different one that focuses instead on harmonic functions that satisfy appropriate
analogues of the Cauchy-Riemann equations. To achieve the right orientation, redalkthat- iv
is holomorphic on a domain i@ if and only if (u, v) satisfiesu,, = v, andv; + u, = 0. The first of
these equations says that ) is the gradient of a functiofy, and the second one then says ttias
harmonic.

With this in mind, in 1960 Stein and Guido Weiss [86] considgred- 1)-tuples(uy, . . ., uy,) of
harmonic functions oﬂﬁﬁi“ that satisfy the generalized Cauchy-Riemann equations

% _ Ouy, Oug oun,

—for0 < j,k < — 44+ —=0 30

oz, Oxj =5E=T Oxo Tt 0xy, ’ (30)

where we have written the coordinatesI@ﬁrl as(xo,...,zy) instead of(t,z) = (¢t,z1,...,2y,).
Again, (30) is equivalent to the conditidny, . . ., u,) = VU whereU is harmonic. Stein and Weiss

defined a Hardy space that we shall denoté#fy (R’:") for (n — 1)/n < p < oo to be the set of
all (uo, ..., u,) that satisfy (30) and

sup/ (|uo(t, o)+ + |un(t,a:)|2)p/2 dr < co. (32)

t>0 JRr

The restrictionp > (n — 1)/n is necessary to obtain a satisfactory theory; in a nutshell, the

reason is that this is the range gfor which the integrand in (31) is subharmonic. The theory can
be extended to app > 0 by considering systems of harmonic functions satisfying more complicated
generalizations of the Cauchy-Riemann equations. We shall refer briefly to the rediittisgaces
in the sequel without going into any detail; see [87, Chapter VI] for more information.

If (uo,...,u,) € HE

harm

(Rﬁ“), ast — 0 u;(t,-) converges in the topology of tempered dis-
tributions to anf; € S’(R™) whose behavior at infinity is sufficiently tame that it can be convolved
wtih the Poisson kernel, and can be recovered fronfy; by the Poisson integrali;(¢, ) = P; * f;.
Moreover, as in the case= 1, uy,--- ,u, (Or f1,--- , f) are completely determined hy (or fo)
via the most straightforward generalization of the Hilbert transformRilesz transforms
R TEE) = ) (32)

This is easily seen formally: ifug,...,u,) = VU andU(t,-) = P, = f, then by (G)ﬁ(t,g)

= 2 f(€), s0o(t,€) = —2nl¢le> I f(€) and @y (t,€) = 2migze 2™ f(¢) for j > 0.

3The name “Riesz transform” was introduced by Stein and Weiss.
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Hence, forj > 0, u;(t,-) = Rjuo(t,-), and in the limitag — 0, f; = R; fo. (Making this into a
rigorous argument is straightforward.) In short, for- (n — 1)/n, HY, (R’ can be identified
via the correspondendey, . .., u,) < fo with a space of distributions oR™ that we denote by
HP(R™):

arm(

HP(R™) = {fo € S'(R") : (uo, ..., un) € H, . (R}H), where 33)
uo(t,-) = P = fo andu;(t,-) = Rjuo(t,-) for j > 0}.
For0 < p < (n—1)/n, HP(R™) may be defined as a space of distributions in a similar but more
complicated way.

Whenp > 1 we can say more. The Riesz transforms are Cahli&ygmund singular integral
operators, so they are boundedGhfor p > 1; hence, in this casé{?(R™) is nothing butZP(R").
Forp = 1 there is an analogue of the F. and M. Riesz theorerffuif. . . , u,) € Hﬁarm(]RTl), then
up, . . . up, are the Poisson integrals of functiofis . . ., f,, € L'(R"™). Hence,

HYR") ={fe L'R"): R;jf € L"R")forj =1,...,n}. (34)

In both these cases the convergence @t, -) to its boundary functiory; takes place in thé&?
norm and pointwise a.e. (For a single harmonic functiomR’; ™" that satisfiesup,~ | |u(t, z)|P dz
< 00, u is the Poisson integral of af¥ function if p > 1, but in general it is only the Poisson integral
of ameasure ip = 1.)

The next ingredient i{? theory comes from a different direction, a 1961 paper of Fritz John and
Louis Nirenberg [41] that put the spotlight on functions of “bounded mean oscillation.” With notation
and terminology concerning cubes and mean values @& wWve define

BMO(R") = {f € Lige(R") : || fllBmo = Sgme(lf —mqfl) < 00}7 (39)

the supremum being taken over all cube®Rih (Note thatL>°(R"™) ¢ BMO(R")). If instead one
fixes a cube)y, takesf € L'(Qo), and takes the supremum only over cubies: o, one obtains
the spac&MO(Qo). John and Nirenberg’s main result is that there are constayits> 0 depending
only onn such that iff € BMO(Qy), then

{z : |f(z) = mqyfl > a}| < Bexp(=ba/| flsmo));

which implies in particular that € LP(Q,) for all p < oo. This result was immediately applied by
John and byidrgen Moser to problems in partial differential equations.
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For our purposes, however, the important point is BistO(R"™) becomes a Banach space with
norm|| - ||smo after one identifies functions that are equal a.e. and functions that differ by a constant,
and we have Charles Fefferman’s duality theorem (announced in [20], proved in detail in [22]):

Theorem21 (C. Fefferman1971) —BMO(R") is the dual space aff ! (R").

The meaning of this is as follows. First note thatfife H'(R") then [ f = 0, for by (35),
(R; fY (&) must be continuous, but by (32), this cannot be tru¢ at 0 unlessf(()) =[f=0.
If fis C> with compact support and f = 0, thenf € H'(R"), and the set of all suclf is
dense inH'(R"). If ¢ € BMO(R™), moreover, for sucly the integral [ f¢ is well defined and
unaffected if a constant is addedgoFefferman’s theorem says that (i) the map- [ f¢ extends to
a bounded linear functional o * (R™), (i) the norm of this functional (taking the norm di'(R")

to be|| f]l1 + > || R f]|1) is equivalent td|¢||smo, and (iii) every such functional arises in this way.

The final liberation ofH? spaces from analytic function theory came from their characterization
in terms of maximal functions. The first step was Hardy and Littlewood’s result (Theorem 12(c) in
this paper) that the nontangential maximal function offare H?(D) is in L? for all p > 0; the
analogous result fol/?(U) is also valid. Forty years elapsed before Donald Burkholder, Richard
Gundy, and Martin Silverstein [2] completed this picture by proving the converse, using ideas from
probability theory:

Theorem22 (Burkholder-Gundy-Silversteid971) — If v is a real-valued harmonic function on
D or U whose nontangential maximal functiefiis in LP (0 < p < o0), thenu is the real part of a
holomorphic function irf? (D) or H?(U).

Herew* is defined by (15) witlke = 1 for functions onD; for functions onRTl (recalling that
R? is U with the variables switched),

u(z) = sup  fu(t,y)l. (36)

ly—z|<t<oco

Theorem 22 — and the following Theorem 23 — are still valid*ifis replaced by}, defined by
(36) with the conditiorjy — z| < t replaced byy — z| < ct. We takec = 1 for simplicity.

With Theorem 22 in hand, it did not take Fefferman and Stein [22] long to establish the analogous
result inn variables, and to go even further by showing that the Poisson integral could be replaced by
general smooth approximate identities. To explain this, we need some notation.

First, if € L'(R"), we set

¢i(z) =tT"o(t"'z)  (t>0.)
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(Thus the mass af; concentrates at the origin &s- 0, and the factot~" makes| ¢, independent
of t. Observe that this notation is consistent with the definition (4) of the Poisson kgriele take
P = P;.) Werecall thatif[ ¢ = 1, thenag — 0, ¢, = f — [ in the L? norm and pointwise a.e. for
any f € LP; moreover, ifp € S, theng; * f — f in the topology ofS or &’ for any f in S or S’. For
¢ € Sandf € &', we introduce the following radial and nontangential maximal functions:

MJf(x)=§1>lgl¢t*f(:v)|, Mjf(z) = sup | f(y)l.

ly—z|<t<oco

(Again, the conditiony — x| < ¢ could be replaced by — x| < ¢t, ¢ > 0.)

Second, we introduce an enlargemensdhat includes the Poisson kernel,
P ={p € CR") :|0%(x)| < Cu(l + |z[)~"~ "1l for all multi-indicesa},
and a certain bounded subset%f
A={peS:|¢(2) < (L +]e)™" " and|Ve(z)| < (1+]a)) ™"}

(note that there are no unspecified constants in these inequalities).

Theorem23 (Fefferman-Steinl972 — Supposén — 1) /n < p < oo. For f € &', the following
are equivalent:

(@) M f € LP for somep € Swith [ ¢ = 1.
(b) M f € LP for somep € S with [ ¢ = 1.
(© Mg e LP forall ¢ € S, and in factsupye 4 M f € LP.

(d) f extends to a bounded functional &) so that its Poisson integral(¢,-) = P,  f is well
defined, and/* € LP.

(e) f € HP(R™) as defined in (33).

These equivalences remain valid for alt> 0, except that in (c)4 must be redefined, depending
on the value op, to involve stronger bounds afhand its derivatives up to a certain order, and in (e)
HP(R™) must be redefined as indicated after (33)

With this theorem in hand, the real-variallt® space is now understood to be the space of all
tempered distributions oR"™ that satisfy the equivalent conditions (a)-(c), which no longer have
anything to do with harmonic or holomorphic functions. Instead, it is a significant extension of the
class ofLP spaces from the rande< p < oo the full ranged < p < oo, including a modification of



28 G. B. FOLLAND

L' that turns out to have better properties tidritself in many respects. For one thing, as Fefferman

and Stein showed in [22], singular integral operators of the sort discussed in Theorem 19 are bounded
on H', and hence they also extend to bounded operators on BMO; this is a useful substifiite for
boundedness in these two exceptional cases.

There is another important real-variable characterizatiod/®fR") for p < 1, the “atomic
decomposition”. Ap-atomis a bounded functiom that is supported in a cub@ and satisfies
() llall < Q|77 and (i) [ za(x)dz = 0 for all multi-indicesa with |a| < n(p~" —1). It
is easy to verify thap-atoms belong tdZ?; more generally, iff = )" c;a; (convergence i) where
thea;’s arep-atoms and the;’s are positive numbers with- ¢/ < oo, thenf € H?. Conversely,
every f € HP can be represented this way. The latter result, due to R. Coifman [9] whenl
and to R. H. Latter [50] in general, takes some work to prove, using a variant of the decomposition
f =g+ > bjinthe proof of Theorem 19.

See [84] for more about real-variabt” spaces ofRR™. Like the theory of singular integrals, this
theory has been extended from the original settin'®fwith its standard translations and dilations
to a number of other situations. See Coifman-Weiss [11], Folland-Stein [32], and the references given
in these works.

