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We study a representation formula of the formf= & (f, qe) tie for a distribu- 
tion f  on Iw”. This formula is obtained by discretizing and localizing a standard Lit- 
tlewood-Paley decomposition. The map takingfto the sequence ((f, qo)}o, with 
Q running over the dyadic cubes in K!“, is called the q-transform. The functions ‘pp 
and $o have a particularly simple form. Moreover, most of the familiar distribution 
spaces (U-spaces, 1 <p < + co, HP spaces, 0 <p < 1, Sobolev and potential spaces, 
BMO, Besov and Triebe-Lizorkin spaces) are characterized by the magnitude of 
the cp-transform. This enables us to carry out a discrete Littlewood-Paley theory on 
the sequence spaces corresponding to these distribution spaces. The sequence space 
norms depend only on magnitudes; cancellation is accounted for in the ‘pa’s and 
+o’s. Consequently, analysis on the sequence space level is often easy. With this we 
can simplify, extend, and unify a variety of results in harmonic analysis. We obtain 
conditions for the boundedness of linear operators on these distribution spaces by 
considering corresponding conditions for matrices on the associated sequence spaces. 
Applications include a general version of the Hdrmander (Fourier) multiplier 
theorem and results for kernel operators of Calderbn-Zygmund type. We discuss 
certain other, more general, decomposition methods, including the “smooth atomic 
decomposition,” and the “generalized cp-transform.” The smooth atomic decompo- 
sition yields a simple method for dealing with restriction and extension phenomena 
for hyperplanes in Iw”. We also consider pointwise multipliers. For the characteristic 
function of a domain, we obtain boundedness results for a genera1 class of domains 
which properly includes Lipschitz domains. Several interpolation methods are easily 
analyzed via the sequence spaces. For real interpolation, we obtain, among other 
things, an extension to the case p = 0. This in turn gives a new approach to the 
traditional atomic decomposition of Hardy spaces. 0 1990 Academic Press, Inc. 
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1. INTRODUCTION AND SUMMARY OF RESULTS 

A fundamental technique in harmonic analysis is to represent a function 
or distribution as a linear combination of functions of an elementary form. 
Familiar examples include the Fourier series representation on the circle, 
and the “atomic decomposition” of the Hardy spaces HP( R”), 0 <p < 1 
[Co; La]. A difficulty with Fourier series, however, is that few function 
spaces of interest, other than L2, have simple characterizations in terms of 
the coefficients in the Fourier expansion. On the other hand, in the Hardy 
space atomic decomposition, the representing functions (“atoms”) vary 
with the distribution being represented. Here we will study an elementary 
representation formula, introduced in [Fr-Jl], which avoids both of these 
limitations. In particular, distributions on R” will be represented in terms 
of a fixed, countable family of functions with convenient properties, and we 
will see that most of the function spaces of interest in harmonic analysis are 
characterized in terms of Littlewood-Paley expressions formed from the 
coefficients in the expansion. 

In [Fr-Jl] we have discussed our representation in the context of the 
Besov spaces ki9( R”) and By( R”), c1 E R, 0 <p, q < + co. Here we extend 
these results to include the Lebesgue spaces Lp(R”), 1 <p < + co, the 
Hardy spaces HP(lR”), 0 <p < 1, the Bessel potential spaces L:(W), c( E R, 
1 <p < + 00, and the space of functions of bounded mean oscillation 
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BMO( IV). In fact, we can deal with these cases in a unified manner by con- 
sidering the more general Triebel-Lizorkin spaces pT( KY) (homogeneous) 
and Fy( IV) (inhomogeneous), a E IX, 0 <p, q d + co (see Sections 2 and 12 
for the definitions). Selecting the indices correctly gives the special cases 
above; it is well known (e.g., see [Tr2]) that Lp z p: M Fy (1 <p < + co), 
HP%pF (O<p<l), and L,Pz F;” (CI E [w, 1 <p < + co ). We also have 
BMO % p”,’ (see Section 5). Although, for many, the main interest in our 
results will be in these special cases, we will treat the full Triebel-Lizorkin 
scale here. This allows greater generality, while the unified notation avoids 
tedious repetition. More importantly, our approach proceeds most 
naturally and transparently via the notation and techniques developed for 
the Besov and Triebel-Lizorkin spaces by Peetre, Triebel, and others. 
General references for this are [P3; Tr2]. 

We would like to emphasize that our results hold exactly for those func- 
tion spaces that have some sort of Littlewood-Paley characterization. The 
reason for this is that our representation formula is set up so that the coef- 
ficients in the expansion exactly capture the information in the Littlewood- 
Paley norm defining the Triebel-Lizorkin spaces. Thus our approach can 
be described as a reformulation of Littlewood-Paley theory. Our main 
point is that the use of the representation formula makes this formulation 
particularly direct and simple. Classical Littlewood-Paley theory on the 
circle was developed by Littlewood, Paley, and the Zygmund school (see, 
e.g., [Z, Chaps. lClS]), while in the more modern context in [w” it is 
largely due to Stein and his colleagues (see, e.g., [St, Chap. 41). 

In the introduction to [Fr-Jl] we trace the background of our work 
through two general lines. One is the use of the Calderon reproducing 
formula to generate decompositions of functions into smooth bumps, as in 
[Cal2; Ch-Fl; Ul; Wi]. An alternate direction is that of Coifman and 
Rochberg [Co-R], Ricci and Taibleson [Ric-T], and others. We refer back 
to [Fr-Jl ] for discussion of these. However, there are many further referen- 
ces which could have been given at the time of [Fr-Jl ] or which should 
be mentioned specifically in connection with our current work. For exam- 
ple, various forerunners of our ideas can be found in [Co-W2; Tai-W]. 
Also, the theory of tent spaces [Co-M-S] shares many key features with 
our development; it can be regarded as a reformulation of Littlewood- 
Paley theory alternate to ours here. We also mention [Strii-T], where an 
earlier decomposition of Lp, 1 <p < + co, along different lines than ours, 
is presented. 

In any case, we want to make clear that virtually all of our techniques 
already exist in some antecedent form. Nevertheless their particular com- 
bination here leads to new conclusions and to sharpened versions of known 
results. Moreover, our presentation reveals an elementary discrete structure 
underlying a diverse range of topics in harmonic analysis. 
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The work most closely related to our current work, however, is the theory 
of “wavelets,” as developed by Stromberg, Meyer, Lemarie, Coifman, 
and others (see, e.g., [Str62; Le-M; Co-M]). Both our theory and theirs 
result from projects that have been ongoing for several years. Although the 
projects are independent, there has been a certain amount of mutual inter- 
change and influence, which we would like to acknowledge. The wavelet 
theory can be regarded as a refinement of our earlier, more elementary, 
“almost orthogonal” decomposition in [Fr-Jl 1. (For a discussion of 
various almost orthogonal decompositions, including ours, see [DGM].) 
Wavelets are a collection of functions similar to the representing functions 
in our decomposition, but which are mutually orthogonal. In fact, wavelets 
form an unconditional basis for the usual function spaces in harmonic 
analysis listed above. Thus, unlike our theory, the wavelet theory is 
immediately connected to the vast literature on the construction of explicit 
unconditional bases for various function spaces. However, for the 
applications that we have considered (not related to bases), our more 
elementary decomposition has been sufficient. Thus, for reasons of 
simplicity (and perhaps stubbornness) we have presented our results 
without reference to the beautiful theory of wavelets. However, the reader 
will readily note that our conclusions generally apply as well to the wavelet 
decomposition. 

In [Fr-J2] we have published a preliminary account of the results given 
here. There one can also find some further expository background and a 
few applications not presented here. 

Our basic representation formula takes the form f = & (f, qe) +bQ, 
where the sum runs over all dyadic cubes Q in &I”, and qa and $a are 
translates and dilates of functions cp and $, respectively, to Q. (See Section 2. 
Here, and throughout the Introduction, the reader should refer to the main 
text for the precise statement.) The functions (D and Ic/ are assumed to 
satisfy (2.1-2.4) below; in particular, they are smooth, rapidly decreasing, 
and have compactly supported Fourier transform. We then have 

supp~a,~aC(~:2”-‘~It;l~2’+‘} if I(Q) = 2-“. 

Therefore (cpg, $P) =0 unless $<I(Q)/l(P)<22; even then I((P~, tip)1 
will be small if Q and P are far away from each other, since ‘pQ and qP 
decay rapidly away from Q and P, respectively. Thus our decomposition 
f = & (f, ‘pg ) $e is “almost orthogonal.” 

We define a map S,, the cp-tranform, which takes the distribution f 
to the sequence of coefficients { (f, qe ) } o dyadic. For any sequence 
s = {s~}~ dyadic of complex numbers, we define the map T+, the inverse 
q-transform, which takes s to T+s = & seee. Then our representation 
formula states that f = T,(S, f ). To make these formal statements 
meaningful, we introduce quantitative assumptions on f and s which 
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guarantee convergence in the appropriate sense. Let ry (a E R, 
o<p< +cO, 0 < q < + co) be the collection of all sequences 
8 = {SQ > Q dyadic so that 

ll~llr~= 11(x (lQlea’* Is~lie)“)‘ivj) < +m, 
Q LP 

where the sum runs over all dyadic cubes in R” and jQ = IQ1 -‘I* XQ is the 
L*-normalized characteristic function of Q. Note that the quantity inside 
the LP-norm is a generalized (to q # 2), discrete Littlewood-Paley expres- 
sion. Our basic result is that f = En (Spf)Q $a, and that f E Pp if and 
only if S,f EAT (with llflip.U~ llS,flltZ4). In fact, fi7 is a retract of fi 
under S, and T,, or, in oth& words, w”e have the following theorem. 

THEOREM 2.2. The operators S,: FT + fy and T,: f? + #y are 
bounded, and T, 0 S, is the identity on Fy . 

The proof of Theorem 2.2 is given in Section 2 and Appendix A (we 
frequently put technical, elementary computations in appendices); it is a 
variant of the proof given earlier in [Fr-J2]. We will use this result 
repeatedly to obtain applications regarding the Py spaces in the following 
way. First we formulate and prove a corresponding assertion for fy; this 
is generally easier because the f%” norm is discrete and depends only on the 
magnitude of the sequence elements. Then the result for P%” can be derived 
via Theorem 2.2. The general principle is that once Littlewood-Paley 
theory, in the guise of the q-transform, has been applied to reduce the 
problem to the sequence space level, one only has to deal with “size” 
estimates of a combinatorial nature. 

In Section 2 we also note Proposition 2.7, which is very simple but quite 
useful in applications. It states that we may replace XQ in the definition fi 
with xEa if, for each Q, E, c Q and lEQl/lQl > E > 0. 

In Section 3 we study operators on fi; by considering corresponding 
operators on i:. Associated to a linear operator B on I?? is a linear 
operator S.$ B = S, 0 Bo T,,, on ry, and B is bounded if and only if Sz B is 
bounded. It is easy to see that for 0 <p, q < + co, a bounded linear 
operator on the sequence space tp corresponds to a matrix (aQp}Q,p; in 
particular, S)dB then corresponds to the matrix having entries 
aQp = ( Btip, (pQ). Thus conditions implying boundedness on tf” translate 
into conditions for operator boundedness on Py. 

We consider one such matrix condition in detail. We say that a matrix 
A = {aQP)Q,P is almost diagonal if (3.1) is satisfied, which requires laQPl to 
decay at a certain rate away from the diagonal (when Q = P); i.e., laOPI 
must decay as ,(Q)/r(p) goes to 0 or cc, and as P and Q get far away from 
each other. We then have the following. 
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THEOREM 3.3. An almost diagonal operator is bounded. 

In Section 9 we will note that appropriate Calderon-Zygmund operators 
and certain classes of Fourier multiplier operators correspond to almost 
diagonal matrices. Thus, the q-transform simultaneously “almost 
diagonalizes” these operators. To put this another way, note the obvious 
fact that if {ei}i is an orthonormal basis for any Hilbert space, the matrix 
{(Ae;, e,j>>,i ’ d is iagonal if and only if each ei is an eigenfunction of the 
operator A. Due to the almost orthogonality of the functions {$e}a and 

bQ)Q? we regard the functions { $, } p as “approximate eigenfunctions” of 
an operator B if the matrix { ( B$p, qe) >a,P is almost diagonal. Thus the 
tip’s are simultaneous approximate eigenfunctions for the operators men- 
tioned above. This corresponds to the familiar fact that the Fourier charac- 
ters {elx.T}TtRn are simultaneous eigenfunctions for translation invariant 
operators on R”. The basic trade-off in our approach is that we give up 
having exact eigenfunctions in order to obtain the norm-characterization in 
Theorem 2.2. 

In Theorem 3.5 we obtain an estimate of the form 
IICe samalIpyd c llslir;q whenever the mQ’s are “smooth molecules,” i.e., 

when the m,‘s satisfy the smoothness, decay, and cancellation properties 
(3.3)(3.6). This generalizes the boundedness of T, in Theorem 2.2 which 
guarantees that this estimate holds if m, = $o. Similarly, Theorem 3.7 
generalizes the boundedness of S,; we have Ii{ (f, b,)},ll,y<c llfllGEq 
whenever the bQ’s satisfy (3.7)(3.10). 

P 

This leads us to look for generalized versions of Theorem 2.2. For exam- 
ple, it is useful in Sections 11 and 13 to decompose f into a sum of com- 
pactly supported functions. This can be done fairly easily based on 
Theorem 2.2; in Theorem 4.1 we show that each f E pf” has a “smooth 
atomic” decomposition. By this we mean that we can write f = Ce sgan 
with I/ (.~~}~lj ‘p” < c llfll rY, where the aQ’s are “smooth atoms”-i.e., 
(4.1)-(4.3) hold. (In fact, we may take a, E 9.) However, in this result the 
aQ’s depend on f, and the coefficients are not linearly determined by f. 
In Theorems 4.2 and 4.4 we obtain decompositions of the form 
f = Co (f, r”) gQ with appropriate estimates, under fairly general condi- 
tions on the families {T’}Q and { f~~}~. In particular, we may take either 
family (though perhaps not both) to consist of translates and dilates to Q 
of a function in 9. 