9. SINGULAR INTEGRALS REVISITED

As we have pointed out, the CalderZygmund machine yields? boundedness of a large collection

of singular integral operators in a wide variety of contexts, provided EAdioundedness is known

to begin with. In the original setting and its immediate generalizations, the Fourier transform is the
essential tool for reaching that starting point. In other situations, however, the Fourier transform may
be unavailable or ineffective, and one needs to find other methods.

The single most powerful tool for this purpose is a functional-analytic proposition that was proved
independently by Stein and Mischa Cotlar in the late 1960s (see [43]). It concerns estimates for a sum
> T} of bounded operators on a Hilbert spdgegiven that||7;|| < M < oo for all j. Of course,
all one can say in general is thap | 7;|| < nM. But suppose there are two sequences of mutually
orthogonal subspaces #f, {X;} and{J;}, such thafl; mapsX; into )); andT; = 0 on X;. Then,
denoting the orthogonal projection ofc H onto X; by x; and applying the Pythagorean theorem
firston@ ); and then oD X; we see that

2 2
IS el = | B [ = S 1t 12 < 22 ey 2 < 222,

so|| > Tj|| £ M. The above conditions on thHE;’s are equivalent to the conditiori§*7; = 0
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= T;T7 for all 4, j (verifying this is an amusing exercise), and the idea of the Cotlar-Stein lemma is
that the conclusion remains true (with a small modification) if these equations are only approximately
valid.

Lemma24 (Cotlar, Stein; 1969) — Suppose thgl; }° is a sequence of bounded operators
on a Hilbert spacé{ and there is a functiop : Z — (0,00) such that (i)||TT;|| < ¢(i — j)?
and ||T;T;|| < ¢(i — j)* for all i,j (in particular, | T;|| = [|T;T;]|"/? < ¢(0) for all j) and (ii)
Y2 0(k) =A< oo. Then| Y 7 T;|| < Aforall n.

Stein’s proof of this result, which originally appeared in Knapp-Stein [44] and may also be found
in [27] and [84] among other places, is a delight; the reader who is not familiar with it will be well
rewarded by spending a few minutes learning it.

The Cotlar-Stein lemma is typically applied to integral operators by breaking the integral kernel
up into a sum of small pieces. For example, one can provéHeundedness of the operatdrg
in Theorem 19 by writings = > K;, whereK;(z) = K(z) if 2/ < |z| < 27t andK(z) = 0
otherwise. In fact, the first application of the lemma was to an analogue of these operators in a
noncommutative setting, as we shall discusglih.

Another early application was to the’ theory of generalized pseudo-differential operators. We
recall that classical pseudo-differential operators are operators of the form (28) where the symbol
satisfies (29). More generally, for € R and0 < ¢ < p < 1 one defines the symbol clasg’}(S to be
the set ofC'> functionse onR™ x R™ that satisfy

108000 (x, )] < Cup(1 + |g])mrlelAl, (37)

Whenp > 4, the L? theory works much the same way as in the classical pasel, § = 0, but
there are interesting operators with symbols in the borderline classep with Caldebn and Remi
Vaillancourt [3] used the Cotlar-Stein lemma (or rather an easy generalization of it where the sum
> Tj is replaced by an integrgl T)dy.())) to prove:

Theorem25 (Caldeton-Vaillancourt, 1972 — If T" is given by (28) with symbel € Sgp (0 <
p < 1), thenT is bounded ord.?.

Somewhat different proofs, which apply the lemma in its original form by using a partition of
unity to break the symbat(z, ¢) into a sum of symbols supported in the regions wire < [¢| <
2712 can be found in [27] and [84].

Operators with symbols iﬁ'g s have integral kernels of CaldE-Zygmund type — that is, satis-
fying estimates of the form (25) — only when= 1; for p < 1 they are generally not bounded on
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LP for p # 2. On the other hand, operators with symbol§ﬂ} do have Caldém-Zygmund kernels,
even for the extreme cage= 1; but in that extreme case they are generally not boundefdand
hence the.? theory also breaks down). See [84, Chapter VII].

In 1984 Guy David and Jean-Lin Joérifil5] achieved what one might call the apotheosis of
Caldebn-Zygmund theory with theirZ’(1) theorem.” To state it we need some terminology. Suppose
T is a continuous linear map frod to S’; thus (T'u, v) is well defined foru,v € S, where(-, )
denotes the pairing &8’ with S. We say thafl" is weakly bounded there is a constant’ > 0 and
an integerk’ > 0 such that, for ali- > 0,

(Tu,v)| < Cr™ wheneven andv are supported in a cube
of side length- and|9%u/, |0%v| < r~1°l for |a| < K. (This condition oru andw is invariant under
dilations.)

Three important observations: First,#f is bounded on? thenT is weakly bounded, with
C = ||T||2—-12 and K = 0; but weak boundedness is a much weaker and more easily verified
condition. Second, i” is weakly bounded]” extends continuously to a map froff¢ (the space of
C¥ functions of compact support, with” as in the preceding definition) to its dual. Thirdifis
weakly bounded, then so is its adjoifit defined by(T™*u, v) = (T'v, u).

Next, astandard kerneis a continuous functio” on {(x,y) € R™ x R" : z # y} that satisfies,
for someC, § > 0,

K (z,y)| < Cle —y|™,

|z — a'|
‘l‘ _ y‘n+5

(38)

K (z,y) — K(2',y)| + |K(y,2) — K(y,2")]| < C when|z — 2/| < S|z — y|.

The mapl’ : S — &’ is said to beassociated tahe kernelK if, for any v € S, the distribution
Tu agrees with the functiom — [ K (z,y)u(y) dy on the complement of the support«afNote that
in this case, the adjoirt™ is associated to the kern&l*(z,y) = K (y, x), which is also standard.

We shall call an operatdf : S — S’ that is weakly bounded and associated to a standard kernel
aweak Caldedbn-Zygmund operatonf, in addition, 7 is bounded o, and hence bounded di®
for 1 < p < oo, we shall calll’ a Calderdon-Zygmund operator

If T is a weak Caldém-Zygmund operator, there is a natural way to defirfefor any bounded
C* function f as a linear functional on the spage= {u € C2° : [u = 0}. Indeed, given such
awu supported iz : |z| < R}, pick ¢ € C° with ¢(z) = 1 for |x| < 2R and write f; = ¢f,
fa=(1-¢)f. Thenf; € S, so(T fi,u) is well defined. On the other hand, sinfe. = 0 we have
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| K(z,y)u(z)de = [[K(z,y) — K(0,y)|u(z) dx for [y| > 2R, so we may define

(T fo,u) = / [1K9) — KO.0)) aly)uto) dy

the latter integral being absolutely convergent in view of (38). We thefi'get T'f; + T f5; it is
easy to check that this is independent of the choicg. dfinally, noting thatX is dense inH* (R"),
we say thafl’ f € BMO if the functionalT f extends to a bounded functional & (R™).

Theorem26 (David-Jourre, 1984 — Supposd’ : S — S’ is a weak Caldeésn-Zygmund
operator. Ther?" is a Caldén-Zygmund operator if and onlyTf(1) € BMO and7*(1) € BMO.

The proof in [15] (see also [84]) consists of using some auxiliary operators to reduce to the case
whereT' (1) = T%(1) = 0 and then using the Cotlar-Stein lemma. There is now an alternative proof
of both of these steps using wavelets, which we shall sketghan

As a simple application, consider a pseudo-differential opeflatehose symbob belongs to the
classS%1 as in (37). As we noted earli€f, is associated to a standard kernel, and it is easily seen to
be weakly bounded. Moreover, one can readldff) directly from (28):

T(1)(z) = [ ™ 2q(x,£)8(£) d§ = o(z,0), which is a bounded function. Hence:
Corollary 27 — Suppos€’ is a pseudo-differential operator with symbolSﬁl.

(@) T is bounded orl.? if and only if 7%(1) € BMO.

(b) If T* is also a pseudo-differential operator with symboSﬁ)], thenT is bounded orf.2.

The theory of singular integrals has been further extended in a number of significant directions,
motivated by problems in partial differential equations and other areas of analysis; here we can only
sketch a couple of the main ideas.

First, one can consider operators that resemble Gatd8ygmund singular integrals but involve
integration over lower-dimensional manifolds. The first such operators to receive intensive study —
by Stein, Stephen Wainger, and others in the 1970s; see the survey paper [85] — wdilbelte

transforms on curves
d

1
t
OB RO
wheref is a function onR™ and~ : [-1,1] — R™ is a smooth curve with(0) = 0. The operators
involving integration over higher-dimensional manifolds are knowsiagular Radon transforms
they have the form

Tf(x)= y K(z,y)f(y)do(y),
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where M, is a smoothk-dimensional submanifold dk™ containingz and varying smoothly in,
K(z,-) is a kernel of Caldé&m-Zygmund type onl/, with singularity atz, ando is surface mea-
sure onM,. The validity (or not) ofL? estimates for these operators turns out to depend strongly
on curvature properties of the curyeor the manifolds)M,,. This theory was developed for the hy-
persurface caseé:(= n — 1) by D. H. Phong and Stein [65, 66], and in general by Michael Christ,
Alexander Nagel, Stein, and Wainger [8]. We note that the proofs aftresstimates in [65] and [66]
use the Caldén-Vaillancourt theorem and tH€(1) theorem, respectively; the proof in [8] uses the
Cotlar-Stein lemma directly.

Second, one can consider “multi-parameter” singular integrals, where the underlying geometry
involves not the usual dilations — rx on R™ but a multi-parameter family of dilations. The most
basic examples are convolution operatbs= f * K onR"™ x R™ whereK (x,y) is homogeneous
(or approximately homogeneous) of degree in = and of degree-m in y and has an appropriate
“mean-zero” property. Note that this entall§ being singular not just at the origin but on the whole
subspaces = 0 andy = 0. WhenK (z,y) = K;(z)Ks(y) where K; and K, are Caldedn-
Zygmund kernels oR™ andR™, L? estimates follow easily from the classical theory, but the general
case requires other techniques. In this setting the theory is due to Robert Fefferman and Stein [23],
and a number of generalizations and variants have been developed since, including “multi-parameter
singular Radon transforms”; see Street [89] for a comprehensive account as well as references to the
literature.

10. LITTLEWOOD-PALEY THEORY

We now return to the theorems of Littlewood and Paley that we alludedth ihey were announced

in 1931 in [53], but the full proofs did not appear until 1936 in [54]. (Paley died in a skiing accident
in 1933, at the age of 26.) The main goal is the following theorem, which Littlewood and Paley
gave in a slightly more general form than we shall do. Given a fungtion T with Fourier series
> cpet | let

AO)= D e, (39)

20—l |k|<2!
so that) ™ cpe® = co + Yo 4. For simplicity in stating the results below, we shall assume that

Co(:ff) =0.

Theorem28 (Littlewood-Paley1931) — For1 < p < oo there are constantd,,, B, > 0 such
that for all f € LP(T) with [ f =0,

Aty < | (1) ™

< Byl flp-
p
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Corollary 29 — If 1 < p < oo, f € LP(T), and [ f = 0, then for any sequencg;} with
e € {—1,1} the series _ ¢,A; converges ir’.”(T), and itsL” norm is comparable tpf ||,

These results are of considerable interest in their own right, but what has developed into a
widely applicable tool is an auxiliary function that Littlewood and Paley used in proving them, the
“g-function.” This, in its original form, pertains to Fourier seriesbof power-series type — that is,

f(0) = 37 cre’*® — and their holomorphic extensio¥z) = > 7° ¢, 2*. For such arf, we define

1 ‘ 1/2
g¢(0) = (/0 (1-— T)|F'(re’0)]2dr) , (40)
and we have

Theorem30 (Littlewood-Paley1931) — For1 < p < oo there are constantd,,, B, > 0 such
that A, || fll, < llgrll, < Byl fll, for all f € LP(T) whose Fourier coefficients, vanish fork < 0.

(The assumptiony = 0 is clearly appropriate here sinegdisappears in passing fromto £”.)

As explained in [53], there is a simple heuristic argument that leads from the fuisfana,|2)!/2
in Theorem 28 to the functiogy. The basic intuition is that the partial sum;" aj, of a series behaves
like the Abel meard_{° a,r* with r = 1 — (1/n). Granting this, sinceé\, is the difference between
the 2'th and the2!~'th partial sums of the Fourier series ifone has

1-27¢
A(0) = F((1—27he?) — F((1 —2'e?) = /1_21—z F'(re') dr,

and hence (sincel — 27%) — (1 — 2171 =27
2 =2 i)
AP =
SIa~Y| [ Feehd
Z:/1 21

The actual deduction in [54] of Theorem 28 from Theorem 30, however, is nowhere near as simple

1—2-!

<Y 2 / F(re®)[2 dr

1-21-1

1
(1-r \F’(re )|2 dr:/ (1—7“)|F'(7“ei9)|2 dr:gf(H)Q.
21— l 0

as this heuristic argument would suggest. It is quite convoluted and involves a partial analogue of
Theorem 30 for a more complicated version (cab?)jof the g-function.

As with the theory ofH? spaces, it was natural to seek analogues of Theorem 30 for functions on
R™ rather tharfl', using harmonic functions d]@?fl. This theory was first developed in a 1958 paper
of Stein [80], with some extensions and refinements afterward. The most straightforward analogue of
the g-function in this setting is the following: givefi € LP(R™) (1 < p < o0), letu(t,) = P, x f
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be its Poisson integral as in (5), and set
oo 1/2
gf(x) = (/ |Vt7$u(x,t)|2t dt) . (42)
0

It will also be of interest to consider variants of this expression involving tilgrivatives ofu:

g?(ﬂ?)Z(/OOO

Observe tha‘g} differs from g; only in the substitution 0®u/ot for V, ,u, and that(gs)? =
(g})2 +(gr)? whereg; is defined by (41) wittV, , replaced byv .. Here is the analogue of Theorem
30:

o
W(%t)

2 1/2
2k—1 dt> (k=1,2,3,....) (42)

Theorem31 — Let Gy denote any of the functiong or g’; (k> 1). For1 < p < o there are
constants4,,, B, > 0 such thatd, | f||, < [|G¢ll, < By fl|, forall f € LP(R™). What is more,
eachGy is an isometry orL? up to a constant factor

The Caldedbn-Zygmund technology yields a proof that is easy enough to be sketched here; see
[81] for details. First, the.? result is an immediate corollary of the Plancherel theorem. Indeed, since
u(t, Y§) = eI f(€) by (6), we have

/8u

—(t

8t< )
so sincef;” te~*™!¥l dt = 1/167%|¢|?, Fubini's theorem yield§g}(|3 = ||g¢[|3 = %II/[|3 and hence
lgsll5 = 511 £13- A similar calculation shows thaiy} |3 = [(2k — 1)!/4%]]| £|]3.

2
M—/NMMWM—/M%W“Wﬁm%&

The LP boundedness of thgfunctions can now be obtained by a clever application of the gener-
alization of Theorem 19 to vector-valued functions, as discussgd. ilVe show how this works for
gy, the argument fog]’i is essentially the same. Let

H={0: 0.00) = € ol = [ ottt < oo

Fore > 0 andz € R", defineK.(z) € ‘H by K.(z)(t) = V:,P.. Routine estimates on the
Poisson kernel and its derivatives show thafz) is indeed inH, and that| K.(x)||n < Clz|™
and ||V.K(z)||x < C|z|~™"! with C independent ot. Moreover, the results of the preceding
paragraph imply that the operatpr— fx K. (which maps<C-valued functions t@{-valued functions)
is bounded fron?.2(R™) to L?(R", H) uniformly in e. It follows that

1/p
(/Hf*KJxW%> 1 * Kl e s < Bollfly
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with B, independent of. Butg;(z) = limc_.o || f * Kc(z)|#, SO||g¢llp, < Byl fl, as desired.

The reversd.? estimates follow from the preceding results by an easy duality argument. Here it
is for g}: polarization of the identity g ;|3 = ;|| f[|3 yields

°°8u1 TUZ —
4/n | S D ho)tdide= | fi@)fa(e) da.

so by the Cauchy-Schwarz inequality {lnand Hilder’s inequality (inx),

‘ [ @R

<4 / gk (2)gh, (z) da < 4)lgh, [ llg, o

wherep andq are conjugates. Taking the supremum overfalvith || f2||, < 1, for ¢ (and hence)
in (1,00), we obtain|| f1 ||, < 4Byl/g+, ||, and we are done.

There are several other nonlinear operations relatgdftmctions that satisfy similar estimates.
We shall not discuss them in detail, but we should at least mention one of the most important, the
so-called “Lusin area integral”

1/2
s = | [ Voyult,y) 2" dydt|
ly—z|<t<oo

which is tog, as nontangential maximal functions are to radial maximal functions. The analogue of
Sy for functions onT (where the term “area integral” is directly appropriate) goes back to a 1930
paper of N. N. Lusin [55]; the theory dR™ — in particular, the analogue of Theorem 31 fyr —

was developed by Stein [80] (see also [81]).

The g-functions and their relatives are a powerful tool for proving estimates for various classes
of linear operators. For example, they are used in establishindgthH®oundedness of the multi-
parameter singular integrals described at the er$® oA more classical application is to the study of
Fourier multipliers that is, operator& on L?(R") of the form (T f)" = mf wherem is a bounded
measurable function. There is a group of related theorems that give general conditiensnater
which T is also bounded of? for all p € (1, 00). Here is one (a minor variation on results of Mikhlin
and Hirmander):

Theorem32 — Supposen is of classC*) on R™ \ {0} and that|0®m(¢)| < A|¢|~lel for
la|] < k, wherek > n/2. Then the operatof’ defined by(7'f)" = mfsatisfies||Tpr < BA| fllp
for 1 < p < oo, whereB depends only op andn.

A proof of this result can be found in Stein [81], where the main point is to estigagten terms
of a more complicateg-function of f (an analogue of the LittIewood-PaI@y). Here, to give the
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flavor, we shall give a simple proof of the important special case wheiseradial and of “Laplace
transform type”:

m(&) = mo(|¢]) where mgy(\) = /\/OO e*”¢>(t) dt for somegp € L*(0, cc.)
0

(Note that this implies thatn satisfies the hypotheses of Theorem 32 forka)l In view of
Theorem 31 it is enough to show that, < Mg7. Settingt = 27s andy(s) = ¢(2s) in the
formula formg, one sees thd@'f) (&) = — [:°(9/ds)[e~>™El]y(s) f(€) ds and hence

(P« TyY(E) = — /OOO e+ e () ds.

In other words, ifu andU are the Poisson integrals ¢fandT f, respectively,

Ut z) = — Ooo %(t s, 2)0(s) ds,

so wWith M = ||4|| o,

ou © 9%y | 9%,

875(75,95)‘ :'— ; @(tﬂ—s,x)d}(s)ds SM/O @(t—f—s,x) ds.
Hence by the Cauchy-Schwarz inequality,

o, | 192 2 M2 [>|0% ?

— < |M — < — — 2 ds.

’81& (t,z)] < [ /t 552 (s, ) ds] < /t 5a2 (s,z)| sds

Now an integration irt and an application of Fubini's theorem yielgs; (z)> < M?g}(x)* as
desired.

As an immediate application of Theorem 32, we can extend Proposition 16 #’tBebolev
spaces fot < p < co. As the discussion following that theorem indicates, the missing ingredient is to
show thatA®”” is bounded ori.? with a bound that does not grow too rapidlyinBut (A% f )~ = myf
with m, (€) = (1 + |£?)%/2, and it is easy to check that, satisfies the hypotheses of Theorem 32
with A = C(1 + |y|)¥, which is more than sufficient.

Another application of Theorem 32 is to establish an analogue of Theorem 28 for functions on
R. (There are also versions @®1*; see [81].) Fork € Z, let xor and x2x+1 be the characteristic
functions of[2¥, 25+1] and[—2k+1, —2¥], respectively, and IetA; f)" = x;f; thusf = S°°_ A, f
for f € L*(R).

Theorem33 — With notation as above, far < p < oo there are constantd,, and B, such that
Apll fllp < 1220185 1121l < Byl fllp for all f € LP(R).
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The idea of the proof is as follows (see [81] for details). Bix C*°(R) with ¢(§) = 1 if
1<¢&<2andg(§) =0if £ < Joré > 4. Fork € Zlet o (€) = ¢(277¢) and dop41(£) =
#(—27k¢), so thaty; is a smoothed-out version qf;, and let(S; f)” = gbjf. Also, letr; be the
jth Rademacher function (14). It is easy to check that fort adl [0, 1] the functionsm,(§) =
oo 2 (t) i (&) + raj41(t)p—; ()] satisfy the hypotheses of Theorem 32, with the constairt-
dependent ot, and hence the corresponding multiplier operators are uniformly bounddd,on
1 < p < oo. The conclusion of Theorem 33, with; replaced bysS;, then follows by the same
clever application of Lemma 11 as in the proof of Theorem 10.

This last conclusion says that the map- (S; f)>,, is bounded fron.?(R) to LP(R, {?). Also,
by using a vector-valued version of the Hilbert transform and arguing as in the proof of Corollary 9,
it is not hard to see that the m&p;) — (A, f;) is bounded orL?(R, ). Combining these facts with
the observation thah ;S; = A;, Theorem 33 follows.