We discuss the spaces pol,y m Section 5. The main difficulty is to find the 
“right” definition of these spaces. The immediate analogue of the definition 
for p < + cc is not satisfactory, while certain other approaches have been 
given which are not computationally explicit. We define 
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Also, we define a corresponding sequence space fz with the norm 

We obtain in Theorem 5.2 the analogue for p = + cc of Theorem 2.2. To 
show that our definition yields a continuous extension of the p < + co case, 
we consider an operator mrq, which is a discrete variant, for our sequence 
spaces, of the local square function. From this we obtain the operator 
Al” = ,.,+ 0 S,, on the function space level, which has the property that 

IIAOLqfIl~~ = IV-II y, 

for all CI E [w, and 0 <p, q < + cc (Corollary 5.8). Further, in Theorem 5.13, 
we obtain the desired duality 

where a E IF!, and q and q’ are conjugate indices. This is derived from the 
corresponding result, Theorem 5.9, for the sequence spaces. In particular, 
we have go2 N o. N BMO. (Other cases of the duality for p # 1 are easier; we 
consider these in Remark 5.14, including one case formerly left open.) The 
theory for p = + cc is clarified by Corollary 5.6 in which we note that a 
sequence s = {so}o belongs to f”,” if and only if there exists for each Q a 
subset E, c Q, satisfying IEel/lQl > i, such that 

; (IQ1 -a’n lbpl i~,)“)“~ 11 < +a. 
La 

With this the q-transform yields another perspective on the H’-BMO 
duality, although this perspective is implicit in the second proof of this 
duality in [ Fef-S2]. 

Real interpolation is considered in Section 6. We define a sequence space 
f. which acts as a common endpoint space for p =0 for the scales ry, 
0 <p < + co, for each fixed a and q. With the norm 

f. is a quasi-normed Abelian group. Then Peetre’s K-functional for the pair 
(to, i”,“) is characterized as follows. 

THEOREM 6.4. K(t, s; i,, i*,“) z K(t, mug(s); Lo, L”). 
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Using this, reiteration, and retraction, we have the following function 
space result. 

COROLLARY 6.7. K(t, f; p;,Y$f)~ K(t, A’qf;LPo, LPI) for 0 <p,, <p, 6 
+a. 

Then the following real interpolation result are easily established: 

(Corollary 6.6) 

and 

e;;, q)B,p = q (Corollary 6.7 ) 

for l/p=(1-8)/p,+8/p,,O<p,<p,6 +co. Wedonot, however, obtain 
a satisfactory function space analogue of f,. The natural analogue of & has 
the undesirable property that it depends on the choice of the original test 
function cp. 

In Section 7 we obtain an analogue of the traditional “non-smooth” 
atomic Hardy space decomposition, for the py-spaces, in the range 
O<p<l,pdq< +oo. 

THEOREM 7.4. Each f E I?? for these p and q can he written in the form 
f =CkcZIZkAk with (Ckez Jjlk,p)“p<~ IlflipT, where each A, is an “atom 
for Py.” 

An “atom for p?” is different from a “smooth atom for p?” (introduced 
in Section 4). In particular, each Ak satisfies the usual HP compact support 
and vanishing moment conditions, and satisfies A, E Pz (and (I A,IJ Pq < c). 
In the case of HP% p:, we obtain the usual atomic decompositioA with 
“BMO-atoms.” The range of indices above is natural, since this is exactly 
the range for which 11. I( +, is subadditive, yielding the estimate converse to 
the one in Theorem 7.4. Although there are more direct proofs of Theorem 
7.4, similar to certain proofs of the HP-decomposition (e.g., [Fo-S]), we 
have given a proof based on the real interpolation results for f, and f*,” in 
Section 6. The finite measure condition in the definition of f0 leads to the 
compact support of the atoms. We give this treatment to stress the recipro- 
cal relation between interpolation and atomic decompositions. It has been 
a natural conjecture from the time of Coifman’s original proof [Co] that 
the atomic decomposition could be explicitly reduced to the “Fundamental 
Lemma” of real interpolation (see [Be-L]). Our presentation verifies this 
conjecture. 

We take advantage of the fact that the discrete spaces ff” are 
(quasi-)Banach lattices when we discuss other interpolation methods in 
Section 8. Because of the lattice structure, the Calderon product of a pair 
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of f?-spaces is defined. We show in Theorem 8.2 that this product is the 
natural intermediate f?-space. For lattices, many interpolation methods 
are known to coincide (under mild conditions) with the Calderbn product. 
Thus we obtain various interpolation results for f:, and this yields 
corresponding results for fif by retraction. For example, for Calderon’s 
complex method of interpolation, we easily derive the following (known) 
result. 

COROLLARY 8.3. [pzq", p;;"l] (+I?~ for ct,,cr,ER, l<p,,qo< +co, 
1 < pl, q, B + CO, where the indices an related in the usual way. 

We obtain similar results for the (A,, A, )B method (Corollary 8.4) and 
the *method (Theorem 8.5). This last method yields the interpolation 
property for the #T-spaces in the greatest generality. That is, if T is a linear 
operator such that T: p;:4’ -+ P~‘I is bounded, i = 0, 1, then T: p? -+ l?? is 
bounded, where the LX’S, q’s, and p’s are related as in Corollary 8.3, and 
similarly for the /3’s, T’S, and t’s, for the full range of possible indices 
(0 <pi, qi, Yi, ti B + co). We note that we obtain this directly by applying 
Corollary 5.6 and thus we avoid relying on Wolff’s reiteration 
theorem [ Wo]. 

We discuss the almost diagonality condition from Section 3 further in 
Section 9. 

THEOREM 9.1. The composition of almost diagonal operators is almost 
diagonal. 

Thus the collection of almost diagonal operators for f%“, which we 
denote ad?, 1s an algebra under composition. 

We say that a family of functions {mp)p,,,,ic is an Ad?-family if the 
matrix ((m,, cpP))e,PEadT. We noted in Section 3 that a family of 
smooth molecules is an Ad:-family. For c1= 0, the converse is true also 
(Theorem 9.15), but for a # 0 the smooth molecule conditions are stronger 
than necessary. In Theorems 9.3-9.4 we give an exact characterization of 
Ad?-families. We also show the following: 

THEOREM 9.9. Zff=& sQmQ, where {m p } Q is an Ady-family, then 

Hence, by our decomposition results, if T is a linear operator mapping 
an arbitrary family of smooth atoms (aQ}p, or the family {$e}a, into an 
Ady-family, then T is bounded on py. Let Ad? be the set of all linear 
operators such that { ( Tt,bP, (po) } o, P E ad?. By Section 3 we know that the 
operators in Ad? are bounded, and from Theorem 9.1 it follows easily that 
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Ad? is closed under composition. It is shown in [Fr-H-J-W; FW; Torr] 
that certain generalized Calderon-Zygmund operators (of the type con- 
sidered by David and Journe in [DJ]) map smooth atoms to smooth 
molecules and hence belong to Ad?. In Example 9.19 we see that Fourier 
multiplier operators satisfying an L’-Mihlin condition belong to Ad? also. 
Hence, the algebra Ad? is fairly rich. 

In Section 10 we consider conditions, more precise than almost 
diagonality, under which boundedness on ff” or Fy is obtained. The 
general philosophy is that cancellation aspects of the FT spaces are 
accounted for by the Littlewood-Paley theory implicit in the q-transform; 
then, on the sequence space level, it should be possible to obtain key infor- 
mation through estimates depending only on magnitudes. Consistent with 
this philosophy, we discuss size estimates yielding boundedness of a matrix 
of I?. For this purpose we consider a number of characterizations related 
to the classical Schur’s lemma. For each of the spaces fy, 0 <p < 1, 
f”,“,f;“,O<pdl, and f”,‘, we obtain necessary and sufficient conditions 
for a positive matrix to be bounded. Using this, in Theorem 10.3 we obtain 
simple conditions under which a matrix is bounded on fy for all 
1 <p, q d + cc (and CI E [w fixed). In Corollary 10.6, we obtain sufficient 
conditions for general p and q by a reduction to the case p, q 2 1. 

Passing to the Fy spaces, we get as an application a suflicient condition, 
(10.19), for a Fourier multiplier operator to be bounded. From this and 
Holder’s inequality, we obtain (Remark 10.9) a relatively straightforward 
proof of the known fact (see [Tr2]) that for t( E [w, 0 <p, q 6 + co, a func- 
tion m satisfying 

is a bounded multiplier on Fy. (Here J= n/min( 1, p, q), and Li = F{’ is 
the usual Bessel potential space.) This unifies a number of results about 
Fourier multipliers. When 1 <p < + co and q = 2 this is the familiar 
Hormander multiplier theorem [Horl]. If 0 <p < 1, and q= 2, this gives 
the HP-analogue, since here J= n/p (see [Fef-S2; Cal-T]). (Recall that 
pFzLLp, 1 <p< + co, and I?; w  HP, 0 <p < 1.) We remark that in our 
approach, the HP-result, 0 <p < 1, is obtained from the LP-result, 
1 < p < + co, by a simple reduction (on the sequence space side), some- 
what like the classical reduction in one dimension of HP to Lp via Blaschke 
products. This may seem surprising, but it is already implicit in [P2]. 

In fact, our methods can be sharpened to obtain the following refinement 
of the Hiirmander (Fourier) multiplier theorem. 

COROLLARY 10.10. Suppose Q(t), t 3 0, is a nondecreasing function 
satisfying @(O) = 1, @(2t) d C@(t), t 2 0, and 
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m  

j  Lj 

1 
- dx 1 ‘I2 dt 

2 I~l.~@(l4) f<+cO. 

Suppose m satisfies 

sup Il@(lxl )l’* (m(2’.) & .)) ” (x)11 L2 < + co. 

Then m is a bounded Fourier multiplier on p%“( R”) for a E 03, 1 <p, q 6 + co. 

We continue by further discussing boundedness criteria for positive 
matrices. Using a theorem by Rubio de Francis [RdF2] to reduce to the 
lp-case, and then Schur’s lemma, we obtain a characterization (Theorem 
10.13) of positive matrices bounded on f%“, 1 <p, q < + co. Applying the 
ideas of Rubio de Francis (see, e.g., [GC-RdF]) in our context gives some 
extrapolation results, for instance, the following. (See Section 10 for the 
relevant definitions.) 

THEOREM 10.17. Suppose T,,, is a Fourier multiplier operator bounded on 
P;:(w), for all wEApO, for some fixed p. and go with 1 <po, go < + co. 
Then T,,, is bounded on p:(w) for all 1 <p, q < + co, and all w E A,. 

The problem of restricting distributions in a certain PT space on [w” to 
the hyperplane aB” ~ ’ c [w” is considered in Section 11. It has been observed 
before that the restriction, or trace, results for p’%” are independent of the 
index q (e.g., [Ja3]). By considering our sequence spaces fy and exploiting 
Proposition 2.7 in conjunction with the geometry of the trace problem, we 
obtain a simple geometric explanation of this fact. From this and the result 
in the diagonal case q =p in [Fr-Jl] (PF coincides with the Besov space 
kY ), we obtain complete trace results for p: in Theorem 11.1. This 
includes the known cases and some that may be new. 

Our treatment so far has dealt only with the homogeneous spaces FT. 
In Section 12 we describe the corresponding results for the inhomogeneous 
spaces Fy, which include, for example, the Bessel potential spaces Lg. The 
main difference is that instead of using all dyadic cubes in Iw”, we use only 
cubes Q with sidelength l(Q) < 1, and the functions corresponding to cubes 
Q with l(Q) = 1 are slightly different. Otherwise, everything is essentially 
the same and all our results for I?? have inhomogeneous analogues. 

We consider pointwise multipliers for the Fy spaces in Section 13. After 
some general remarks, we restrict attention to the case of the characteristic 
function xn of a domain L2 E Iw”, and ask when the operator Tf(x) = 
xn(x) f(x) is bounded on FF. We consider the following condition: we say 
SZED, (s>O) if 

sup l(Q) 
Q dyadic,/(Q) c 1 

$,s,, 
n 

p&dx)lh< +oo, 
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where 6(x) is the distance from x to the complement of G?. Our main result 
is Theorem 13.3, which states that if QED,, then xa is a pointwise multi- 
plier for FT for a in a certain range depending on s, p, and q (see 
(13.17)(13.18)). In the proof of this theorem we exploit the smooth atomic 
decomposition and certain precise conditions from Section 10 for matrix 
boundedness on the sequence spaces f:. By duality and interpolation, we 
deduce, in Corollaries 13.4-13.5, that xn is a bounded multiplier for a 
larger range of indices. To understand the meaning of these results, it is 
easy to check that if 52 is the upper half space RT, then Q E D, for 0 < s < 1 
(see (13.7)). Then our results for lR: agree with the known results (e.g., 
those in [Tr2]). More generally, however, the classes D,s, 0 < s < 1, include, 
but are not restricted to, all bounded Lipschitz domains. Thus our 
pointwise multiplier results for xn apply to certain general classes of 
domains 52, which properly include Lipschitz domains. 

Finally, in Section 14 we suggest some possible extensions of our results 
and make a few concluding comments. 

2. THE (P-TRANSFORM AND SOME BASIC FACTS 

In this section we shall start by recalling the definition of the 
q-transform (cf. [Fr-Jl; Fr-J:!]). The main result is Theorem 2.2 which 
shows that the q-transform allows us to identify the Triebel-Lizorkin 
spaces p‘f” with subspaces of the analogously defined sequence spaces if 
(precise definitions are given below). To prove this theorem we need 
several basic facts. These are either known or follow by quite elementary 
arguments from well-known results. In the latter case we have deferred 
proofs to Appendix A. We conclude the section by showing another basic, 
geometric property of the fy-spaces (Proposition 2.7). 

To set notation, let cp and I,G satisfy 

(2.1) 

(2.2) 

(2.3) 

and 
- _ 

C 4?2”5) VW”<)= 1 if 520. 
YEL 

We set q,(x) = 2’“(p(2’x) and $“(x) = 2”“$(2”x), v E Z. 
For v E Z and k E Z”, we let QVk be the dyadic cube 

Qvk= (lx,, . . . . x,)ER”: ki<2”xi<ki+ 1, i= 1, . . . . H}. 