Various aspects of Littlewood-Paley theory have been developed and applied in contexts other
thanR™ with its standard geometry. The broadest generalization, due to Stein [82], is to the setting of
symmetric diffusion semigroups of which the Poisson integral is a paradigmatic example. For another
historical review of aspects of the Littlewood-Paley theory, see Stein [83].

11. HARMONIC ANALYSIS ON GROUPS

The theory of Fourier series and Fourier transforms constitutes the analysis of functidremdiR

in terms of the basic functions,(9) = ¢** ande¢(z) = ¢*"*, which are precisely the continuous
homomorphisms fronT andR into T. In this section we briefly sketch some of the history of

the analogous theories for functions on other types of groups. The story we tell here is seriously
incomplete, but at least all parts of it are connected to each other! For more complete accounts of
the general theories discussed here with additional historical references we refer to Folland [30] and
Mackey [58].

The ideas underlying these theories can be traced back to the work of Gauss on number theory,
where (from the modern perspective) he made use of Fourier analysis on the group of integers modulo
n. The general picture emerged from the theory of Lie groups, begun by Sophus Lie in the early
1870s and further developed by others — notably Friedrich Engel, Wilhelm KillingEéindCartan
— over the succeeding half-century, and the theory of general topological groups, which dates from
the 1930s. The crucial prerequisite for analysis is the existence on any locally compact topological
group of a (right)Haar measurgthat is, a Radon measure, unique up to scalar multiples, that is
invariant under right translations. (This immediately yields another Radon measure that is invariant
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under left translations. The two coincide for all the classes of groups we shall discuss below: Abelian,
compact, and nilpotent Lie.) For Lie groups this can easily be established by differential-geometric
constructions; it was proved by Haar [34] for second countable locally compact groups and By Andr
Weil [94] in general. In what follows, we assume that each locally compact grasquipped with

a fixed Haar measure, and we denotd.”(G, 1) and the volume elememlu(x) simply by LP(G)

anddz.

With Haar measure in hand, there is a Fourier analysis on any locally compact Abelian(group
that directly generalizes the classical theoryTbandR. To begin with, we define thdual group
G to be the set of all continuous homomorphisms frénto T, which — equipped with pointwise
multiplication and the topology of uniform convergence on compact sets — is also a locally compact
Abelian group. For: € G and¢ € G, we denote the action agfonz by (¢, z). (WhenG = R",
we identify(} with R” by the pairing(¢, z) = €2™¢%), Eachx € G defines an element of the
double dual? by (z,¢&) = (¢, ), and the map: — = is an isomorphism of topological groups (the
Pontrjagin duality theorem Moreover,G is compact if and only it is discrete, and vice versa.

TheFourier transformof f € L!(G) is the bounded continuous functingmn G defined by

flo) = /G F(2)(E, 2) dz.

As onT andR, the Fourier transform turns convolution into pointwise multiplication and translation
by z into multiplication by (¢, zo); it mapsL!(G) into Co(@) (the Riemann-Lebesgue lemma) and
extends to a map from?(G) to L%(G) that is unitary if Haar measure @it is suitably normalized;
moreover, with the same normalization one has the inversion formula

f(x) = /@f(f)<£,x>dﬁ

(to be taken with a grain of salt unlegse Ll(@)). This was worked out first by Weil [94] and then
in a more elegant form by Henri Cartan and Roger Godement [7].

For non-Abelian groupé& the homomorphisms int® do not suffice to analyze functions 6#
as they are all trivial on the commutator subgroup. The appropriate generalization is found by recog-
nizing thatT may be regarded as the group of unitary1 matrices and considering homomorphisms
into higher-dimensional unitary groups instead, that is, unitary representatichslofthe greatest
generality, aunitary representatiorof G on a Hilbert spacé{ is a homomorphismr from G into
the groupl/(H) of unitary operators oft{ that is strongly continuous, i.e., the map— 7 (z)u is
continuous fronG to H for eachu € H. (Henceforth, when we say “representation” we shiilays
mean “unitary representation”.) A representatiois calledirreducibleif the only closed subspaces
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of H that are invariant under(z) for all x € G are{0} and. If = andr’ are representations Gt
andH’, respectively, a bounded linear map: H — H’ such thatl'r(z) = «'(z)T forallz € G
is said tointertwinew and~’, and two representations are calkglivalentif there is a unitary map
that intertwines them.

We are allowing representations on arbitrary Hilbert spaces from the outset, as a matter of effi-
ciency. However, it should be noted that nobody thought of studying infinite-dimensional representa-
tions as such (though a few special cases were well known) until about 1930, when they arose in the
context of quantum mechanics.

One of the fundamental results of representation theory, know8chsr's lemmais that if =
is an irreducible representation 6fon H, the only bounded operators @t that commute withr
(i.e., that intertwiner with itself) are scalar multiples of the identity. (The converse is also true: if
is reducible, the orthogonal projection onto a nontrivial invariant subspace commutes. withis
has the following consequences. Firstriis irreducible,7(x) must be a multiple of the identity
wheneverr is in the center ofy. From this it follows further that i is Abelian, every irreducible
representation is one-dimensional, and hencedihzen be regarded as the set of equivalence classes
of irreducible representations 6f. Also, if G is compact, every irreducible unitary representation of
G is finite-dimensional. (The key here is that for any representatiohG on H and any nonzero
v € H, the operatofl;,(u) = [ (u,n(z)v)n(x)vdz is nonzero, self-adjoint, and compact, and it
commutes withr, so its eigenspaces with nonzero eigenvalues are finite-dimensional and invariant
underr.)

The representation theory of finite groups was developed by Ferdinand Georg Frobenius, William
Burnside, and Frobenius’s student Issai Schur beginning about 1890. The historical evolution of the
basic concepts and results was rather different from the way the subject would normally be presented
now, but that is a story to be told elsewhere; see Curtis [12] and Mackey [58]. For analysts the
real starting point is the fundamental paper of Hermann Weyl and his student Fritz Peter [64] in
which they showed that certain aspects of this representation theory could be generalized to arbitrary
compact groups to yield a Fourier analysis on such groups. (They assumed that their groups were Lie
groups solely in order to have an invariant measure available, as their paper antedates Haar [34] by a
few years.) Their main theorem is as follows:

Theorem34 (Peter-Weyl1927) — LetG be a compact group, with Haar measure normalized
so that the measure @ is 1. LetG be a set of irreducible (necessarily finite-dimensional) repre-
sentations of> containing exactly one member of each equivalence classr RoIC, let d, be the
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dimension of the Hilbert spad&, on whichr acts, and forx € G let (m;;(x)) be the matrix ofr(z)
with respect to a fixed orthonormal basis?éf.. Then

(Vdemij :m € G, ij=1,...,d;}
is an orthonormal basis fof.?(G).

The main contribution of Peter and Weyl — the point where they had to go beyond the algebraic
reasoning that had been developed for finite groups — was in proving the completeness;géthe
which they did by showing that their linear combinations are den§g @) in the uniform norm.

The theorem can be reformulated in a way that avoids a choice of orthonormal basis.for
Namely, forr € G andf € L*(Q), let f(w) be the operator o, defined by

flm) = /Gf(l“)ﬂ(l‘_l)dl‘ = /Gf(x)ﬁ(m)* dx.

Then the expansiofi = Zm.,j d-(f,mj)m;; can be restated as

where the convergence is in tti€ norm; and the Parseval identiy |3 = >, ; ; dx|(f, mi;)|* can
be restated as
1£13 =" detr[f(m)" f())-
el
(The trace of a matrix is invariant under conjugation, so it makes sense to speak of the trace of an
operator on a finite-dimensional space.)

There is another important aspect to the Peter-Weyl theorem. Any compact Gracfs on
L?(G) by right translations, giving a unitary representatiof G' on L?(G) defined by[R(x) f](v)
= f(yz). Itis known as ther{ght) regular representatiorof G. With notation as in the Peter-
Wey! theorem, it is easy to verify that for eaeche G and eachi = 1,...,d,, the subspace of
L*(G) spanned byr;1, ..., mq, (theith row of the matrix(r;;)) is invariant undet?, and that the
subrepresentation @t on this subspace is equivalenttoHence:

Corollary 35 — The regular representation of a compact gr6uis a direct sum of irreducible
subrepresentations, and for eache G the equivalence class af occurs in this direct sum with
multiplicity d.

The example oR already shows that compactness is needed for the first assertion of this corol-
lary: there are no one-dimensional subspacds’6R) that are invariant under translations and hence
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no irreducible subrepresentations of the regular representati@ &ather, the Fourier inversion
formula shows how to synthesize functionslif(R) out of anintegral of the irreducible represen-
tationsz — €2™%*, In 1930 Marshall Stone [88] showed how to generalize this to arbitrary unitary
representations @, and about fourteen years later Godement, Warren Ambrose, and M. A. Naimark
independently and almost simultaneously generalized Stone’s theorem to arbitrary locally compact
Abelian groups.

To state this result we need to recall a definitionlfs a Hilbert space and’ is a set equipped
with ao-algebra of subset$1, anH-projection-valued measuien X is a mapP from M to the set
of orthogonal projections ot such thatP(&) = 0, P(X) = I, P(ENF) = P(E)P(F) for all
E,F € M,andP(|J E;) = > P(E;) (convergence in the strong operator topology) for all finite or
infinite sequence$F;} of disjoint sets inM. Any suchP determines a-algebra homomorphism
from the algebra of bounded measurable functiongao the algebra of bounded normal operators
on’H denoted byf — [ f(z)dP(x). (See [30] for details.)

Theorem36 (Stone, 1930 Ambrose, Godement, Naimark944 — If = is a unitary represen-
tation of a locally compact Abelian grou@ on a Hilbert spaceH, there is anH-projection-valued
Borel measureP on G such thatr(z) = Jg(&, x) dP(§).

Whenr is the regular representatiaR of G, the measure is given by [P(E)f]” = xef.
Stone’s original theorem{ = R) is often stated in the form(z) = ¢>™*4 whereA is a (perhaps
unbounded) self-adjoint operator 61 the relation with our formulation is tha® is the spectral
measure of4, so thatd = [ £ dP(¢).

There is a related result that has influenced many later developments. One has the regular repre-
sentationR and the “modulation” representatidd of R” on L?(R"), defined by

[R(z)fl(y) = fly+=),  [MESIy) =Y f(y), (43)

which are intertwined by the Fourier transform. These representations are jointly irreducible, that
is, there are no nontrivial closed subspaced.8fR") that are invariant under alR(z) and all
M(¢). (If X is a closed invariant subspacg,is a nonzero element ¢, andg L X, then0 =

(M(&)R(z)f,g) = [ ¥V f(y — x)g(y) dy for all z and¢; hencef (- — z)g(-) = 0 a.e. for allz;
hencef = 0 org = 0.) Itis easily computed that and M satisfy

R(z)M(&) = ™ M(£)R(x.) (44)

This is the integrated form of the “canonical commutation relations” of quantum mechanics, and
it is important to determine how many different pairs of representations there might be that satisfy
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this relation. In fact, assuming irreducibility, up to unitary equivalence there is only one; this is the
celebrated Stone-von Neumann theorem first announced by Stone [88] (who never published his proof
in full) and proved in detail by John von Neumann [93]:

Theorem37 (Stone 1930 von Neumannl931) — If = and p are unitary representations "
on a Hilbert space that are jointly irreducible and satisfy

m(2)p() = 2T p(E)m (), (45)

then there is a unitary mafy : H — L?(R") such that/7(x)U~! = R(z) andUp(&)U ! = M (€),
whereR and M are defined by (43).

Von Neumann'’s elegant proof of this can also be found in [27].

By this point it should be clear that one of the main tasks for anyone wanting to do harmonic
analysis on a locally compact grodpis to classify the irreducible representationgtbép to equiv-
alence. For Abelian groups this means describing the dual gﬁbelxplicitly; this is a well-studied
matter. There are also several ways of constructing the irreducible representations of the classical
compact matrix groups; see, for example, Hall [35]. For non-Abelian, noncompact groups, however,
the irreducible representations are in general infinite-dimensional, and their classification requires a
host of new techniques depending on the nature of the group in question. It did not really get under
way, except for a few special cases, until after World War Il.

In fact, the first complete classification of the irreducible representations of a group for which
the finite-dimensional ones do not separate points is implicitly contained in the Stone-von Neumann
theorem, although this apparently was not explicitly realized until much later. The relation (44)
implies that the operators of the fore3™ M (¢)R(x) (z,& € R™, t € R) form a group whose

abstract structure is given as follows:
(2,6,t) (¢, &, t) =(@+a/, §+ &, t+1 +2- ), (46)
(J),f,t)_l - (—III, _57 —t+ f ' LL')

In other words, the spa®” x R™ x R, equipped with the operations (46), is a group, now called
the Heisenberg groug,,, and the mag : H,, — U(L?*(R")) defined by

[S(z.& ) f)(y) = [ MOR)f(y) = Y f(y + x)
is an irreducible representation B, on L2(R").

Now supposdl is an arbitrary irreducible representation Af, on a Hilbert spacé{. The
center ofH,, is easily seen to b& = {(0,0,¢) : t € R}, so by Schur's lemma we must have
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I1(0,0,t) = 2™ for somea € R. If a = 0, II factors through the Abelian grouf, /Z = R?",

so it is one-dimensional and of the form, 5(z, £, 1) = 2™ (@2 +88) 1f ¢ # 0, let 1%(z, &, ) =
(z,a=1¢,a71t); thenll® is again a representation &f”, and its restrictionsr(z) = I1%(z,0,0)
andp(§) = 11%(0,&,0) to the subgroupg$(z,0,0) : £ € R"} and{(0,£,0) : £ € R™} are easily
seen to satisfy (45). But then by Theorem BI7, is equivalent taS, and hencdl is equivalent to
Sa(z,&,t) = S(x,a&, at). Moreover, theS,’s are all inequivalent to one another: they are already
inequivalent on the centéf.

In short, the representations, g (o, 3 € R™) andS, (a € R\ {0}) form a complete set of
inequivalent irreducible representations @f,. But this early achievement in non-Abelian, non-
compact representation theory went unremarked for many years; the earliest explicit acknowledgment
| have found is in a 1958 paper of Dixmier [17], and it is ignored in the historical survey [58]. And
not until the 1970s was the ubiquity &f, sufficiently appreciated that the name “Heisenberg group”
became common usage.

One of the most important devices for constructing representations of a groupiisltivéng
processdue originally to Frobenius in the context of finite groups. One starts with a locally compact
groupG, a closed subgroufl, and a unitary representatierof H on a Hilbert spacé{,. LetG/H
be the homogeneous space of rightcosets and; : G — G/H the quotient mapg(z) = Huz;
G'/H carries the locally compact topology in whidh is open precisely whep~!(E) is open in
G. Let F, be the space of continuo@$,-valued functionsf on G such that (i)f (hz) = o(h) f(z)
forz € Gandh € H, and (ii) ¢(supp(f)) is compact. By (i), forf € Fy the norm|| f(z)|#,
depends only or(z), so if G/H admits aG-invariant measurg, we can form the Hilbert space
completionF of F, with respect to the norrpf||% = Jeyu 1f ()13, du(q(x)), and the action of?
on Fy by right translation[r(z) f](y) = f(yx), extends to a unitary representation(obn F. It is
called therepresentation o6y induced byr and denoted bind$ (o). There is also a modification of
this construction that works whe®/H has noG-invariant measure; see, for example, [30] (where,
however,GG/H is taken to be the space I&ft H-cosets and the action ¢f on Fj is given byleft
translation).

The simplest example: Iff is the trivial subgroud 1} of G ando is the trivial representation of
H onC, thenind$ () is the regular representation 6f

One of the most far-reaching theorems of representation theory is the so-called Mackey imprim-
itivity theorem, which George Mackey discovered by generalizing the Stone-von Neumann theorem
in three steps, the first two of them in [56] and the last (and most substantial) in [57]. To explore the
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applications of this theorem would take us too far afield, but as the path to it is fairly short and uses
the results discussed above, it is worth sketching here.

First, one generalizes Theorem 37 fri®f to an arbitrary locally compact Abelian grodp To
wit, if 7 andp are jointly irreducible representations @fandG on a Hilbert spacé{ that satisfy
m(x)p(&) = (&, 2)p(&)7(x), there is a unitary map : H — L?(G) such thafU 1= (z)U f](y) =
flyz) and[U~p(E)U fl(y) = (& u) f ()

This may be restated as follows. By Theorem 36 plus Pontrjagin duality, theré4somojection-
valued measur® on G such thap(¢) = [ (&, z)dP(x), and the commutation relation(z)p(£) =
(&, 2)p(€)m(z) is equivalent tar(x) P(E) = P(Exz~')7(x). Second generalization: when reformu-
lated this way, the preceding result is valid also for non-Abelian groups. Thatrdsié represen-
tation of a locally compact grou@ on H and P is anH-projection-valued measure @nsuch that
m(x)P(E) = P(Exz Y)n(z) forz € G, E C G, andw and P are jointly irreducible, there is a
unitary mapU : H — L%(G) such thafU ~'7(z)U f](y) = f(zy) andU ' P(E)Uf = x g f.

The final generalization tells what happens if we are givenead aP as above wher® lives
not onG but on a homogeneous spaGg¢ H. Here is the answer, whose broad scope obviates the
irreducibility hypothesis:

Theorem38 (Mackey,1949 — Supposé&- is a locally compact groupH a closed subgroup,
7 a unitary representation off on H, and P an H-projection-valued measure ad/H such that
m(x)P(E) = P(Ex Yr(z) forz € G and E C G/H. Then there is a unitary representation
o of H (uniguely determined by and P up to equivalence) and a unitary mdp : H — F,
where F is the Hilbert space ofnd% (o), such thatU 'z(z)U = [ind%(0)](z) for z € G and
U 'P(EYUf = (xgoq)fforfecF.

Induced representations are a major source of irreducible representations of non-Abelian, non-
compact groups. For example, the representatiynsf the Heisenberg groufl,, discussed above
are equivalent to representations induced from the one-dimensional representations of the subgroup
{(0,&,t) : £ € R", t € R}. Another class of examples comes from the noncompact semisimple
Lie groupsG, which possess a family of representations known as the “principal series.” These are
representations induced from the finite-dimensional irreducible representations of sub§rotips
certain type (“Borel subgroups”). We now say a little more about them under the hypothesis that
has “real rank one” (which we need not explain here), with an eye to making connections with the
topics discussed earlier; details can be found in [44].
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There is a certain nilpotent subgrolp of GG that meets each coset & (except for a set of
measure zero) in one point, so the principal series representations can be realized as acting on certain
spaces of vector-valued functions onN. has the following properties: First, it can be identified as
a set withR" (for suitablen) in such a way that the origin is the group identity, the group operations
are given by polynomials in the coordinates, and Lebesgue measure is a (left and right) Haar measure.
Second, it is naturally equipped with a one-parameter fafaily: » > 0} of group automorphisms
calleddilationswhich, under the identification witR™, are of the form

Or(21, .y xn) = (r*aey, ..., r%"xy,) (a1y...,a0 >0.) (47)

We shall call groups with these two properti@snogeneous groupéT hey are also often referred
to as “nilpotent groups with dilations,” as they are, in fact, all nilpotent.) The classic examples are
the Heisenberg groupd,,, whose canonical dilations are given&yz, ¢, t) = (rz, ré, r%t). (H, is
isomorphic to theV for G = SU(n + 1,1).)

Principal series representations may or may not be irreducible and inequivalent to each other.
The question of determining when these conditions hold amounts to the study of the intertwining
operators between a representation and itself or between two different representations. It turns out
that these operators can be realized as singular integral operatdvs dfore precisely, they are
formally defined as convolution operators,

Tf(x) = /N fay™ K (y) dy,

where K is a smooth function oV \ {0} that has a certain “mean zero” property and satisfies
K(6,(z)) = r~?K (z) whereQ is the sum of the exponents in (47). (This degree of homogeneity

with respect to the dilations. is precisely the one that puls just on the borderline of integrability

near the origin and near infinity.) In other words, these operators closely resemble the singular integral
operators of Theorem 19 except that the translation structure is non-commutativeréther than

x — y) and the dilations in question are non-isotropic. Like the latter, they are boundBt(ah

for 1 < p < oo, but here thel.? boundedness must be established by an application of the Cotlar-
Stein lemma before the Calder-Zygmund machine can be used to establish the boundedness on
other L? spaces. In fact, this was the original application of the Cotlar-Stein lemma, and the study of
intertwining operators by Knapp and Stein [44] was the original application of these singular integrals.

It was realized not long afterward, however, that singular integrals on homogeneous groups, like
their classical counterparts, can tell us much about certain kinds of differential operators, particularly
those constructed out of non-commuting vector fields where the non-commutativity plays an essential
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role in their behavior. The first substantial step in this direction was taken in Folland and Stein [31],
where singular integrals on the Heisenberg grélypwere used to obtain sharp estimates for certain
operators arising in complex analysis in several variables. (The connection with the latter subject
comes from the fact tha&fU (n + 1, 1) is isomorphic to the group of biholomorphic transformations

of a certain domairD Cc C"*! that is an analogue of the upper half planeCinand the boundary

of D can be naturally identified witlif,,.) Other applications involving more general homogeneous
groups soon followed; see [26] for a concise survey.