(2.4) 
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We denote the “lower left-corner” 2-“k of Q = Qyk by xo and the side 
length 2-” by Z(Q). Define 

(~~(-4 = IQ1 -“* (~(2 “x-k)= ,Ql”’ cpV(x-xQ) if Q= Qvk, 

and similarly define $o. Note that II(P~I(~z= (I(PII~z and )I$ojlL2 = IIII/IILz for 
all dyadic Q, 

supp&, I& {r: 2’-‘< /<I <2”+‘} if l(Q)=2-“, (2.5) 

and 

lP’vel> PY$,I 6 C,,. IQI - “2-‘y”n (1 +I@-’ Ix-x~I)-~-‘~‘, (2.6) 

for each L i Z + and multi-index y of length IyI > 0. 
For rp and $ satisfying (2.1)-(2.4), the cp-transform S, is the map taking 

each f E Y’/?? (the space of tempered distributions modulo polynomials) to 
the sequence S,f = {(SVf)g}g defined by (SVf)P= (f,qe) for Q 
dyadic. The inverse cp-transform T+ is the map taking a sequence s = (so}o 
to Ttis=&sa&. Here and throughout, when Q appears as an index, it 
is understood that Q runs over the dyadic cubes in Iw”. 

As in [Fr-Jl], the basis for our results concerning the q-transform is the 
following lemma. 

LEMMA 2.1 [Fr-Jl, Lemma 2.11. Suppose cp and $ satisfy (2.1)-(2.4). rf 
f E Y’/P( R”), then 

f(.)= 1 2-“” 1 Cf(2-“k)lClJ.-2-“k)=~ (f, c~& V&J(.), 
VEB koZ” Q 

where @J”(X) = (py( -x). 

Hence, T+ 0 S, equals the identity on Y/Y. 
For cc~[W, O<p< +co, O<q< +co, and any cp satisfying (2.1t(2.3), 

the Triebel-Lizorkin space p; is the collection of all f E Y’/9( R”) such 
that 

‘19 
llflly= 

ll( 
1 P”I%*fl)q 
vcz > II 

Lp< +m, 

where the Zq-norm is replaced by the sup on v if q = + co. This definition 
is independent of the choice of cp; see, e.g., Remark 2.6 below. We note that 
the quantity inside the LP-norm defining fi? is a generalized, discrete 
Littlewood-Paley expression which corresponds to the usual g-function if 
CI = 0 and q = 2. Hence, the well-known equivalence II g(f )I/ LP x llfll HP, 
0 <p < + co [St, Fef-S2] (here z means that the (quasi)-norms are equiv- 
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alent) suggests the result of Peetre [Pl] that Pp = HP for O<p+ co, 
modulo polynomials (see also [Trl, p. 30; Bui; U2], and Remark 7.8 
below). 

Fora~lR,O<p<+co,andO<q<+co,weletf~bethecollectionof 
all complex-valued sequences s = {so} e such that 

where fa = IQ1 -I’* xg is the L2-normalized characteristic function of Q. 
From our next theorem follows the fundamental fact that the following 

diagram is commutative: 

a4 
f  P 

% 
/\ 

T, 

pa4 
P 

Id pf". 

THEOREM 2.2. Suppose CXE R, 0 <p < + 00, 0 <q < + co, and cp and 
I) satisfy (2.1)(2.4). The operators S,: py -+ fy and T,: $7 + pi are 

bounded. Furthermore, Tti OS, is the identity on py. In particular, 

IlfllPp II~rpfllf~, and py can be identified with a complemented subspace 

OfiT. 

More explicitly, S, identifies Pi with the subspace SJPT). Note that 
Pr = S, o Tti is a projection operator from ry onto this subspace. In par- 
ticular, Pr is the matrix operator (Pr( {s,},))Q =&s~($~, qo). Of 
course, S$$“) consists exactly of the sequences invariant under Pr; 
we thus have the criterion that (s~}~E SV(py) if and only if 
SQ = CP s,(ll/p, ‘PQ > for each Q. 

Similarly, since Tti 0 S, is the identity operator, we have 

(f? s> = (c (Svf)Q $QY g) = G%Lf~ s, s> 
Q 

(2.7) 

for f E z$, and g E Y/L?. Here (s, t ) = & sg io for sequences s and t. Note 
that the related identity 

(s,f, t> =I (f, ve&= (f, LO (2.8) 
Q 

is trivial. 

580!93il-4 
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If we choose $ = cp, which we may, then our representation formula 
becomesf=Cg <fTcPahey as if the collection {~o}~ forms an ortho- 
normal basis. Similarly, when cp = $, (2.7) takes the form (f, g) = 
(S, f, S, g ), again as in the orthonormal case. Of course, (2.7) is a 
triviality if cp = $ and the pe’s are orthonormal. 

Now, to prove Theorem 2.2 we need two additional lemmas; the first is 
a characterization of f%” analogous to the g]: characterization of Lp in 
classical Littlewood-Paley theory (see, e.g., [St]) and Peetre’s cp,** charac- 
terization of the p?-spaces [P2]. 

For a sequence s = {so} Q, O<r<+co,andalixedI>O,wedefinethe 
sequence s,* = { (s,*)~} o by 

Cs:),=( 1 
l/r 

lspl’/(l +1(Q)-’ Ixp-x,1)’ . 
P:/(P)= l(Q) ) 

(We will write s:~ when the choice of ;1 requires emphasis.) Notice that the 
imbedding 1’ + lq, if r 6 q, implies that 

(2.9) 

with p = At-/q. 

LEMMA 2.3. Suppose aE [w, 0-cp-c + co, O<q< + 00, and A>n. Then 

lIslI ff’* IIS%n(p,q)ll t:. 

The proof relies on the Fefferman-Stein vector-valued maximal 
inequality and is given in Appendix A. 

Remark 2.4. The following remark is a reformulation of the remarks in 
[Fef-Sl ] regarding the Marcinkiewicz integral; our purpose is to exhibit 
the geometric content of Lemma 2.3. Let Sz c R” be an open set with 
Whitney decomposition F= {Q,},“=i (see [St, Chapt. 6)). For XE R”, let 
6(x) be the distance from x to lfY\SZ. The Marcinkiewicz integral of 
order /I is 

-Q;Fl!(l+~@-’ lx-xQl)“p~ 

Classical results [Cal-Z; Carl; Fef-Sl ] give 

s JB(x)a dx d c IQ/ if l/min(a, 1) < fi < + co. 
tlv 
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Define a sequence s = {s~}~ by s, = IQ1 ‘I2 if Q E F and so = 0 otherwise. 
Then 

II4 fQ = P 

Also, however, 

Ils4*,Alf~= 11(x (i, ( C 
Q /(J’)=QQ) 

PEF 

IK 
I/q 

= c 1 XQ 
c i 

1 (1 +Z(P)-’ 1x-x,1)” 
Y  /(Q)=2-” Np)=&Q) ) II LO 

PEF 

Let r = min(p, q) and p = rl/q. Using (2.9), we see that s,*, ;, d sz,. Thus by 
Lemma 2.3, 

if p > n, i.e., if +I > l/min( 1, p/q). Setting a =p/q and /I = 1/n yields the 
classical estimates above. 

The next lemma is a version of a classical result about entire functions 
of exponential type which goes back to Plancherel and Polya [PI-P]. The 
underlying idea is that a smooth function cannot oscillate too quickly and, 
consequently, the supremum and infimum over most sufficiently small 
cubes must be comparable. The lemma will also be useful later on to relate 
the norms of p$” and fy. 

Let cp satisfy (2.1)-(2.3). Note that 4(x) = cp( -x) also satisfies 
(2.1)-(2.3), so that we may take @ in place of cp in the definition of Py. For 
f EY/Y and Q dyadic with l(Q) = 2-“, we define the sequence 
sup(f) = (supQ(f) > Q by sethi? 

s”PQ(f) = IQI 1’2 sup 16 * f(Y)I, 
Y E Q 
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and, for y E Z with y > 0, the sequence inf,(f) = {info,,(f)}o by 

info,,(f)= IQ11’2max{infY.~ I@ *f(v)l: 4&)=2-‘4Q), e&Q>. 

LEMMA 2.5. Suppose ~~53, O<p< +oo, O<q< +co, and YE&Z is 
sufficiently large. Then for f E Y/9’, 

Ilf II#T= IlsWf )Ilt;q= IW,(f )Ilty. 

A proof can be found in Appendix A. A more precise version (at least in 
one dimension) of this lemma may be obtained from the interpolation 
formula in [Bo, p. 1921. 

Proof of. Theorem 2.2. The boundedness of S, : l!ry + f7 follows from 
Lemma 2.5, since, if Q = Qvk, 

I(S,f)el = I(f, RJ)I = IQ11’21& *fC-“k)l <supQ(f). 

To prove the boundedness of Tti : f; --f p?, suppose s = { se}o and 
f = Ttis=CpsatiQ. BY (2.5), 

v+l 

4” *f(x) = 1 1 S.4” * $.I. 
p=v-1 I(J)=zmr 

After a translation and a dilation, the estimate 

I$” * II/J(X)l d CA,r,n 1~1 -l/2/(1 + 2~ Ix - xJI )WWl,r) 

if 1(J)=2-P, I>n, and O<r< +co, follows from the fact that @*I,-~, 
4 * Ic/, and 4 * $1 all belong to Y. Therefore, if x E Q* E Q E Q* *, where 
Q*, Q, and Q** are dyadic with l(Q*)=2-‘-‘, l(Q)=2-“, and 
I(Q**) = 2-‘+l, we have 

14, * f(x)1 G c IQI -I” “g ( 
g=v-1 

c Is,J’$l+2~ lx-xq, 
I(J) = 2-p 

by the r-triangle inequality if r < 1, or by Holder’s inequality and the fact 
that if r > 1 and ,I> n, &) ,2-rr (1+2# Ix-x,1)-“Gc. Hence for xEQ*, 

14% * f(x)l Gc IQI p1’2 W)p + We + (&4 

Taking r = min(p, q) and applying Lemma 2.3, we obtain 
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Finally, the fact that T, OS, is the identity on p: follows from Lem- 
ma 2.1. l 

Remark 2.6. Suppose cp’ and cp2 each satisfy (2.1)-(2.3). Then it is 
possible to find tj’ and II/’ so that (2.1)-(2.4) are satisfied for each pair (pi, 
tj’, i= 1,2. Define #T(@l) and l?T(Q2) as above, using $5’ and 4’ in place 
of cp. Note that the proof of the boundedness of T$: f? --+ p? above 
requires only (2.1)-( 2.2). Hence, 

This shows that the definition of p’%” is independent of the choice of cp 
satisfying (2.1)-(2.3) (cf. [P2]). 

We also note the following simple fact, which is of considerable use in 
applications (e.g., Section 3 in [Fr-J2] and Sections 11, 13 below). 

PROPOSITION 2.7. Let E >O. Suppose that for each dyadic cube Q, 
EQ E Q is a measurable set with IEQl/lQl > E. Then 

where jEa = JEQI p1’2 xEo. 

ProofI Since li: E. < E -‘12jjQ, one direction is trivial. For the other, note 
that for all A >O, xQ <E-~‘~(M(x$~))“~, where M denotes the Hardy- 
Littlewood maximal operator (see Appendix A). Select A such that p/A, 
q/A > 1. By Theorem A.l, then, 

II{~Q)QII~;~~~~~‘~ 
IK 

; (WIQI -‘ln lbQiiE~)“)“‘“)l-‘~~ 1’A p/A 

< c&-“~ ; (IQ1 -O lsQliEQ)q 
IK 

. i 
LP 

3. ALMOST DIAGONAL OPERATORS AND SMOOTH MOLECULES 

Our purpose in this section is to obtain a sufficient condition for an 
operator A on r; to be bounded; the condition is simple, yet general 
enough to include many interesting operators. We then use this condition 
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to generalize Theorem 2.2 in two ways. The first involves decompositions 
into “smooth molecules” and is an extension of the boundedness of T,. 
The second generalizes the fact that S, is bounded. 

The commutative diagram preceding Theorem 2.2 in Section 2 can be 
extended to the level of operators. For a (quasi-)normed space X, let P’(X) 
be the space of bounded linear operators on X with the operator norm. For 
cp and $ satisfying (2.1)-(2.4), we define maps S;: Y(PF) + LE’(tT) and 
T$: 6p(fT) -+ 6p(py) by 

and 

if AE L&‘(fy) and BET@?). As long as q# + co, any AE Y(fy) is 
represented by a matrix { agp}g,p. Namely, if eP E fy is defined by 
iff’p ,kif Q = P and (eP), =0 otherwise, we set aQp= (AeP)Q. Then 

SQ PaQPSP for s= {s~}~E~~. For ~EPY, let se=(f, qe). By 
Theorem 2.2, then, f = & se$o and hence 

(TfA)(f)=C(AS,f)eII/,=C(As),IC/p, 
Q Q 

Similarly, if s E fy and B E Y(fJF), q < + co, 

so SZB is the operator on rf” associated with the matrix aQp = (Btip, qQ). 

If q = + cc the same representation of St: B holds under weak continuity 
assumptions on B, e.g., if g, + g in Y/P, g,, g E pz, then Bgn -+ Bg in 
Yp’/5P. 

PROPOSITION 3.1. Let a~@ O<p< +a~, and O<q< +co. The maps 
SG and T$ are bounded, and T$o Sz is the identity on Y(l?iq). In particular, 
for BE T(pT), 

IlS;Bll Jz(qq * IlBll -Lp(qq 

Proof: All conclusions follow immediately from Theorem 2.2 and the 
definitions of Sz and T$. 1 
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Thus the following diagram is commutative: 

Let J= n/min( 1, p, q). We say that A, with associated matrix { ~o~}o,~, 
is almost diagonal on f F if there exists E > 0 such that 

where 

Remark 3.2. For 01= 0 and p, q > 1, the almost diagonality condition 
has the following interpretation. Let G = {(x, t): x E R”, t > O> be the group 
with multiplication 

(x0, to). (XI 3 t,)=(t,-%+x,, tot,). 