Various other aspects of classical harmonic analysis, including real-vafi&tdpaces and Littlewood-
Paley theory, have analogues on homogeneous groups; see [32].

12. WAVELETS

Recall the Haar basis fai?([0, 1]) defined by (7) and (8). We can translate all its elements by an
integerk to obtain a basis fof.?([k, k + 1]), and then combine all these to obtain an orthonormal
basis forL?(R). With a slight change of notation, this basigis, : k € Z} U {¢j, : j > 0, k € Z},
where

Gk = Xpogor1),  Cin(a) =229 (20x — k) with ¢ = x(0.1/2) — X(1/2.1)- (48)

In the expansiorf = 3=, o (f, bx) P + D720 D ez (S i)Yk, the first sumd_, o (f, dx) o

provides a first (probably crude) approximationftdy functions that are constant on each interval
[k, k + 1), and then the sums_, _,(f, ¥;x)jx for j = 0,1,2,... provide successively finer levels
of detail.

Of course, there is no reason why one has to start with intervals of length 1 as the “base level”;
one could dilate everything by a factor®f to start with intervals of length’ instead. In the limit as
J — oo the need for the “base layef®y. } in the basis disappears, and one can see without difficulty
that the functions);;, defined in (48), but now with both and & arbitrary integers, constitute an
orthonormal basis fof.?(R).

The idea of manufacturing a basis fbf out of the translates and dilates of a single function
offers many interesting possibilities, and it works alsouidimensions. In what follows, we shall
employ the notational convention thatfife L?*(R"), the functionsf;; are defined by

fie(z) =222z —k)  (je€Z kel) (49)

The factors2/™/2 are there to ensure thiff;.|2 is independent of andk. Forn = 1, an
orthonormal basis foL?(R) of the form{f;. : j,k € Z} will be called awavelet basisand the
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function f will be called themother wavelebf the basis. (Forn > 1 this needs to be modified
slightly, as we shall explain below.)

The mother wavelep of the Haar basis is precisely localized in the sense that it vanishes outside
[0,1] (an advantage), but it is not smooth (a disadvantage). The latter condition is reflected in the
fact that its Fourier transforrﬁ(g) = (1 — e7™%)2 /27i¢ decays only slowly at infinity and hence is
poorly localized.

It is not hard to find another such basis with the advantage and disadvantage switched. To wit, let
U(z) = (sin 2z — sin7z) /7, whose Fourier transform (&) = X[=1,-1/21(§) + Xx[1/2,11(§)- Itis
easy to see that for eaghthe Fourier transforms of the functions;, (k € Z) are all supported on
Aj = [-27,-27711 U [2771,29] and constitute an orthonormal basis fot(A;) (the Fourier basis,
essentially, once one recognizes thatis congruent td0, 2] mod2’). It follows that{¥ ;. : j, k €
Z} is a wavelet basis fof.?(R) consisting of slowly decaying functions whose Fourier transforms
are precisely localized. Moreover, the localizaton in Fourier space is something we have seen before:
the projectionsP; f = > . (f, ¥;x) V¥, onto the space$f : f = Ooutsided;} are essentially
the Littlewood-Paley projectiond ; f of Theorem 33. (In factP; = Ag,_2 + Ag,_1). Thus the
expansions in terms of the bagi¥ ;. } are connected with Littlewood-Paley theory.

The question now arises: can we find wavelet bases whose mother wavglebth smooth (at
least of clasg>™ for some specifiedn € Z™) and rapidly decaying at infinity (at least faster than
polynomially) — in other words, such that and$ are both well localized? It came as a pleasant
surprise to find that the answenryiss The first examples (exponentially decaying and of cta®s
for any finitem) were constructed by Jan-Olov &tnberg [90] in 1982, but they were a bit before
their time and had little immediate impact. The next examples (V}I\itk‘E C°, hencey € S)
were discovered by Yves Meyer [60] in 1985 and immediately led to an explosive development of
the subject over the next five years or so, incuding the construction by Ingrid Daubechies [13] of
compactly supported wavelets of clag¥’, for any finitem. Our brief presentation here will be
limited to a sketch of the most basic results and their connections with the topics discussed earlier in
this paper. Among the excellent books to which the reader may refer for a full account of the results
mentioned here and additional material are Daubechies [14] addaz and Weiss [38], and Meyer
[61, 62].

The appropriate general setting for constructing wavelets was worked oublyeie Mallat and
Meyer in 1986; it works irR™ for anyn. To wit, amulti-resolution analysisr MRAonR" is a family
{V; : j € Z} of closed subspaces &f (R™) with the following properties:
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(i) There is a functionp € V,, called thescaling function such that the functions
¢r(z) = ¢(z — k) (k € Z™) form an orthonormal basis far.

(i) Visn={fod: feV;}forall j, whered(z) = 2z.
(iii) Vj C Vjya forall j, N,z Vi = {0}, and;, V; is dense inL*(R™).

We observe that (i) and (i) imply that for eagh{ ¢, : k € Z"} is an orthonormal basis fdr;,
whereg;;, is defined by (49).

To construct an MRA, one generally begins with a functipeuch that the functiong; (z) =
¢(x — k) are orthonormal, defindsg, to be their closed linear span aigto be the set of alf of the
form f(z) = g(27x) with g € V4 (so that (i) and (i) are satisfied), and then investigates whether (iii)
is also satisfied. To this end, it is convenient to reformulate these conditions in terms of the Fourier
transform. To avoid pathologies, in what follows we shall assume that the scaling funcaiisfies

[¢(2)] < CL+]a)™ " 6@l <C+Ieh ™

so thatg andngs are integrable and continuous. Under these conditions, it is not hard to see that the
are orthonormal if and only if

Yo IpE+RIP =1 (50)
kezn
In this case, with/; defined as just indicated, we have C V;, ifand only if ¢ € V4, and since
{¢1r : k € Z™} is an orthonormal basis fdr;, that happens if and only if

¢ = apdipwith > " |ai|* < oo; or equivalently,

3 - | (51)
¢(€) = m(§/2)¢(§/2) Wherem(f) = 2_”/2 Z CLk(—;’_Qﬂ—lk'g_

The condition) V; = {0} is always satisfied under the preceding assumptions, and the condition
W = L? turns out to be satisfied precisely wh\e?rqo)\ = 1. (This says more than one might think
at first; by (50), it implies tha&?(k:) = 0 for all nonzerok € Z™.) After multiplying ¢ by a constant,
then, we may and shall assume théab) = 1.

The relation (51) can be iterated %{5) = m(§/2)m(§/4)$(§/4), etc. — so, With$(0) =1,
under mild regularity assumptions one can pass to the limit and oﬁ(&bn: [15°m(&/27). This
suggests that one way to construct an MRA is to start with a suitable periodic functiom define
$to be this infinite product, which automatically yields the relation (51). This is the method used
by Daubechies to construct compactly supported wavelet® ¢for which m is a trigonometric
polynomial).
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In dimension 1, there is a canonical way to pass from an MRA to a wavelet basis. Given an MRA
{V;} onR with scaling functiony, let

Wj = Vi NV
thus, by (iii), we havel?(R) = >, W,. Moreover, witha; andm as in (51), define) € V; by
Y= (~1)"G ey, thatis, (&) =e ™ Em((€+1)/2)p(¢/2.) (52)

Theorem39 — Given an MRAV;} onR with scaling functiorp, definey by (52) and then;;,
by (49) (withn = 1). Then{w;; : k € Z} is an orthonormal basis folV; for eachyj, and hence
{¢jk : j, k € Z} is awavelet basis fof?(R).

For example, the Haar basis arises from this construction by taking the scaling fundtidoe
X[o,1) (S0V; is the space of.? functions that are constant on each intef¥@ 7, (k + 1)277)), and
the Littlewood-Paley-type basis¥ ;. } presented above arises by takigr) = (sinnz)/mx (S0
P = X[-1/2,1/2) andV is the space of € L? such thatf = 0 outside[—27~1,29-1]). (The basis
{®; : k € Z} for V; is the one that arises in the Shannon sampling theoremyasdsometimes
called theShannon waveldor this reason.)

It is easy to construct-dimensional MRAs and wavelets out dfdimensional ones by using
tensor products. For simplicity, let = 2. Given an MRA{V;} on R with scaling function and
associated mother wavelét we can define an MRAV;} onRR? by V; = V; ® V;; that is,V; is
the closed linear span of the functions of the foffx, y) = g(x)h(y) with g, h € Vj; its scaling
function is® = ¢ ® ¢, thatis,®(x,y) = ¢(x)¢(y). But now there is a small complication: since
Vit1 =V; @ W;, we have

Vipi= (Ve V) e (W;eV;) e (Ve W;) e (W; @ W),
SoW; = Vjy1 N Vi is given by
Wi=W;e V) e (V;eW;) e (W;eW;.)

To obtain an orthonormal basis for this we need not one but three mother wavklets: ) ® ¢,
U2 = p @1, and¥? = ® ). And indeed, one easily checks that the functiéns (= (¥);x) with
j € Z, k € 7%, ande = 1,2, 3 constitute an orthonormal basis fbf(R?). The generalization t&"
is obvious: one need®’ — 1 mother wavelets to generate a basis.

This phenomenon persists even for MRAs that are not of tensor product tyyaeedet basisor
L?(R™) must have the form

{Vsp:j€l, kel e=1,...,2" — 1},
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generated bg™ — 1 mother waveletgc. (The reason, in a nutshell, is that the gr@@g)" has index
2™ in Z™.) To simplify the notation in what follows, we define

N=Zx7Z"x{1,...,2" — 1}, Yy = 5 forv = (j,k,¢) € N (53)

An important feature of smooth wavelets is that they have many vanishing moments. To be
precise:

Theorem40 — Suppose is a function of clas€™ onR” such thatw(z)| < C(1 + |z[)~(m+n+e)
for someC, e > 0 and{¢j; : j € Z, k € Z"} is an orthonormal set. Thefi P(z)y(z) dz = 0 for
every polynomiaP of degree< m.

The idea of the proof is as follows: Fgy > 0 andzy € Z™, there is &, € Z" so that the mass of
Yjok, 1S cONcentrated in a small ball abatit. Forj < jo, ¥, can be well approximated on this ball
by its Taylor polynomialP,, ,, of degreem centered atrg, SO [ ¥joko Prmzo = (Vo .ko» ¥ik) = 0,
and this approximation improves gs— j increases. By rescaling and varying, one deduces that
J wP = 0 for a family of polynomialsP of degreen that spans the whole space of such polynomials.