Then the map U: G -+ 9’(L*(R”)) defined by 

wo, to)f= h?f((X--o)lfo) 

is a unitary representation of G. In particular, if we associate with the 
dyadic cube Qc l%” the point (x,, I(Q))EG, then U(XQ, !(Q))$ =$Q. 
Thus Theorem 2.2 shows that the image of $ under the subset 
{ u(xQ~ 4Q)): Q is dyadic} of U(G) generates p%” for each a E R, 
0 <p < + co, and 0 < q < + co. (See the comments and references in 
[Fr-J2, Section 41, and [Fei-G] for further discussion of this.) By analogy 
to the Poincare metric in the upper half-plane, we define 

where 

4(x,, to), (Xl, t1))=log 

P = P((Xo, kl)~ (x1 7 t,)) = 
( 

Ix1 -xX,1*+ (t, - to)2 “2 
> Ix,-x,~2+(t*+t0)2 ’ 
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for (x,, to), (x,, t,) E G. Then d is invariant under right multiplication: 

4(x0, to). (a, b), (x,, 21). (a, b)) =4(x,, to), (x,, tl)). 

We have the elementary observations that 

Since 0 < p < 1, we obtain 

For P and Q dyadic cubes, we obtain a “distance” by setting 

d(P, Q, = 4(x,> 4P)h (XQ> W))). 

Then for a = 0 and p, q 3 1, (3.1) reduces to the condition 

laQp( <c~~-'"+")~'~,Q). (3.2) 

THEOREM 3.3. Suppose CI E R, 0 <p < + co, and 0 < q < + co. An almost 
diagonal operator on f%” is bounded. 

Proof We assume a =O, since this case implies the general case, and 
put r = min(p, q). We shall consider the case r > 1 first. 

Let A be an almost diagonal operator on fy with matrix {aQ,}Q,p, 
satisfying (3.2). We write A = A,, + A, with 

(Aode= c aQPsP and (A,dQ= c aQPSP~ 

4p).4Q) Kp)<4Q) 

for s= {s~}~E~~. Oq If I(Q) = 2-“, our assumptions and Lemma A.2 with 
I=n+c and a=r= 1 yield 

= cE ,(,&,) (g)‘“+““’ IsP1/(l+I(p)-lIxP-xQI)"+" 

<c, 1 2 (P-v)(n+E)lZM 
( ,,E2, I > SPXPI (XL 

p<v 
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for XEQ. Hence, since lQl-1’2=2(v-P)n’2 IPIP1’2 if I(P)=2-“, 

by Minkowski’s inequality. Since p, q > 1, applying the Fefferman-Stein 
vector-valued maximal inequality (Theorem A. 1 ), we find that 

ll&Jll f? G c llsll r;. 

It is easy to see (see Remark 5.11) that the dual of f? is ii?‘, where 
l/p’ + l/p = 1, and similarly for q’. Also, notice that the adjoint of A,, A:, 
has the same form as A,. Hence, by using this duality and the argument 
we just gave applied to AT, we obtain that A, is also bounded on f,““. This 
proves the theorem in the case Y > 1 and q -c + 00. 

The case r d 1 and q < + co is in fact a simple consequence of the case 
r > 1. We pick an r” < r so close to r so that (3.1) is still satisfied with 
r = min(p, q) replaced by r”. This means that p/r” > 1 and q/F> 1, and 
that the matrix A” = {Czop} = ( laQpli (lQl/lP~)‘/2~i~2} satisfies (3.2) for a 
different value of E. Define t = { tQ} Q by to = 1 Ql ‘j2- ‘I2 Isp I ‘. Then 
ll,lI$$+= llsll fF. By the ?-triangle inequality, we have 

I(As)Ql G(x lappli l~di),‘~ 
P 

Hence, I(AsllfOq 6 ll~tll$&. Therefore the boundedness of A on f,“” follows 
from the bouhdedness %f 2 on &Ii. 

Now, the case q = + co and p > 1 follows by duality from the result for 
q = 1 which we have just obtained. Finally, for p 6 1 and q = + co we 
reduce to the case p > 1 as before. 1 

Remark 3.4. Another, perhaps more direct, proof of this theorem, 
avoiding the duality and the reduction, can be given by using Remark A.3 
instead of Lemma A.2. 

Lemma 3.1 and Theorem 3.3 yield that a linear operator B correspond- 
ing to an almost diagonal matrix is bounded on pi:. Using this, we can 
generalize the estimate IlCo SQ I/IQ II py < c II { sQ} o 11 f;q m Theorem 2.2. 
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For a, q, and p as above regarded as fixed, let J= n/min( 1, p, q), 
N=max([J-n-a], -l), and ~*=a-[a]. We say that {mo}o is a 
family of smooth molecules for l$ if there exist 6 and M with c1* < 6 < 1, 
A4 > J, such that for each dyadic cube Q, 

i‘ xYmp(x) dx = 0 if Iyl 6N, (3.3) 

Ima < lQ[-“‘(l +/(Q))l Ix-x~[))~~~(~*“‘-‘~, (3.4) 

18’ma(x)l 6 lQl~1’2~lyl’n (1+1(Q)-’ Ix-x~I)-~ (3.5) 

if Iyl 6 [al, and 

IdYmg(x) - ~Yme(Y)I 

GIQI- 112 - IA/n ~ S/n Ix-Yl” sup (1+1(Q)-’ Ix-z-x~~))~ 
IZI Q IY - .rI 

(3.6) 

if IyI = [M]. We shall call a function m, satisfying (3.3)-(3.6), for some 
fixed 6 and M, a smooth (6, M)-molecule. 

To be explicit, let us make the following comments. If a < 0, then 
(3.5)(3.6) are void. If tl> 0, (3.4) follows from (3.5). If also a > J- n, then 
N= - 1, and (3.3) is void. If cr=O, then N= [J-n]; if also O<p6 1 and 
q >p, then N= [n( l/p - I)], and (3.3) is the usual vanishing moment con- 
dition for HP-atoms. In the case IX = 0 and min(p, q) > 1 (e.g., H’ and Lp 
for 1 <p < + co), the conditions are merely (3.3), (3.5), and (3.6) with 
y=O for some 6>0 and M>n. For a>O, (3.6) and the assumption ~>cI* 
show that mn E Cp for some /I > GI. 

Clearly, { $o}o is a family of molecules for all p?. We should also 
remark that the assumptions (3.3)-(3.6) are weaker than in the definition 
of “smooth molecule” in [Fr-Jl, Fr-J2]. 

THEOREM 3.5. Zf f =& snmg, 
molecules for py, then 

where (me}e is a famiiy of smooth 

IlfllqJGc II{sg)Qllf;~. 

Proof By Lemma 2.1, we can write m,=& (mp, qPp)t,be. If A is the 
operator on f? with matrix aQP= (m,, qo), and s= (so}o, then 

T+As=~~aQpspGQ=~sp~ <mpYvQ)tiQ=CspmP=f. 
QP P Q P 
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Lemma 3.6 below will show that the operator A is almost diagonal. Then, 
by Theorem 3.3, A is bounded, and by Theorem 2.2, T, is also bounded. 
This yields the conclusion. 1 

LEMMA 3.6. Zf{mQ}g 
operator A on i$ 

is a family of smooth molecules for py, then the 
with matrix agP= (m,, qa) is almost diagonal. 

The proof is completely elementary, but quite tedious; it is given in 
Appendix B. 

Since {Ic/,}, is a family of smooth molecules, Theorem 3.5 is a 
generalization of the result in Theorem 2.2 that T,: f? + I?? is bounded. 
Similarly, replacing the qe’s by more general functions {bQ}o, Theorem 
3.3 also leads to a generalization of the boundedness of S, : #y -+ fy. 

Let J be defined as above, and let (J-a)* =J--cc- [J-a]. In what 
follows, we consider a sequence {be}o of functions such that for some p 
and M with (.I-a*)<~< 1, and M>J, 

s xyb,(x) dx = 0 if IA 6 [INI, (3.7) 

IbQ(X)l 6 @l-l’* (1 +I@-’ IX-xx,l)-“““‘M’M+n+I~J), (3.8) 

lW&)l G IQI - l/*-M/n (1 +1(Q)-’ lX-xal)-M (3.9) 

if (yl GN, and 

laYba(x) - ~Yb,bY 

f IQI - 112 ~ I-A/n- pin L-YIP SUP (1 +I@--’ IX-Z-X&~ 
Izl4.-xI 

(3.10) 

if Iyl = N. (Note the inversion of the roles of N and [CX] here as compared 
to (3.3)-(3.6). 

We can now state the dual analogue of Theorem 3.5. 

THEOREM 3.7. rffEP7 and (b,}, is a family of functions satisfying 
(3.7)-(3.10), then 

For this we need another elementary lemma, analogous to Lemma 3.6; 
the proof is in Appendix B. 

LEMMA 3.8. If{bQ}Q is a family of functions satisfying (3.7)-( 3.10) then 
the operator A on fl”, with matrix aQP = ($P, b,) is almost diagonal. 
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Proof of Theorem 3.7. By Theorem 2.2, 

(.f, b,) =&4iL b,), 
P 

where s = {s~}~ satisfies Ilsllr~ < c llfll PY. Set ao, = (tip, b,); we then 

have <f&j= CP~QPSP=(A~Q, where A is the operator associated with 
the matrix {aQP}p,P. According to Lemma 3.8, A is almost diagonal on 
f 7, and, by Theorem 3.3, we have the estimate IIAsJItY< c IlsllrY. This 
completes the proof. 1 

Remark 3.9. Note that since (pa E 9 and 0 $ supp @Q, (f, pQ) iS well 
defined for f~ Y/P. However, under weaker assumptions on b,, care 
must be taken in interpreting the expression (f, b,). For a discussion of 
this technical point, we refer to Remark B.4 in Appendix B. 

Remark 3.10. In Remark 2.6 we saw that py is independent of choice 
cp satisfying (2.1)-(2.3). More generally, suppose b satisfies 

s Yb(x) dx = 0 if Iyl 6 Cal, (3.11) 

lb(x)1 < (1 + l~j)-~~~(“‘,~+~+~-~), (3.12) 

l?b(x)l 6 (1 + IxI)-~ (3.13) 

if Iyl <N, and 

lS’b(x)-8Yb(y)J < Ix-yip sup (1 + Ix-zl)++’ (3.14) 
I4 G IY-xl 

if 171 =iV. Let b”(x) =2”“b(2”x), for VEZ. Let {xQ>Q be any sequence of 
points with xQ E Q for each dyadic Q. Let 

bQ(x) = IQ1 -“* b(2”(x - xQ)) = IQ/ 1’2 b”(x - xQ), 

if l(Q)=2-“. Since lxQ-xol <&I(Q), the b,‘s satisfy (3.7)-(3.10) up 
to a constant factor. Note that (f, b,) = lQl”‘8” * f(xQ), where 
g”(x) = b”( -x). Theorem 3.7 yields the estimate 

il( 
v;z /cQ;2evt2”” Ia" *f(xQ)i~Q)q)l'q~~ 

LP 
G c llf ll1;4> 

with c independent of the selection of the points xQ E Q. Setting 
SUPQ,b(f)=SUPxsQ IQ/ 'I2 16" * f(x)1 if 1(Q) = 2-“, we have 

II {sUP~,b(f) >Q II y G c llfll up” (3.15) 
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(cf. Lemma 2.5). In particular, we have 

llfll y(b) = 1 Pa 16” * A)” G c llfll py2 (3.16) 
vez LP 

for any b satisfying (3.11)-( 3.14). In other words, replacing cp by any 
reasonable kernel (one satisfying (3.11)-( 3.14)) in the definition of @E 
yields a “norm” dominated by the PT-norm. 

The converse to (3.15)-( 3.16) will, in general, require some non- 
degeneracy condition. We state one such result, taking b in Y, although 
this condition can certainly be weakened. However, the following is suf- 
ficient to allow us to take b of compact support, which is sometimes useful. 
The method of proof is derived from [P3, Chap. 81, and the references 
given there. Let AI’,(f) be the sequence defined for Q dyadic by 

&df)=lQl-‘-‘IQ 16,*f(y)l dy 

PROPOSITION 3.11. Suppose b E Y satisfies (3.1 l), and 

l&Ol z c > 0 if $< 151 < $ 

(i) Ifcc~R, 0cp-c +oo andO<q< +a, then 

II~~,(f)ll,~~llflIP~. 

(ii) Ifcr~R, l<p< +co and l<q< +a~, then 

Ilf II ly@) = llfll P;” 

Proof From (3.15)(3.16) and the fact that AV&f)dsup,,(f), we 
see that the right-hand side of (i) and (ii) dominates the left. For the other 
direction, our assumptions guarantee that there exists v E Y such that 
‘p=q*g. For f and b fixed, we let t= {tQJQ= {AV,,,(f)}, as defined 
earlier. We write out the convolution (py * f = qy * 5, * f, break the integral 
up over cubes of sidelength 2-” = r(Q), and use the rapid decay of v]. We 
obtain 

sup (f) d CL(t:,L)Q Q Q(t:,)Q 
Q 

ior L sufficiently large, r = min(p, q), and A > n, using Holder’s inequality 
if r > 1 and (2.9) if not. Hence, by Lemma 2.3, 
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This yields (i). To complete (ii), observe that 

c AVQ,b(f)XQ s wk * f). 
/(Q)=Z-’ 

Inserting this in the definition of lltllpu and using the vector-valued maxi- 
mal inequality, Theorem A.l, yields (i!). 1 

4. THE GENERALIZED (P-TRANSFORM 

Under the assumptions (2.1)-(2.4), we obtained in Theorem 2.2 the 
representation f=CQ (f, qvQ)lC/Q with the estimate II{ (f, (PQ)}llf~d 

c llfll f~4, as well as the estimate l\xQ sQ$Q ((pV < c ((s(( rV for any sequence 
s = {.Y;}~. In this section we consider other p”ossibilitieG for representing f 
and obtaining one or the other of these estimates under less restrictive 
conditions on the functions involved. For example, it is sometimes 
convenient to be able to represent f as a sum of functions of compact 
support, as in the traditional Hardy space atomic decomposition. 

We say that { uQ}Q is a family of smooth atoms for fly if there exist F 
and m with Ra [CX + 11 + and 152 N (for N as above) such that for each 
dyadic cube Q, 

suPPa,= 3Q, (4.1) 

s 
&Q(x) dx = 0 if IA GR (4.2) 

and 

lit%~~(x)l < IQ1 -1/2-lyl/n if Iy( GE. (4.3) 

When emphasis is required, we call a function nQ satisfying (4.1)-(4.3) a 
(ft, m)-smooth atom. Note that a smooth atom is also a smooth molecule. 
The following result appears in [Fr-J2, Theorem II]; here we present 
another proof, which illustrates that this result can be considered a conse- 
quence of Theorem 2.2. 

THEOREM 4.1. Let cc~(W, O<q< +a~, and O<p< +co. For each 
f E py, there exists a family of smooth atoms {aQjp and a sequence of coef- 
ficients s= {s~}~ such that f=xQsQaQ (in Y’/9), and Ilsll~~<c llfll~;~. 
Conversely, l/CQ SQUQ llq< c llsll~~for any family ofsmooth atoms {aQ}Q. 

Proof: Pick cp and $ satisfying (2.1t(2.4). By Theorem 2.2, we 
can write f =CQ tQt+bQ, where t= {tQ}Q= {(f, (PQ)}Q satisfies 
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IMh~6C IlfIIP~. Select OEY satisfying supp8~{x~R”:~x~~1}, 
j XV(X) dx = 0 if lyl 6 iV, and l&t)1 3c>O if $< 151 ~2 (see [Fr-Jl, 
p. 7831, for a construction of 0). By (2.2), $/OE Y, so $ = 19 * rl for 
some 9 E Y. Setting gk(x) = Spok 0(x - y) q(y) dy for k E Z”, we have 
$=C ktLn g,, and, hence, for v E Z and 1 E Z”, 

$Q&) = lQ”,l --I’* 1 &f(2”x- 0 
keh” 

Note that supp gk z 3Qok, j x’gk(x) dx= 0 if IyI < fi, and layg,(x)j < 
cM,?( 1 + lkl))” for any M> 0. For Q = Qvk, set so = C(t,*), and 

a~@)= ,Qlp”’ 1 &&[(2”X-l)/+j, 
le.??” 

where r = min(p, q) and C will be determined shortly. From the repre- 
sentations above of f and ijp, we have f = En sp up. Since 
supp gk~,(2”x-~)~3Q,k, (4.1) holds. Clearly (4.2) holds. Letting M be 
greater than J=n/min(l, Y), the estimate for dyg, above yields 

l&zQ(x)l < c IQ1 -l’*- ‘W ,pjsir,, It,1 (l+/(Q)-’ I+-~~l)-~K(fr*)a 

<clQl- > 112 ~ Ivl/“/c 

by Holder’s inequality if Y > 1, or by the imbedding l’+ I’ if r < 1. Taking 
C large enough yields (4.3). Finally, by Lemma 2.3, 

IMy= c IIm~GC IMlt;4GC llflly 

The converse follows from Theorem 3.5. 1 

Notice that the proof in fact shows that we may take the aQ’s in 9. 
Although the smooth atomic decomposition in Theorem 4.1 is useful in 

applications (see, e.g., Sections 11, 13 below), it suffers from two disadvan- 
tages. First, the functions {ao}o are not canonical, in the sense that dif- 
ferent so’s appear in the representations of different distributions. This is 
unlike the case of Theorem 2.2, where there is one fixed tie for each cube 
Q, for all f. Second, the coefficients {s&o in Theorem 4.1 are not deter- 
mined linearly byf, as they are in the case of Theorem 2.2. 

We will consider below families of distributions {cQ}o, which may be 
used to represent distributions in PT, and families of distributions { z~}~, 
which linearly determine coefficients of the form (f, 7”) in the representa- 
tion off. In this section, we reserve the subindex notation ap (and zo) 
for the case where there exists a function (T (or r) such that 
oe(x)= IQI-“* a(2”x-k) (similarly ho) if Q= Qyk. We say that a family 
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(c~}~ of distributions represents py, if there exists a family { rQjQ such 
that 

(i) for allfE Py, we have 

f =I u-3 r”>aQ, (4.4) 
Q 

with 

II{<f~rQ>)QII~~~c Ilf/IP~’ (4.5) 

and 

(ii) for any sequence s = {sQ}Q, we have 

I /I 
lppQ $c lblh~. (4.6) 

P 

If, instead, {zQjp is a sequence of distributions such that there exists a 
family (c@}~ so that (i) and (ii) hold, we say that {T”}~ norms 1’7. In 
either case, we call the map sending f to { (f, zQ ) }Q the generalized 
q-transform, and the map sending {sQ}Q to & sQaQ the generalized 
inverse q-transform. 

We single out the following result (similarly Theorem 4.4) to see that the 
conditions on {aQ}Q required to obtain (i) and (ii) above are slightly dif- 
ferent. Recall the definitions of N and J above. Throughout the remainder 
of this section, {xQ}~ represents any sequence of points satisfying xQ E Q 
for each dyadic cube Q. 

THEOREM 4.2. Let a E R, 0 < q d + co, and 0 < p < + co. Suppose 6 
satisfies a* = a - [a] < 6 < 1, and suppose M> J. Let u be a function 
satisfying 

l;(t)1 2c>o if +< 151 <2, 

I xyu(x) dx = 0 if Iyl d N- 1, 

W)-4Y)l Q Ix- Yld sup (1+ IX-zl)-maX(M*M--), 
Izl~lY-xl 

and 

lay+)1 < c,(l + 1x1)-” if IvlGCa+ll+, 

l~yu(x)-~yu(Y)l < lx- Y16 sup (l+ Ix-zl)-M 
I4 c IY - XI 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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if IyI = [a + l] +. For p E Z, let u,(x) = 2?.42~x), and set 

aQ(x) = IQ1 -“’ u,(2”(x -xQ)) (4.12) 

for Q = Qyk. Then there is a p,, < 0 with the property that for each ,u < pO, 
there exists a family of functions { zQ > Q such that { uQ} Q and { ~~~ Q satisfy 
(4.4)-(4.5). 

Proof. By (4.7), there exists cp satisfying (2.1t(2.3) such that 

.Fz ti(2’[) @(2”5) = 1 if 5 # 0. 

For p E Z, define 

?(X) = IQol cpp(x - Y) dY 

and 

qQ(x)= IQl-“‘tj(2”X4) if Q=Qvk. 

Note that 

VlEsp, I 
x%f(x) dx = 0 

and 

llYq(x)l <cM,y2p(“+‘y’y1 +2” 1x1)-M, 

for all multi-indices y. Define the operator T, on py by 

T,f(x)=C (f> rQ> c’(X) 
Q 

= & ,;. ib,, 4B+p *f(Y)~Yq3+,(x-xQ% 

where 4s(x) = cp& -x), as usual. 
We claim that 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

for p < 0, where I is the identity operator. To see this, note that by the 
choice of cp, 

580/93/1-S 



64 FRAZIER AND JAWERTH 

Hence, replacing B by v-p and collecting terms, we can write 

(I-T,)“+)= c 1 
YEL kcL” &Q.* J-Q v !A I @, *fb) 
x (t&(x - y) - 24,(x - xQv-‘)) fly. 

Let sevk= IQykI -“* fQvk I@, *f(~)l 4 and 

for C sufficiently large, to be chosen later. By (4.8), each mQ satisfies (3.3). 
If Iyl Q [al and YE Qvp,,Ic Qvk, (4.10) yields 

lq(u,(x - y) - 24,(x - xQv-Jq)l 

= c2v(Iy1+1)2”“2-(“-p) sup IV, ~yxu(2"x-2"z)I 

zcQc,-p,/ 

<c2@2”(“+‘7’) sup (1+2” Ix-zl)-M 
z=Q"k 

6C2” lQYkI -‘-‘y”n (1 +2” Ix-xQvkI)-M. (4.19) 

Hence for IyI d [a] and C large enough, 

21”(1 ~ 6) 

IaYmQvk(x)I < c - sQ, lQvJ~‘y”n(l +2” IX-X~J-~ 
Y 

x c j I&*f(Y)l4 
l:Qym,,,cQvk Qv-r-1 

< lQvkl-1’2P’y”n (1+2” Ix-x~~~I)-~, 

since 6 < 1 and ,u < 0. Thus, (3.5) holds. Similarly, (4.9) yields (3.4). Also, 
applying the mean value theorem to each pair of closest points, followed by 
(4.10~(4.11), leads to (3.6). Thus, {mQ}Q is a family of smooth molecules. 
Since (I - T,)f= C2”* CQ sQmQ, Theorem 3.5 yields 

ll(I - TJfll y. <c2p’6 II{SQ)Qllf;~. 

Noting, however, that IsQ 1 G IQ1 ‘I* supYE Q 14, * f( y)( = supQ(f), Lemma 
2.5 yields (4.18). 
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Therefore, there exists p. < 0 such that for P < PO, I/f - T, II < 1, so T, is 
invertible. Hence for f E fi?, 

f = T,T,-‘f =I (T,‘f, Q)o~. 
Q 

Thus (4.4) holds with rQ = (T;‘)* qQ. To obtain (4.5), note that if 
I]-~(x)=~~~~~v](~-~Lx), then )1-p satisfies (3.11), and, up to a constant, 
(3.12)-(3.14). For any ge fiy, write 

ll((g,~Q)}QI/t;~= C 1 (2”’ lg*ijJ2p”k)lX~vk)9 
VCZ keZ” 

Lp’ 

Replacing v by v -p and noting that for 116 0, 

g * q,_,(2-“+%)l XQv-,,k < sup lg * (ii-p)” (x)lxQ,,~ 
Q\,ep.k~Qv./ XEQ”/ 

we obtain 

by (3.15). Hence, we have 

yielding (4.5). 1 

COROLLARY 4.3. Suppose u is a function satisfying (4.7), 

s x%l(x) dx = 0 if IYI 6 N, (4.8’) 

and (4.9)-(4.11), and define {crQ}Q by (4.12). Then there exists po<O such 
that for all p < po, the family {crQ}Q repreSentS fiy. 

Proof: By Theorem 4.2, only (4.6) requires proof. However, note that 
for IyI < [a+ 11, and Q=QYk, 

I~Y~Q(,)I = IQ1 ~lP~l~l/n 2b’(“+l?l) I(9U)(2~+“(X-xQ))l 

< c2P(“+ Irl) IQI- 1/2-lWn (1 +~P+v lx--,Ql)-M 

< C2-~(M-n) IQI - 112 - M/n (1+2” lX-xQl)-“, 
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which yields (3.5) for oQ. Similar calculations yield (3.4) and (3.6). Since, 
clearly, Jx’f~“(x) dx=O if jyl <N, (OQ}Q is, up to a factor of c~-I’(~-~), 
a family of smooth molecules. By Theorem 3.5, then, 

In particular, it is possible to select u E Y with supp u G {x: 1x1 < 1) 
satisfying (4.7), (4.8’), and (4.9t(4.11). Then supp ufi E {x: 1x1 < 2-“} and, 
hence, for rrQ as in Corollary 4.3, supp cQ c (2-p + l)Q, j xyao(x) dx = 0 
if lyl 6 N, and 18aQ(x)l Q c~~(“+I~I) IQ1 - 1’2- Iv”‘. Thus, for p sufficiently 
small, we obtain a linear, canonical version of the smooth atomic decom- 
position in Theorem 4.1, except for the fact that the constant in (4.1) is 3. 

The following result is dual to Theorem 4.2 and has an analogous proof. 

THEOREM 4.4. Let a E R, 0 < q G + co and 0 <p < f co. Suppose p 
satisfies (J- a)* < p < 1 and suppose A4 > J. Let u be a function satisfying 
(4.7 ), 

s xyu(x) dx = 0 if IYI G [a- 11, (4.20) 

I@)-U(Y)1 G IX-YIP sup (1 + Ix-z~)-~~~(~,~+~+~~~), (4.21) 
12’ 6 IY ~ XI 

layu(x)l < c,(l + (xl I-” if IyI d Iv+ 1, (4.22) 

and 

pyu(x)-Pu(y)l6 Ix- yJP sup (1+ lx-zl)-” 
IZIG ‘r-xl 

(4.23) 

if (yl =N+ 1. Set 

tQ(x)= IQ1 -l” u,(2”(x-xQ)) (4.24) 

for Q = Qyk. Then th ere is a p,, < 0 with the property that for each p 6 po, 
there exists a family offunctions {cs~}~ such that {oQ}Q and {z”}Q satisfy 
(4.4) and (4.6). 

Proof: As in the proof of Theorem 4.2, (4.7) implies the existence of cp 
satisfying (2.1~(2.3) such that (4.13) holds. For PEE, define q by (4.14), 
thereby obtaining (4.16)-(4.17). Define the operator T, on py by 

T,fW=C (f, zQhQ 
Q 

= fi?z ,;m s,, 
%+r *f(xQ”) (P~+,(x- Y) dv. 
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Taking the complex conjugate of (4.13) yields 

f(x)= c ~,+,*cp,+,*f(x) 
pez 

= iz ,:. ib, iip+p *f(y) cps+,(x-y)dy. 