Theorem 40 says thatif is of classC™ themZ vanishes to order at the origin, sinc@%ﬂ(o) =
[(—2miz)*¢(x) dz. If o and its derivatives up to ordes are inL?, theny) also vanishes to orden
at infinity, so most of the mass &fis concentrated in a spherical shek o < |£| < b < co. Hence,
forany f € L? the sumS’f = S i)k (€) = S f ) €2 RE/2 (¢ /27) is concentrated in
the shell2’a < |¢| < 27b, and the expansiofi = > ij provides a decomposition gfinto terms
concentrated in various frequency bands — not as precisely as with the Shannon wavelet, but still in
the spirit of Littlewood-Paley.

Another immediate consequence of Theorem 40 isttieae are na”>° wavelets with exponential
decay Indeed, ify € C*, theny vanishes to infinite order at the origin, wheredgifz)| < Ce~cll,
thent) extends holomorphically to the strigm¢| < ¢; the two conditions are incompatible for
1 # 0. Hence the smoothness-plus-decay properties of thiamBerg, Meyer, and Daubechies
wavelets are more or less optimal.

Many of the common function spaces, includibg and Lf (1 < p < o), HP, and BM O,
have characterizations in terms of wavelet expansions; we discuss just a couple of these. Perhaps the
simplest is the one foE? Sobolev spaces. In view of the remarks two paragraphs earlier, the reader
should have no difficulty in appreciating the plausibility of the following result:

Theorem41l — Supposg§, } is a wavelet basis foL.?(R™) of classC™. For0 < s < m,
feLifandonlyify,, [(f,45.)°(1 4 2%%) < oco.
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As far asL? spaces and their relatives are concerned, the essential point is the connection between
wavelets and singular integrals. In what follows we employ the terminology of (weak) Gatder
Zygmund operators introduced §® in connection with thg’(1) theorem (Theorem 26). We also
employ the notation (53).

Theorem42 — Let{v, : v € N'} be a wavelet basis where thig’s are of classC! and rapidly
decaying at infinity. If ¢, : v € N'} is any bounded set of complex numbers, the opefAtdefined
on L2 by T(Y_ a,i,) = 3. eva,p, is a Caldedbn-Zygmund operator and hence is boundedén
for 1 < p < oo; moreover, the operator norm @f on L” depends only op andsup,, |c,|.

As the operator norm df on L? is sup,, |c,|, the point here is thaf is associated to the kernel
K(x,y) =" e, (2),(y), and one uses the properties of thie to show thatk is standard.

In particular, one can take, = +1 for eachv to conclude that the operatols a,, +—
> +a,1, are uniformly bounded od? (1 < p < oo) and hence thafi,} is an unconditional
basis forL?. More precisely, one can show that L? if and only if [S° |(f, ¢, )1, |2/ € LP, with
equivalence of norms. (Again, there is a resonance with Theorem 28.)

Moreover, the argument that proves Theorem 42 also shows thatJfand{¢, } are two differ-
ent wavelet bases satisfying the hypotheses of the theorem, th&hap,¢,) = > a,,Jl, (which
is of course unitary o.?) is a Caldebn-Zygmund operator. This addresses many of the issues that
might arise from the nonuniqueness of wavelet bases.

Theorem 42 concerns operators that are diagonal with respect to a wavelet basis, but it is pretty
obvious that the result extends to operators that are only “approximately diagonal” — that is, operators
T whose matrix element&'y,, ¢,/) are uniformly bounded and tend to zero sufficiently rapidly as
the distance betweenandr’ grows in/. The precise decay conditions are a bit technical, and we
shall not state them here.

We conclude by sketching a proof of ti&1) theorem by using wavelets (see [62] for details).
Recall that a “weakly bounded” operat®ris assumed initially to mags into S’ but extends to
a continuous map fron'X (the space of?X functions of compact support) to its dual space, for
suitableK € Z*. Thus, if{¢, } is a wavelet basis whose elements belongfq the matrix elements
(T, 1,y make sense. One can show thafifl) = 7%(1) = 0, these matrix elements satisfy
estimates of the sort referred to in the preceding paragraph; feiscapproximately diagonal and is
therefore a Caldén-Zygmund operator. This proves ttig¢1) theorem for the special cagg1) =
T*(1) = 0.
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The reduction of the general case to the special one is accomplished as follows. Addin}let
be a wavelet basis of clags®. Since [, = 0 (Theorem 40), the numbets, = (T(1),,)
andb, = (T*(1),1,) are well defined. Choosg¢ € C° with [ ¢ = 1, and forv = (j, k,€) let
¢¥(x) = 27"¢(27z — k) (independent of and normalized so thgt¢” = 1), and define

Sif =Y a{f, by, Saf = buf, )"

Then we haveSi(1) = > a, ([ ")y = > avyy, = T(1) andSa(1) = > b ([ ¥)¢” = 0;
sinceS; andS; are defined by the same sums wjthandz),, switched, we likewise havé; (1) =0
and S5 (1) = T*(1). (It is not hard to justify these formal calculations rigorously.) An argument
similar to the proof of Theorem 42 shows th&t and S, are associated to standard kernels, and
the hypothesis thdf'(1) and7*(1) are in BM O can be used to yield estimates epandb, that
imply thatS; andS; are bounded oR?. HenceS; andS; are Caldedn-Zygmund operators, and the
preceding argument appliesto— S; — S2, so the proof is complete.

REFERENCES

[

. S. Bernstein, Sur la convergence absolue desstrigonoratriquesC. R. Acad. Sci. Parj458(1914),
1661-1664.

2. D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class
HP?, Trans. Amer. Math. Socl57(1971), 137-153.

3. A. P. Caldebn and R. Vaillancourt, A class of bounded pseudo-differential operd&@oss, Nat. Acad.
Sci. USA69(1972), 1185-1187; also pp. 491-493 in Cafites Selected PaperéAmerican Mathemat-
ical Society, Providence, RI, 2008.

4. A. P. Caldebn and A. Zygmund, On the existence of certain singular integhais Math, 88 (1952),
85-139; also pp. 23-77 in Calder’s Selected Papers\merican Mathematical Society, Providence, RI,
2008, and pp. 19-73 in Zygmundelected Papersol. 3, Kluwer, Dordrecht, 1989.

5. A. P. Caldebn and A. Zygmund, Singular integral operators and differential equatfonsy. J. Math,
79 (1957), 901-921; also pp. 161-181 in Caloe’s Selected Paperfmerican Mathematical Society,
Providence, RI, 2008, and pp. 257-277 in Zygmurgkdected Papeyrsol. 3, Kluwer, Dordrecht, 1989.

6. L. Carleson, On convergence and growth of partial sums of Fourier séwts,Math, 116 (1966),
135-157.

7. H. Cartan and R. Godement, &trie de la dualé et analyse harmonique dans les groupesli@hs
localement compact#nn. Sci. Ecole Norm. Sy®4(3) (1947), 79-99; also pp. 1203-1223 in Cartan’s
Oeuvresvol. Ill, Springer, Berlin, 1979.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.
25.
26.

HISTORY OF HARMONIC ANALYSIS IN THE TWENTIETH CENTURY 53

M. Christ, A. Nagel, E. M. Stein and S. Wainger, Singular and maximal Radon transforms: Analysis
and geometryAnn. of Math, 150(1999), 489-577.

R. R. Coifman, A real variable characterization/éf, Studia Math,.51 (1974), 269-274.

R. R. Coifman and G. Weis#nalyse harmonique non-commutative sur certains espaces lkoepg
Lecture Notes in Math. no. 242, Springer, Berlin, 1971.

R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in arlysig\mer. Math.
Soc, 83(1977), 569-645.

C. W. Curtis, Pioneers of representation theory: Frobenius, Burnside, Schur and Bra@umerican
Mathematical Society, Providence, RI, 1999.

I. Daubechies, Orthogonal bases of compactly supported wavelatsn. Pure Appl. Math41 (1988),
909-996.

I. DaubechiesTen lectures on waveletSociety for Industrial and Applied Mathematics, Philadelphia,
1992.

G. David and J.-L. Jou& A boundedness criterion for generalized Cadezygmund operatorgynn.
of Math, 120(1984), 371-397.

P. G. L. Dirichlet, Sur la convergence de&siss trigonoratriques qui serverit representer une fonction
arbitraire entre des limites doees,J. Reine Angew. Math4 (1829), 157-169.

J. Dixmier, Sur les ref@sentations unitaires des groupes de Lie nilpotentsChihad. J. Math. 10
(1958), 321-348.

P. du Bois-ReymondUber die Fourierschen ReiheNachr. Konigl. Ges. Wiss. 6ttingen(1873),
571-582.

P. Fatou, $ries trigonorétriques eté&ries de TaylorMath. Ann, 30 (1906), 335-400.

C. Fefferman, Characterizations of bounded mean oscillaBati, Amer. Math. So¢.77 (1971),
587-588.

C. Fefferman, Pointwise convergence of Fourier seAes,. of Math, 98 (1973), 551-571.

C. Fefferman and E. M. Steii{? spaces of several variables;ta Math, 129(1972), 137-193.

R. Fefferman and E. M. Stein, Singular integrals on product spacks,n Math, 45(1982), 117-143.
L. Fejer, Untersuchungedber Fouriersche ReiheNath. Ann, 58 (1903), 51-69.

E. Fischer, Sur la convergence en moyereR. Acad. Sci. Parjs44(1907), 1022-1024.

G. B. Folland, Applications of analysis on nilpotent groups to partial differential equaBuotis Amer.
Math. Soc.83(1977), 912-930.



54

27

28

29.
30.

31.

32.

33.

34.

35.
36.

37.

38.

39.
40.

41.

42.

43.

44,

G. B. FOLLAND

G. B. Folland Harmonic analysis in phase spaderinceton University Press, Princeton, NJ. 1989.

G. B. Follandntroduction to partial differential equation®nd ed.), Princeton University Press, Prince-
ton, NJ, 1995.

G. B. Folland Real Analysig2nd ed.), John Wiley, New York, 1999.
G. B. Folland A course in abstract harmonic analygnd ed.), CRC Press, Boca Raton, FL, 2015.

G. B. Folland and E. M. Stein, Estimates for thg complex and analysis on the Heisenberg group,
Comm. Pure Appl. Math27 (1974), 429-522.

G. B. Folland and E. M. Steirtlardy spaces on homogeneous grquBsinceton University Press,
Princeton, NJ, 1982.

A. Haar, Zur Theorie der orthogonalen Funktionensystevteth. Ann, 69 (1910), 331-371; also pp.
47-87 in Haar'sGesammelte Arbeite\kademiai Kiad, Budapest, 1959.

A. Haar, Der massbegriff in der theorie der kontinuerlichen Grupfan, of Math, 34 (1933), 147-169;
also pp. 600-622 in HaarGesammelte Arbeitekademiai Kiadb, Budapest, 1959.