Hence, replacing /? by v-p, for p ~0, similarly to the proof of Theorem 
4.2, we obtain 

(I-ql)f(x)= 1 c c 
vcH keZ” I:Q,-,,,~Quk 

X 
s 

(ii” *f(y) - fi” * f(xQvmp3’)) (PYW y) dy. 
Q”-p./ 

Let 

SQv,k = I Qvk I - 1’2 16” *f(y)- ii” * f(xQv-q dy, 

and 

mQyk(x) = & 
Qvk ,:Q.-~~Q,,~ 'Q ,I ('" * f(y) 

-ii, * f(xQv-+J)) ,:,: - y) dy, 

for C a constant to be chosen later, By (2.2), mQ satisfies (3.3). If 
1~1 Gb+ll+ andyQLp,l~Qvky 

which easily yields (3.5) and (3.6) with 6 = 1, if C is chosen large enough. 
Similarly, (3.4) follows. Therefore {mQ}Q is a family of smooth molecules. 
Since (I - TP) f  = C CQ sQmQ) Theorem 3.5 yields 

II (I- Tp)f II F‘,” 1 <C II {sQ>Q IIt?. (4.25) 

By Theorem 2.2, we can write f  = CP t,$,, where t = {t,}, satisfies 
Iltllf~<c IlfllpT. If we set 

+= l&-1’2 
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then ISQ I G CP UQP ItJ. We will obtain the estimate 

aQP < c2’p0Qp(&)? (4.26) 

for some E>O, with c independent of Q, P, and p. Then (4.25) and 
Theorem 3.3 imply that 

IIU - TJfll n;q d c II ($2) II ‘7 G czpp lltll f,” d czpp llfll y. (4.27) 

To prove (4.26), fix v, k, and I with QY-r,rc Qvk, and fix YE QVPP,!. Let 
h(x) = U&X - y) - U,(X - xQv-PJ), Then 

ljp * i&(y) - *, * tly(xQ-‘) = (tip, h). (4.28) 

By (4.20), h satisfies j Y/Z(X) dx = 0 if JyJ 6 [a]. Also, as in (4.19) above, 
(4.21), (4.22), and (4.23), respectively, imply that 

lQd’* Ih( <CP IQvkI -l’* (1+2’ Ix-x~J)-~, 

IQvkI1’* ~~Yh(X)~~C2~‘Q,~~-1’2-‘Y”“(1+2Y IX-xQaI)-M, 

if IyI <IV, and 

IQd”* lay&) -~‘h(y)l 
<C2”p IQvk~-1’2--y”n--‘n Ix- yip sup (1 + Jx-z-+J)-~ 

I-d,clY--xi 

if (y( = IV, with C independent of our fixed quantities. Therefore 
2-pp lQYk ( “* h/C satisties the assumptions of Corollary B.3; so 

for some E > 0 and c again independent of our choices. Replacing this and 
(4.28) in the definition of aQp easily yields (4.26). 

By (4.27), then, there exists po<O such that for all p< po, we have 
III- Tp II < 1, so that T, is invertible. Therefore, for fE l!rT, 

f = T,-‘T,,f = T,-‘c (f, T’)t,Q=x (f, zQ)oQ, 
Q Q 

if aQ = T;‘yle. So we have (4.4). 
To obtain (4.6), let s = {so} o E f?. Then 
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by the boundedness of T;‘. However, (4.16)-(4.17) show that, up to a 
factor of c~-P(~-‘) (as in the proof of Corollary 4.3), (nQ}g is a family of 
smooth molecules. Hence, Theorem 3.5 gives 

COROLLARY 4.5. Suppose u is a function satisfying (4.7), 

I xYu(x) dx = 0 if IA 6 [~I> (4.20’) 

(4.21)-(4.23), and 

lu(x)l <c(l + ]X1)-maX(M,M+n+E-“? (4.29) 

Define { ~~~~ by (4.24). Then there exists pLo < 0 such that for all p < pO, the 
family (ZQ}Q norms l?‘f”. 

Proof: By Theorem 4.4, only (4.5) requires proof. Note that 

ii{<f, sQ)}Qllty”= ii(!: c t2"' If* u,+,(ln~k~~~Q~~)q)“4~~~~~ 
veZ ktL” 

Replacing v by v - ~1 and noting that for p < 0, 

1 
k:Q,-,,kE Qv/ 

If* &.(n"'-~")lXp,~,,~~.~Ueq, If * 3v(x)\ XQy,> 

we obtain 

However, u satisfies the conditions (3.1 l)-(3.14). Therefore (3.15) gives 

As in the remark following Corollary 4.3, it is possible to obtain u of 
compact support satisfying the assumptions of Corollary 4.5. Thus we 
obtain a linear, canonical decomposition in which the coefficients are 
“locally” determined. For remarks regarding the dilation factor 2P in these 
results see [Fr-J2, Section 41. 

We have seen that in our decomposition (4.4), we can take one of the 
two families, i.e., either {cJQ>~ or {z~}~, to consist of translates and dilates 
of a fixed nice function. In doing so, explicit information on the other 
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family seems to be lost (we have either rQ = (T;‘)* qQ or aQ = (T,)-’ qe 
for tjQ defined by (4.15)). In Remark 9.17, however, we will obtain certain 
specific information regarding the second family. In particular, in the case 
CI = 0, 1 <p, q < + cc, the second family can be taken to be a family of 
smooth molecules for Pay. 

P 

5. THE CASEP= +oo 

If we replace Lp by L” in the definition of PT, we do not obtain a 
satisfactory definition of i?z (unless q = + co, in which case &za = 8Lm). 
Triebel remarks [Tr2, p. 461 that this norm is no longer independent of the 
choice of the function cp. Furthermore, we should certainly have 
#‘“,‘z (Py)* z (I$‘)* x BMO, but, as pointed out in [P4], this fails for the 
naive definition of pz. A result in [Ch-W-W] states that if the square 
function Sf of f (similar to the expression (C,,z Ivy * f 12)112) is bounded, 
,then f is locally square exponentially integrable. However, a BMO function 
is, in general, only locally exponentially integrable. 

To define 02 as a natural extension of the scale of p%” spaces, 
O<p < + co, it becomes clear from [Fef-S2, pp. 148-149; Fr-Jl, Section 4; 
Ja-Tl] that the norm should be localized appropriately. For c1 E R, 
0 < q < + co, and rp satisfying (2.1)-(2.3), we define fiz to be the set of all 
f E Y/Y such that 

We will show that this definition is independent of the choice of cp 
satisfying (2.1 t(2.3), and that 

(5.2) 

for u E [w, 1 <q < + 00, and l/q + l/q’= 1. We will also show that there 
exists an operator Aa4 such that IIAmqf )I Lp~ 11 f IIpUq for c1 E Iw and 
O<p, q < + 00. These facts indicate that our defiaition of Bz is 
appropriate. Later we will see that interpolation with Pz as an endpoint 
space behaves as it should. We will also obtain analogues of the results in 
Sections 334 for the case p = + 00. 

We note that in [Tr2, p. 2391, Triebel gives a delinition of Pz for 
1 cq < + co that yields (5.2), almost by definition, but this definition is not 
effectively computable in the way that (5.1) is. Obviously, however, by 
(5.2), the two definitions agree. 



A DISCRETE TRANSFORM 71 

We make some elementary remarks regarding the definition (5.1). First, 
an equivalent norm is obtained if we take the sup with respect to all cubes 
with sides parallel to the axes, since every such cube is contained in the 
union of at most 2” dyadic cubes with side lengths at most double the 
original. Second, using this, if k > 0 we obtain 

since 12kPI = Zk” [PI. Finally, we note that our definition is “localized” in 
the sense that if we took the sum in (5.1) over all v E H, the result would 
be equivalent to II(CVEZ (2”’ Ivy * fl)“)“411Lz, the naive but incorrect 
definition of the PI,y-norm. 

We define f”,“, the sequence space corresponding to pzdo4, to be the set of 
all sequences s= {~o}o+~~~ such that 

ll~llr~=p~~ic(j+~p~~p~lQl-~-n Id i&W~) 
l/Y 

< + co. (5.4) 
c 

For 0 <q < + co, we can carry out the integration in (5.4) to obtain that 

ll~llt2=p~~ic(& c (IQI-+“’ Is, I)” lQl)“qi (5.5) 
Q=P 

i.e., jlsll& is equivalent to the Carleson norm of the measure 

;tlQl- +- “* bQl)” IQI S(x~,l(Q))> 

where 6,,,,, is the point mass at (x, t) E rW:+‘. 
To prove the analogue of Theorem 2.2 for p = + co, we first require the 

following analogue of Lemma 2.3. 

LEMMA 5.1. Suppose aElI& O<q< +m, and 1>n. Then 

Il$II fZ = lbll I=. 

Proox One direction is trivial, since Iso I < (sz)Q for all Q. The other 
direction is not very much harder, given Lemma 2.3. Let us fix a dyadic 
cube P. Let rQ = sQ if Q E 3P and ‘Q = 0 otherwise, and let tQ = sQ - rQ. 

With r={rQ}Q and t={tQ}Q, we then have (s:)z= (r:)$ + (t:)$ for 
each Q. 
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By Lemma 2.3, 

On the other hand, given P and Q with Q c P, suppose Q is dyadic 
with r(Q) = I(Q) = 2-kl(P) and & c P + J(P) P 3P for some Jo Z”; then 
1 +I@-’ IXe-XBI z 2k ljl. Hence, using (5.5), 

1 

Fl c SC p Q p (IQ1 -a’n @:Ie ip(x))4dx 

=+ c c IQI (IQI-“‘-I” ItpOYl(1+4&1 lxa-x&” 
Qcf’ Qc?)=QQ) 

x (I,,-m’n-1’2 Itnl)” 

<c lltllp,<c IISII~~, m 

since A > n. This yields the result. 1 

THEOREM 5.2. Let 01 E R and 0 -C q < + us. Then S,: pz +fz and 
Tti:t”,4&z are bounded operators. Also, Tti 0 S, is the identity on pz. 

Proof. The estimates 

Ilf II ~2 * Ilsw(fNl~~ * Ili4Wll fz (5.6) 

are obtained essentially as in Lemma 2.5, except for the occasional use of 
(5.3). Similarly, the proof of Theorem 2.2 carries over without significant 
change, using Lemma 5.1 instead of Lemma 2.3. 1 

COROLLARY 5.3. The definition of Pz is independent of the choice of cp 
satisfying (2.1~(2.3). 

ProojI See Remark 2.6. 1 
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It is worth noting at this point that the following 
tion 2.7 is trivial for p = + co. 

73 

analogue of Proposi- 

PROPOSITION 5.4. Let E > 0. Suppose that for each dyadic cube Q there is 
a set E, c Q with (E, l/IQ] > E. Then 

p ,cp (IQ1 -a’n bgl 1?&W dx)“‘. 
c 

Proof Immediate by (5.5). 1 

We now consider an operator morq on sequences which will be useful in 
proving (5.2) and which will lead us to the operator Aa promised above. 
First, for a sequence s = {~~}od,,di,, we define 

GYJ)(x) = (r (IPI -+ bpl bW)“q 
P 

and 

c (IPI -m/n bpl L(x))~ . 
PcQ 

We let m;(s) denote the “i-median” of G;(S) on Q, i.e., 

mz(s) = inf{s: I {XE Q: G?(s)(x) > E}\ < lQ1/4}. 

We also set 

(5.7) 

ma”(s)(x) = sup m;(s) XJX). 
Q 

PROPOSITION 5.5. Let c1 E R’ and 0 <p, q < + co. Then 

lbllfpy, = Il~a4(~)II L,P. 

Proof. We observe that 

{x: ma”(s)(x)> t> = {x: M(X{v:o”u(,,(y,>r})(X)~ 3 

Since M is of weak-type (1, 1 ), we obtain 

1(x: FY?‘(s)(x)> t}l <c 1(x: Ga4(x)> t}l 

for t > 0, and, hence, 
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for 0 <p < + co. When p = + 00, we use Chebyshev’s inequality to see that 

l(x~Q: Gz(x)x)l <is, (G$(x)Jqdx+ IIsII~~<~ IQ/, (5.8) 

if E > 4’jq IIsI(~~. Hence, Ilmaq(s)llLZI <c IIsI(~~. 

The converse inequalities are deeper. Using a discrete version of the 
argument in [Fef-S2], we define the extended integer-valued stopping time 
v(x), for x E R”, by 

v(x) = inf 
i ( 

v E E: ,(,I-” (IQ1 -a’n ISal iu(x))‘)‘iqcm-c~~~~~~. (5.9) 

Also, set 

E,= (xEQ: 2-““‘BZ(Q)> = {xEQ: G;(s)(~)<m”~(s)(x)}, 

for each Q. By (5.7), IEeI/lQl 2 i, and 

; (IQ1 -a’n Isg I L+Nq)“q G cmaq(s)(x), (5.10) 

for each x E R”. By Proposition 2.7, then, for 0 <p < + 03, llsllr~ < 

Ibaq(~)ll LP. Similarly, (5.10) and Proposition 5.4 yield Ilsllri < 
c lW4(S)ll Lm. I 

Notice that this proposition and its proof provide us with another 
equivalent definition of f%” for all 0 -=zp < + co. 

COROLLARY 5.6. Let a~lI8 andO<p,qd +oo. Then ~={s~}~E~T if 
and only iffor each Q there is a subset E, c Q with IE, I/IQ1 > i (or any 
other, fixed, number 0 < E < 1) such that 

IK ; (IQ1 -“’ I~&&Jq < +a. 
LP 

(5.11) 

Moreover, the infimum of this expression over all such collections ( E, > e is 
equivalent to [IsI/ f;q. 

Proof: For p < + cc this follows at once from Proposition 2.7. If 
p= + cc and sEf2, the EB’s chosen in the proof of Proposition 5.5 above 
yield (5.11). The converse follows from Proposition 5.4. 1 

Corollary 5.6 is in a natural way the limiting case r = + co of the 
following. 
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COROLLARY 5.7. Let a E R and 0 < q Q + CO. For each 0 < r < + CO, 

= l141t2. (5.12) 

Proof. Let us first consider the case r z q. Then, by Holder’s inequality, 
the right-hand side of (5.12) is dominated by the left. On the other hand, 
if P is fixed cube and E, are the subsets given by Corollary 5.6, then by 
Proposition 2.7 we have 

1 

4 

r/q 
dx 

IpI p 
1 (IQ1 -or’n bgl i&Y 

QcP 

Q;p (IQI -O IsQ I ir,0)4)r’q dx. 

Now this is clearly less than 

c Q;p (IQ1 -O bal L&W IK 3 

and by Corollary 5.6 this can be estimated by c llsll;,. 

If r < q, then Holder’s inequality shows that the left-hand side of (5.12) 
is dominated by the expression on the right. To prove the converse 
inequality we can repeat the argument in the proof of Proposition 5.5 
involving Chebyshev’s inequality; the only difference is that we need to 
replace q by r in (5.8). It follows that Ilm”lq(s)/l Lm can be estimated by the 
left-hand side of (5.12) and this completes the proof. Alternately, let 
H= CacP (IQ1 -‘ln Is, I iEa)q. By Corollary 5.6, 

H6 cH”’ lj~II;m;~. 3: 

This readily yields the result when s~fz, and the general case follows by 
using the monotone convergence theorem. 1 

Corollary 5.7 is an analogue of the John-Nirenberg lemma (cf. [Joh-N]) 
on the sequence space level. 

For f E 9’19, we define 

We remark that Aaq . is an analogue of the local square function whose 
study goes back to Fefferman and Stein [Fef-S2] and Stromberg [Stroll. 
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COROLLARY 5.8. Let CI E !R and 0 <p, q < + 00. Then 

Il~aY/ILP~ IlfllP~. 

Proof: By Proposition 5.5, Theorem 2.2, and Theorem 5.2, 

Il~ny(~J)llLP~ IIqnSIIy~ Ilfll~~. I 

We remark that we could use the operator 

B”“f (xl 

for 6 sufficiently small, in place of Aaqf in Corollary 5.8; Baqf is the 
supremum of the h-medians of the truncated Littlewood-Paley function. 
However, owing to the quantity y in Lemma 2.5, the proof of the 
equivalence IIB*‘ffII Lp z llfll pbq involves a few technicalities, which we omit. 

Next we shall consider duklity. Let q’ denote the conjugate of q, so that 
l/q+ l/q’= 1 when 1 <q 6 + co; if 0 <q < 1 it is also convenient to let 
q’= +co. 

THEOREM 5.9. Suppose CI E Iw and 0 <q < + co. Then (to;“)* x imay’. In 
particular, ift= (tP}pEtgaq’, then the map s= {.s~}~-+ (s, t)r&sPiQ 
defines a continuous linear functional on p with operator norm lltll (t;q). 
equivalent to II tJI tmns’, and every IIZ (tyq)* is of this form for some t E f;uq’. 

ProoJ: Suppose first that 1 <q < + co. Similarly to the proof of 
Proposition 5.5, let 

E,= {xEQ: G;“q’(t)(x)dm-“q’(t)(x)}, 

for each dyadic Q. Then I E, I/IQ1 2 t, so 

IQI-“” bel ie lQl’+ ItdLp 

(lQl-a’” Isal io(x))q)l’q 

( > 
I/q’ 

x C (IQI”” ItpI &,Wq’ dx 
Q 

<c llsllt;~ Ilmpay’(t)llL~ 6 c lbllt;q lltll t;uq’5 
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where we have used the analogue of (5.10) for t, - ~1, and q’, and the con- 
clusion of Proposition 5.5. This yields lltll (rY4)* <c jltllrGc.u if 1 6 q < + co. 

The case 0 < q < 1 then follows from the trivial imbedding f;” -+ f;‘. 
The converse is elementary: Clearly every IE (@)* is of the form 

s --) & sg ie for some t = (to}o. Now fix P dyadic and assume first that 
1 6 q < + co. Let X be the sequence space of all dyadic cubes Q such that 
Q s P, and let p be a measure on X such that the p-measure of the “point” 
Q is lQl/lPI. Then, with (5.5) in mind, 

( 
+q c (IQ1 

QcP 

a/n-l/* ItQI)Y’ lQl)‘-4’ 

= Il~lQl~‘n-1’2’Q}Qll,u~~x,c, 

= sup 
blMW,dp)< 1 

h C SQ IQla’np1’2 iQ IQI / 
QcP 

G IIt II (t;q’ sup 11 iSQ IQI 
Isl/Y(x,dp)d 1 

“n+“2/lPl}Ql,f;& 

However, by Holder’s inequality, 

I/ IsQ IQI a’n+ “*/IpI >Q 11 f;Lq 

l/Y 

QcP 

Qxp (Is, I ;(Q,q)“q = ll’&(x,d~, G ” 
c 

Hence II tll frnaq, < II tll (f”;q)e if l<q< +co. For O<q<l we have q’= +oo 
and the extremal sequence s in the above has only one non-zero element. 
The argument then simply reduces to the following. Given a dyadic cube 
R, we set (.Y~)~ = I RI”/“- ‘/* 
and, hence, 

for Q = R and 0 otherwise. Clearly, IlsRllf;q = 1 

lItllf;flmdSUP I<SR, t>l G II’ll(f I 
R 

Remark 5.10. We can modify the first half of the proof of Theorem 5.9 
as follows. Let 0 <q d + co and set 

?(x)=inf VEH: 
i (. 

,cQ;2wp (IQ1 -a’n bQ l la(X))Y)l’q 
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I?, = {xc Q: 2-“‘“‘2 Z(Q)} 

= (XE Q: G’*(s)(x) GpE9’(t)(x) < mm9(s)(x) m-‘“‘(t)(x)}. 

Since we have taken the $-medians, we have I& I > I Q1/2. If 1 d q < + co, 
Holder’s inequality and (5.10) yield 

I;%&~ Gcj mE9(s)(x) m-“‘,(t)(x) dx; 

if 0 < q < 1 this estimate still holds, since &‘(s)(x) 6 ma”(s)(x). 

Remark 5.11. The dual of ff” when p # 1 (and p # + co) is more 
elementary to characterize. If 1 <p < + co and 0 < q < + co we have 

(5.13) 

For q 2 1 this follows by applying Holder’s inequality twice, while for 
u < q < 1, we use this with q = 1 and the imbedding fy + f;‘. Conversely, 
every ZE (fy)* is of the form Z(s) = & seia for some sequence t = (tp}Q. 
Now, we shall take for granted the result that (LP(Z9))* = LP’(Z9’) if 
l<p< +cc andO<q< +co, where 

with the obvious pairing, namely f + J CVEL fv g, for g = { gy }, E LP’(Z9’) 
(for this fact see, e.g., [Tr2, p. 1771). Note that the map In: t;” -+ LJ’(Z9) 
defined by In(s)= (fy(s))y~z, where f"(s)=&e,=2-Y lQl-a’nsp~e is a 
linear isometry onto a subspace of LP(Z9). By the Hahn-Banach theorem, 
there exists 7~ (LP(Z9))* with 1171 = lIZI such that 70 In = 1. In other words, 
there exists g = {g,} y E LP’(Z9’) with I( gll LP’([q’j < lIZI such that 

g ssiQ= 1 c f"(~)~"~ 
“EL 
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for all SE f?. By taking so = 0 for all but one cube, we see that 
fQ = jQ gv/lQl ‘In + “* for any dyadic cube Q with f(Q) = 2 -“. Hence, 
estimating the average over a cube by the Hardy-Littlewood maximal 
operator and using the vector-valued maximal inequality (Theorem A.l), 

This completes the proof of (5.13). Notice that we may restate this last step 
in the proof by saying that the operator Pr( { gy}“) = { tQ>Q = 
{jQ gv/lQl “n+1’2: l(Q)=2~"}Qdyadic is bounded from Lp’(l@) to f;‘“. Since 
clearly Pr 0 In = identity, we have, in particular, that ry is a retract of 
Lp(fq) as long as 1 <p < + co, 1 <q < + co. 

It is not difficult to treat the remaining cases. We have 

p,* x ip (5.14) 

for O<p<l and O<q< +a~, where fl=p(a,p)= -cc+n(l/p-1). As in 
[Fr-J2, Theorem 3.8; Ja3], we have the imbedding fy -+ f;p’ (0 <p < 1). 
Using this and the duality (if’)* = f;B” yields one direction of (5.14). The 
other is similar to the case p = 1 and 0 < q < 1 in the proof of Theorem 5.9. 

The spaces fTq are not reflexive, but, similar to the situation for I’ and 
1 O”, finite sequences in f iuq’ norm tTq in the following sense: 

COROLLARY 5.12. Suppose a~[w and l<q< +co. If S= {~Q}o~f~‘, 
then ll~ll~~~~ssup{ I& sQiQl: tfinite with JltlIt3L~‘< l}. 

Proof: Theorem 5.9 shows that llsllr~ dominates the supremum above. 
Except for the restriction that t be t&e, the converse follows from the 
Hahn-Banach theorem. Approximating s (in fTq-norm) by truncation 
allows us to assume that t is finite. 1 

We can derive the duality (5.2) from the sequence space case in Theorem 
5.9. Let Sp, = (f~ Y: p= 0 in a neighborhood of the origin}. Then it is easy 
to see that Sp, is dense in p? if 0 <p, q < + co (e.g., by using Theorem 2.2 
or see [Tr2]). 

THEOREM 5.13. Suppose a E IF! and 0 <q < + 00. Then (iiTq)* zz l?;Orq’. 
Namely, if g E l!J zaq’, the map I,, given by l,(f) = (f, g), defined initially 
for fE=%, extends to a continuous linear functional on Pyq with 
111, (I w llgll $-=d. Conversely, every 1 E (RTq)* satisfies I= 1, for some 
gdy’. Cc 

ProojI As we noted in Section 2, we may choose $ = cp in (2.1 k(2.4). 

580/93/l-6 
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In this case, if g E I?zaq’ and f~ YO, Theorem 5.9, Theorem 5.2, and the 
identity (f, g) = (S,f, S, g) (i.e., (2.7)) imply that 

I(f, g)l dc llq?f Ily II~,gllt,“~~~c Ilf Ilqq IMlf,~~,. 

This proves that llZ, II d c 1) gl) pzz4’. 
Conversely, suppose 1 E (I?qY)*. Then 1, z lo Tti E (fy*)*, so by Theorem 

5.9, there exists t = {te}e E fioay’ such that Z,(s) = & soto for 
s = {sQ}o E f0;4, and II t 11 t,q, z lIZI 1) < c I(/[(, since Tti is bounded. Now 
Z1 OS+,= EO T$oS, = 1 by Theorem 5.2. Hence, with f EYO and letting 
g = T,(t) = CQ t&a, 

&f)=W,f)= <S,f, t>=<f, s>, 

by (2.8), with cp = $, still. Then I= I,, and, by Theorem 5.2, 

IMlP.,~,~C IMr,.s- Il~gll. I 

Remark 5.14. Using (5.13) instead of Theorem 5.9 and Theorem 2.2 
instead of Theorem 5.2, we could also obtain the result (I??)* z p;-““’ for 
a~lR,O<q<+co,and l<p<+co,bythesamemethodasinTheorem 
5.13. For 1 <q-c + co, this is well known (see [Tr2]), but for O<q< 1 it 
seems to be new (cf. [Tr2, p. 1801). (Alternatively, one could obtain the 
result for O< q< 1 by the methods in [Tr2] by using Theorem A.1 to 
obtain Proposition 1, p. 50 of [Tr2] for q = + 00.) 

Similarly, (5.14) gives 

(PT)* rz P’B,” (5.15) 

for O<p< 1 and O<q< + co, where j=p(cl,p)= -cl+n(l/p- 1). This is 
known (cf. [Tr2, pp. 177-1821). This includes the well-known result that 
(HP)* zgzl/P- l).m for 0cp-c 1 [DRS; Wa]. 

Corollary 5.12 translates into the following: 

COROLLARY 5.15. Suppose LIE Iw and 1 <q < + co. Zf f e #yq, then 
IlfIIp~=sup{I(f, g)l: gE% with Ilgllp,~,G 11. 

Proof. One direction is of course an immediate consequence of 
Theorem 5.13. For the other, we fix f E l?;q and assume again that cp = $ 
in (2.1b(2.4). Corollary 5.12 provides us with a finite sequence t = {ta}e 
such that lItI r,q’ < 1 and 

I <S,f? t>l = II&f Ily 
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By Theorem 2.2, lls,fll tTq NN llflj pY. If we let g = r$(t), then we have 
I (f, g ) I = I (S, f, t ) I by (2.8). Also, g E z since it is a finite sum of func- 
tions in YO. Hence, (a multiple of) this g satisfies all the requirements. 1 

We now turn to the analogues for p = + cc of the results in Sections 3-4. 
The results on almost diagonality can be extended easily; for 1 < q < + co 
by duality and then reducing the case 0 < q d 1 to q > 1 as in the proof of 
Theorem 3.3. We say that {mo}o is a family of smooth molecules (for J?:) 
if (3.3)-(3.6) hold with N as above and J= n/min( 1, q). With this, Theorem 
3.5 holds with p = + co. Similarly, the analogues of Theorem 3.7 and 
Remark 3.10 can be proved as before. Then all the conclusions of Section 
4 can also be extended, virtually verbatim. 

6. THE CASEP=O AND REAL INTERPOLATION 

In the previous section we discussed the limiting case p = + co. Here we 
will show that the extension to the other limit value, p = 0, is also possible 
at least on the sequence space level. These results are closely connected 
with real interpolation and, as we shall see in Section 7, with the 
John-Nirenberg lemma and atomic decompositions. 

The space L’([w”, dx) is defined to be the collection of all measurable 
functions f such that 

IlfIIpl= I{xEyf-(X)#O}I < + m. 

Peetre and Sparr [PS] studied Lo in the context of interpolation. As ilfll Lz 
is the “height” of a function, llfllL o is the “width.” If we define the best 
approximation functional for a pair of spaces (X0, X,) by 

then it is easy to see that 

E(t,f;LO, L”)= I{XElw If(x)1 x)1. 

We also have the usual definitions of other functionals such as 

(6.1) 

K(t)=K(4x;Xo,X,)= id (IlxoIIxo+tllx,llx,) x=.X0+.X, 

and 

Kdt)=Kdt, x; x0, XI)= inf max(Il~oIlxo, t lb1 IIx,). x=q+x, 
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Obviously K(t) w  K,(t). It follows from the definitions that 

K,(t)lt 2 s if and only if E(s)/8 > t. (6.2) 

In other words, K, is the right continuous inverse of E. From 
this it follows from the definitions that an inequality of the 
form K,(t, b; X0, Xi) < cK,(t, a; X0, Xi), t > 0, is equivalent to 
E(cs, b; X0, Xi) < cE(s, a; X0, Xi), s > 0. We also recall the definition of the 
real interpolation spaces: for 0 < 8 < 1, and 0 <q < + 00, (X0, Xl)o,, is the 
set of all x E X0 + X, such that 

llxllo,q = (y (~-“J3f, x; x0, w fg’” 
0 

is finite. If in general we set 11. llxy = 11. II’, for y > 0, then we have the 
following well-known fact (cf. [PS] and also [Ja-T2; Ja-R-W]). 

LEMMA 6.1. Suppose 0 < B < 1 and p = 0/( 1 - 0). Then 

(LO, L” ,& ~ 0) = LP. 

Proof: By calculation we have 

llfll f~~,L”)o~,,(,~8)= IlWtYtll z::p4pm, = IlL(~)l~ll w$m, 

=(l+p)jorn sp I{t>O:K,(t)/t>s}l ds. 