B. C. Hall, Lie groups, Lie algebras, and representatip8pringer, New York, 2003.

G. H. Hardy, The mean value of the modulus of an analytic funcwa¢c. London Math. Socl14(2)
(1915), 269-277; also pp. 549-557 in Hard¢sllected Papersvol. 11l, Oxford U. Press, Oxford, 1969.

G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applicatisets, Math,
54 (1930), 81-116; also pp. 509-545 in Hard¥®llected Papersvol. Il, Oxford University Press,
Oxford, 1967.

E. Herrandez and G. Weis$, first course on wavelet€RC Press, Boca Raton, FL, 1996.
L. Hormander, Pseudo-differential operat@smm. Pure Appl. Mathl8 (1965), 501-517.

R. A. Hunt, On the convergence of Fourier series, pp. 235-255 in D. T. Haimo Qathpgonal Expan-
sions and their Continuous Analogu&outhern lllinois University Press, Carbondale, IL, 1968.

F. John and L. Nirenberg, On functions of bounded mean oscillaGomm. Pure Appl. Mathl14
(1961), 415-426.

M. I. Kadets and V. M. KadetsSeries in Banach spaceBirkhauser, Basel, 1997.

A. W. Knapp and E. M. Stein, Singular integrals and the principal sefies,. Nat. Acad. Sci. USA3
(1969), 281-284.

A. W. Knapp and E. M. Stein, Intertwining operators for semisimple grodps, of Math, 93 (1971),
489-578.



45

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.
60.

HISTORY OF HARMONIC ANALYSIS IN THE TWENTIETH CENTURY 55

J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential opera@arsm. Pure Appl. Math18
(1965), 269-305.

A. N. Kolmogorov, Une érie de Fourier-Lebesgue divergente presque parfautgd. Math, 4 (1923),
324-328; also pp. 1-5 in Kolmogorov@elected Work&nglish ed.), vol |, Kluwer, Dordrecht, 1991.

A. N. Kolmogorov, Une érie de Fourier-Lebesgue divergente partdlitR. Acad. Sci. Parjsl83
(1926), 1327-1328; also pp. 74-75 in Kolmogoro®8slected Work&nglish ed.), vol |, Kluwer, Dor-
drecht, 1991.

A. N. Kolmogorov, Sur les fonctions harmoniques conjeigsi et lesé&ries de Fourief-und. Math, 7
(1925), 23-28; also pp. 35-39 in Kolmogorowglected Workénglish ed), vol I, Kluwer, Dordrecht,
1991.

A. Koranyi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical

analysisAnn. Scuola Norm. Sup. Pis25(1971), 575-648.
R. H. Latter, A characterization df?(R"™) in terms of atomsStudia Math, 62 (1978), 93-101.

H. Lebesgue, lrggrale, longueur, airénnali Mat. Pura Appl. 7(3) (1902), 231-359; also pp. 201-331
in Lebesgue'©euvres Scientifiquesol. |, LEnseignement Mattmatique, Geneva, 1972.

J. E. Littlewood, On mean values of power series @l)London Math. Soc5 (1930), 179-82; also
pp. 715-719 in Littlewood'€ollected Papersvol. |, Oxford University Press, Oxford, 1982.

J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power s&rlesmdon Math.
Soc, 6 (1931), 230-234; also pp. 599-603 in Littlewoo®sllected Papersvol. |, Oxford University
Press, Oxford, 1982.

J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power serieBrft), Lon-
don Math. S06.42 (1936), 52-89; also pp. 604-641 in LittlewoodXllected Papersvol. |, Oxford
University Press, Oxford, 1982.

N. Lusin, Sur une propeit des fonctions a c@&rsommableBull. Calcutta Math. So¢.20 (1930),
139-154.

G. W. Mackey, A theorem of Stone and von Neumabuoke Math. J.16 (1949), 313-326.

G. W. Mackey, Imprimitivity for representations of locally compact groupBrhc. Nat. Acad. Sci.
USA 35(1949), 537-545.

G. W. Mackey, Harmonic analysis as the exploitation of symmetry — A historical suBgly, Amer.
Math. Soc. (N.S)3(1980), 543-698.

J. Marcinkiewicz, Sur l'interpolation des émteursC. R. Acad. Sci. Parj208(1939), 1272-1273.

Y. Meyer, Principe d’incertitude, bases hilbertiennes, etlatgs d’ograteursSeminaire Bourbaki28
(1985-6), 209-223.



56

61
62
63

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

G. B. FOLLAND

Y. Meyer,Ondelettes et Cgrateurs |: OndelettedHermann, Paris, 1990.
Y. Meyer, Ondelettes et Cirateurs II: Oerateurs de Caldém-ZygmundHermann, Paris, 1990.

R. E. A. C. Paley and A. Zygmund, On some series of functionsRid¢. Cambridge Phil. Soc26
(1930), 337-357; also pp. 337-357 in Zygmunfilected Papeysol. 1, Kluwer. Dordrecht, 1989.

F. Peter and H. Weyl, Die Vollstandigkeit der primitiven Darstellungen einer geschlossenen kontinuer-
lichen GruppeMath. Ann, 97 (1927), 737-755; also pp. 58-75 in WeyZesammelte Abhandlungen
vol. lll, Springer, Berlin, 1968.

D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transfoiets IMath,
157(1986), 99-157.

D. H. Phong and E. M. Stein, Singular Radon transforms and oscillatory inteBnaite, Math. J.58
(1989), 347-369.

M. Plancherel, Contributioa I'étude de la refsentation d’une fonction arbitraire par desgrales
definies,Rend. Circolo Mat. Palerm0 (1910), 289-335.

H. Rademacher, Einigea®&euber Reihen von allgemeinen Orthogonalfunktiordiath. Annalen87
(1922), 112-138.

B. Riemann,Uber die Darstellbarkeit einer Funktion durch eine trigonometrische Rattte, Konigl.
Ges. Wiss. @ttingen 13 (1867); also pp. 227-271 in RiemanrGesammelte Mathematische Werke
(2nd ed), Teubner, Leipzig, 1892 (reprinted with additional commentaries by Springer, Berlin, 1990).

F. Riesz, Sur les sysines orthogonaux de fonctior3, R. Acad. Sci. Parjsl44(1907), 615-619; also
pp. 378-381 in Riesz®euvres Comptes Akademiai Kiac, Budapest, 1960.

F. Riesz, Untersuchungéier Systeme integrierbarer Funktionstath. Annalen69(1910), 449-497;
also pp. 441-489 in RieszBeuvres Compgttes Akademiai Kiad, Budapest, 1960.

F. RieszUber die Randwerte einer analytischen FunktMath. Zeit, 18(1923), 117-124; also pp. 645-
653 in Riesz'Deuvres Compltes Akadeémiai Kiad, Budapest, 1960.

F. Riesz and M. Ries/ber die Randwerte einer analytischen Funkti@omptes Rendut® Congres
Math. Scand. Stockholr(il916), 27-44; also pp. 537-554 in F. Ries2suvres Comptes Akademiai
Kiad6, Budapest, 1960, and pp. 195-212 in M. Rie§xdlected PapersSpringer, Berlin, 1988.

M. Riesz, Les fonctions conju@es et leséries de FourierC. R. Acad. Sci. Parjsl78(1924), 1464-
1467; also pp. 360-362 in RiesBollected PapersSpringer, Berlin, 1988.

M. Riesz, Sur les fonctions conjuges,Math. Zeit, 27 (1927), 218-244; also pp. 410-436 in Riesz’s
Collected PapersSpringer, Berlin, 1988.

M. Riesz, Sur les maxima des formes bilaires et sur les fonctionellesdiaires Acta Math, 49 (1927),
465-497; also pp. 377-409 in Ries®llected PapersSpringer, Berlin, 1988.



77

78.

79.
80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

HISTORY OF HARMONIC ANALYSIS IN THE TWENTIETH CENTURY 57

. L. Schwartz, @réralisation de la notion de fonction, dérié/ation, de transformation de Fourier et
applications matbmatiques et physiquednn. Univ. Grenoble Sect. Sci. Math. Phy&l (1945),
57-74.

L. Schwartz, Tkorie des distributions et transformation de Fourdern. Univ. Grenoble Sect. Sci.
Math. Phys.23(1948), 7-24.

E. M. Stein, Interpolation of linear operato@ans. Amer. Math. SoB3 (1956), 482-492.

E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicans. Amer. Math. Sac.
88(1958), 430-466.

E. M. Stein,Singular integrals and differentiability properties of functipisinceton University Press,
Princeton, NJ, 1970.

E. M. Stein,Topics in harmonic analysis related to the Littlewood-Paley theBrnceton University
Press, Princeton, NJ, 1970.

E. M. Stein, The development of square functions in the work of A. ZygmBot, Amer. Math. Soc.
(N. S.) 7(1982), 359-376.

E. M. Stein,Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integPailsce-
ton University Press, Princeton, NJ, 1993.

E. M. Stein and S. Wainger, Problems in harmonic analysis related to cuntikeAmer. Math. Soc.
84 (1978), 1239-1295.

E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, I: The thédty of
spacesActa Math, 103(1960), 26-62.

E. M. Stein and G. Weissntroduction to Fourier analysis on Euclidean spac@sinceton University
Press, Princeton, NJ, 1971.

M. H. Stone, Linear transformations in Hilbert space Ill: Operational methods and group tReary,
Nat. Acad. Sci. USAL6(1930), 172-175.

B. Street Multi-parameter singular integraldPrinceton University Press, Princeton, NJ, 2014.

J.-O. Stbmberg, A modified Franklin system and higher order spline systeni&*css unconditional
bases for Hardy spaces, pp. 475-494 in W. Beclate., (eds.),Conference on Harmonic Analysis in
Honor of Antoni ZygmundNadsworth, Belmont, CA, 1983.

M. E. Taylor,Pseudodifferential operator®rinceton University Press, Princeton, NJ, 1981.

G. O. Thorin, An extension of a convexity theorem due to M. Ri&smgl. Fysiografiska Saellskapets
i Lund Forhandlingar, 8(14) (1939).



58 G. B. FOLLAND

93. J. von Neumann, Die Eindeutigkeit der Sgétiingerschen Operatoréviath. Ann, 104(1931), 570-578;
also pp. 221-229 in von Neumani®Cellected Worksvol. I, Pergamon Press, New York, 1961.

94. A. Weil, L'Intégration dans les Groupes Topologiques et ses applicatld@snann, Paris, 1940.

95. A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operafofglath. Pures
Appl, 359) (1956), 223-248; also pp. 214-239 in Zygmun&@slected Papersvol. 3, Kluwer,
Dordrecht, 1989.

96. A. Zygmund, Trigonometric serieg2 volumes, reprinted as a single volume), Cambridge University
Press, Cambridge, 1968.