By (6.2), I{t>O:K,(t)/t~s}l=I(O, E(s)/s)l=E(s)/s. Thus, by (6.1), 

I+ If( 4 +“=c IlSllw I 

We also note that if a function f~ Lo satisfies f~ Lp for all sufficiently 
small p’s, then lifll Lo = limp,, llfll gp. 

We now define a sequence space that corresponds to Lo. We let to be the 
collection of all sequences s = {so}, Q dyadic, such that 

I141ro= 1 u Qi < + ~0. 
SQ#o 

Like Lo, to is not a normed vector space, since Ilnsllr,, = (lsllrO for 1 E C\(O), 
but to is a “normed Abelian group” (see, e.g., [Be-L, Sections 3.1&3.11 I), 
since we have the triangle inequality IIs + tllro < I(sllb + IJtJlr,,. One can also 
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check that Lo and to are complete. We note that to is indeed a continuous 
extension of the scale of fy-spaces since, for tl E R and 0 < q < + co, 

It is interesting to note that the analogues of Propositions 2.7 and 5.5 
hold for fo. 

LEMMA 6.2. Let E > 0. Suppose that for each dyadic cube Q there is a set 
E, c Q such that IE, I/IQ1 > E. Then 

/sllto~~ 0 E,i. 
SQ#o 

Proof. Since M is weak-type (1, l), we have 

I I U Q G I b: WXU~~+OE~ 
SQ#O 

WEl(6C,~ u E,l. 
spzo 

The other direction is trivial. 1 

LEMMA 6.3. Suppose a E R and 0 < q < + 00. Then 

lbll to = Il~aq(S)I/ LO. 

Proof: As in Proposition 5.5, we have 

{x: mZ4(s)(xW) = {x: M(X{y:G14(s,cy,>O))(X)‘d}. 
By the weak-type (1, 1) inequality for M, and (6.3), we obtain 
Ilmaq(s)ll LO d c llsll to. 

For the converse inequality, we could argue as in Proposition 5.5, but 
it is simpler to just note that if so # 0, then mz(s) #O, and hence 
m’“(s)(x) # 0 for all x E Q. 1 

Lemmas 6.2-6.3 are exactly what is needed to carry through the 
analogue for f0 and 12 of the real interpolation argument in [Fr-J2, 
Section 31. 

THEOREM 6.4. Suppose a E l% and 0 < q 6 + co. Then 

K(t, s; f,, f*,“) z K(t, wP(s); LO, L”), 

with constants in the equivalence independent oft and s. 
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Proof The direction 

qt, hP(s); LO, L”) < CK(t, s; to, fa,4) (6.4) 

is very easy. We define the “$-medians” m&&) as in (5.7) except with 
lQ1/8 in place of lQ1/4, and we set 

q*(~)(x) = sup m&M x&). 
Q 

Then Proposition 5.5 and Lemma 6.3 still hold with M;/“(S) in place of 
mzq(s) = @,4(s). Also, it is elementary to verify the subadditivity property 

Lettingf, = min(maq(s), Cqm~@o)) andf, = maq(s) -f. readily gives (6.4). 
To prove the converse inequality, by (6.2) it suffices to prove that 

E(Ct, s; to, Q) < CE(t, m”qs); LO, L”) 

for some C. By (6.1), then, it is sufficient to show that there exists a 
splitting s = so + s1 such that 

II4 10 G c I {x: mm”(s)(x) > t> I (6.5) 

and 

llslll f2 Q Ct. (6.6) 

Let Q: = {x E Q: maq(s)(x) > t} and Q; = Q\Q:. Let A,= 
{Q: lQ:l> lQ//2} and A;= {Q: IQ;1 > I&l/2}. Define so and s1 by setting 
si=so if QEA,, so,=0 if QEA:, and si=so-s:. As in Proposition 5.5, 
define E, = {x E Q: G;(s)(x) d m’q(s)(x)}. Then IE, I/IQ1 2 t. Let ,?, = 
E,nQ: if QcA, and E,=E,nQ; if QEA;. Then $,I/lQl>~. By 
Lemma 6.2 with E, in place of E,, 

IIs”Ilr,,= / U Ql +o&l~ 
SQ#o 

PEA, Qe-6 

which yields (6.5), since 8, c Q: for Q E A,. Also, by Proposition 5.4 and 
(5.101, 

since E,cQ,~cP; for QcPand &EAT. 1 
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Notice that another way to state the theorem would be to say that 

~{xE[W”:~a4(s)(X)>C‘t}(/C, <E(t, s;&, f*,“) 

< I{XE UP: m”~(s)(x)>c*t}l/c*. 

for some constants c, and c2. This means that where we are used to seeing 
the distribution function of f in the L* context, we should expect the 
distribution function of #J(s) for our sequence spaces. For instance. the 
theorem has the following immediate corollary. 

COROLLARY 6.5. Suppose ct~[W, O<q< +CO, and O-CO< 1 
p = e/( 1 - (3). Then 

td, fzgo,(‘~0) = y. 

Proof. This follows from the definitions, Theorem 6.4, Lemma 6.1 
Proposition 5.5. 1 

Let 

, and 

We now use some standard facts from interpolation theory such as 
reiteration (see [Be-L, pp. 67-68]), the remarks following (6.2), the fact 
that E(t, a; X;, X$ = E(t’@, a; X,,, XI)a, a, p > 0, and Holmstedt’s formula 
(see [Be-L, pp. 52-53]), which show that an equivalence between 
K-functionals persists after mutual reiteration. The endpoint results in 
Theorem 6.4 and its corollary then have a number of immediate conse- 
quences. 

COROLLARY 6.6. Suppose aE[W, O<q6 +CO, and o<p,<p<p,< 
+co. Then 

K( t, s; f,, f;;, z K( t, m”“(s); LO, LPI), (6.7) 

K( f, s; f;gy, r;g, z K( t, eys); LPO, LPI), (6.8 

(6.9 ) 

and 

Of course, corresponding results for the py spaces follow immediately. 

COROLLARY 6.7. Suppose a E 08, 0 < q < + co, and 0 < p. < p <p, Q 

+CQ. Then 
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(6.12) 

Proof: The first equivalence in (6.11) follows from the fT-- PoL4 retrac- 
tion diagram (Theorems 2.2 and 5.2), while the second folloPws from 
Corollary 6.6. Then (6.12) follows either by (6.10) and retraction, or by 
(6.11), the usual results for L*-spaces, and Corollary 5.8. i 

We remark that in [Fr-J2, Section 33, we obtain (6.8) with GE4(,s) in 
place of may(~), and (6.11) with Gaq(S,S) in place of AEqf both in the case 
pi < + oc), by direct arguments analogous to those above. These yield 
(6.10) and, (6.12) for p1 < + co. However, the argument above is easier 
than the one in [Fr-J2] and, still, it proves more. We could also prove 
(6.8) and (6.10)(6.12) for p1 = + cc by direct arguments like those above. 
In particular, (6.11 k(6.12) for p1 = + co generalize and simplify the results 
in [Jai]. 

We have not defined any space P, corresponding to &,. If, for example, 
we define /f/i r,, = inf{ Ilsllr,: f = Co se$o}, the resulting space would not 
be independent of the test function $ chosen. This is closely related to the 
fact that the analogues of Lemmas 2.3 and 5.1 fail for f,. 

We now briefly discuss another possibility for defining a sequence space 
corresponding to p = 0. Suppose we (temporarily) let c( be a function of p 
via the relation a(p) = n[( 1 - /Q/p - i] for some fixed /I E R. Let og be the 
measure on the sequence space {Q: Q is dyadic} with weight o,(Q) = lQ18. 
Then it follows easily that 

for 0 < p < + co. Considering (f, ‘(J’)p)p as p + 0, define f{ to be the collec- 
tion of all sequences s= {.s~}~ dyadic such that 

IWg= 1 IQ?= II&qwl(,~ 
q#O 

for 1’ defined analogously to Lo above; that is, the I’-“norm” is the 
oS-measure of the set of “points” Q such that s(Q) = s, # 0. We then have 
the following. 

PROPOSITION 6.8. Suppose 0 <p. <p <pI < + CD, /?E R, and a(p) is as 
above. Then 
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Proof This follows from Lemma 6.1 applied to Z”(w8) and Zm(wB) for 
p1 = + cc, and by reiteration for p1 < + co. 1 

7. ATOMIC DECOMPOSITIONS 

Using the interpolation results in the previous section, we will obtain 
“atomic” decompositions of the elements in ry for O<p< 1 and 
p <q < + co. This will yield corresponding results for the py spaces. In 
particular, we recover the traditional atomic decomposition of the Hardy 
spaces. We will take a slightly roundabout approach in order to clarify the 
connection between real interpolation and atomic decompositions. The 
point we wish to make is that we (essentially) get atomic decompositions 
as soon as we use a standard, alternative, definition of the real interpola- 
tion method and the spaces f. and fy. 

Let us first recall this alternative description of the real method. Let 
x= (X0, X,) be a pair of (quasi-)Banach spaces. Following [Ja-R-W] we 
define the e-functional for t > 0 by 

e( t, x; X) = II XII x0 if IIh,6f 
+cU otherwise. 

(Then e corresponds to E as the J-functional corresponds to the 
K-functional.) We define 

( ) 
l/q 

Il-%q~e = inf 
2 (2 

w(l-“)e(y, x,; ~))(l-W4 . 
.~‘X”~P” 

The following proposition is known. 

PROPOSITION 7.1. LetO<tl<l andO<q< +a~. Then 

ll-%,, = IIXlle,q;e. 

Proof. See Appendix C. 1 

Combining Corollary 6.5 with Proposition 7.1, and noting p = 0/( 1 - 19), 
yields 

for c(EIW, O<q< +co, and O<p< +co. Since 

ivf tP44 x; X)= llxllxo Ilxllf;,, 
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(7.2) 

The converse of (7.2) holds if 0 < p d 1 and p < q < + co. First, by (7.1) we 
have 

for a E R’ and 0 < p, q d + co. (This also follows directly; for p < q trivially 
by Holder’s inequality and, in general, by Corollary 5.6.) If 0 <p < 1 and 
p d q < + co, the p-triangle inequality and Minkowski’s inequality with 
exponent q/p yield 

It follows that we have equivalence in (7.2) if 0 <p 6 1 and p < q 6 + co. 
If we normalize by setting Ak = ll.sk II !r 11~~ II rz, then IIs~/& II ff IIs,/& II rz 
= 1, since IlAsllr,= llsllr,. By a renaming, then, we obtain, for 0 <p Q 1, 
p<q< + cc, and cr~[W, 

S= C Aksk and llsk/lf~ lls,IIrZG 1 for all k . 

(7.5) 

Because of the particular properties of the dyadic cubes, we can develop 
(7.5) one step further. We say that a sequence r = { ro}edyadic is an atom for 
fy, 0 <p < 1, p < q 6 + co, and a E R, if there exists a dyadic cube @ such 
that r,=O if Q&Q, and Ilr(lt2< lQI-“p. Note that by (7.3), Ilrllf;s<~ for 
any atom r for i%y. 

THEOREM 7.2. Suppose CI E R, 0 <p d 1, and p < q < + co. Then 

lbll yJ s = 1 Akrk and each rk is an atom for fy 

Proof By (7.5), if SENT, select {~~)~.z and {sk)ksZ such that 
s=CkEZ Y,G~, lhII~,/” Ild~~~ 1 for all k and CZkcn IY~I~)~‘~Gc Ilsllr~. 
Let Sz, = u {Q: (sk)o ZO}. Then lQ2, I = (1.~~ llrO < + co. Let { &}i be the 
(unique) collection of maximal pairwise disjoint dyadic cubes such that 
(.s~)~~, # 0 and Qk = Ui & Let tkj= yk( IQkjl/lQk I)‘lp and let rkj be the 
sequence defined by (rkj)Q = Y~(s~)~/c~~ if Q c Qkj and (rkj)Q = 0 otherwise. 
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Then 

and (rkj)o = 0 if Q P Qkj. Thus rkj is an atom for fy. Also, 

s= c Yksk=z tkjrkj, 
keZ ki 

with 

E, ItkjlP= 1 lYklP lQk 
keL 

1-l 1 lekjl = 1 IYkl’. 
jsZ kcL 

the inlimum in the statement of the We thus have that llsllry dominates 
theorem. 

The converse estimate follows easily from (7.4) and the remark above 
that l\rll rZq d c if r is an atom for fy. 1 

There is a somewhat more direct proof of Theorem 7.2 following the 
ideas of Calderon [Cal21 and Chang and Fefferman [Ch-F2] (cf. also 
[Fo-S; Ja-T2]). Our approach emphasizes the close connection between 
atomic decompositions and real interpolation. Frequently, atomic decom- 
positions have been used to obtain interpolation results (see the survey in 
[Jon]). The proof above makes the reverse connection explicit by exploit- 
ing the &-spaces to obtain the compact support (cf. [P7, Co, Fef-R-S]). 

Remark 7.3. 
1 

We say that a sequence r = { rQle dyadic is a p,-atom for 
7, p <pl < + co, if there exists a dyadic cube Q such that rg = 0 for 

Q&Q and Ilrllt;dlt? l’pl-“p By Holder’s inequality and (7.3) we have . 

ll~llf;v~ l141:yp’ IblI’;;e II+; II&~ 

for p <pl < + co. It follows easily that the modification of Theorem 7.3 in 
which each rk is a pi-atom for fy, p <pl < + co, holds also. This could 
also be derived from (6.9), using the technique of Theorem 7.2. 

Naturally, Theorem 7.2 leads to corresponding result for the ir?-spaces. 
Let {~Q}Qdyxlic be a given family of distributions representing I?? (see 
Section 4 for definitions). We say that YE Y”/.P is a wave-cluster for I?; 
if y’=~QcQ rQdQ (in Y’/9), where r = { r Q  ) Q  dyadic is an atom for t; 
associated with the dyadic cube Q. Note that by (4.6) and (7.3) 

II Pll py<c Ilrllt~fc lQI”p Ilrllt~dc. (7.6) 
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We say A is an atom for ~~ifA=&,eraa,, where r= {rQ}odyadicis 
an atom for fy for the cube &, and the aQ’s are smooth atoms for I?? (i.e., 
(4.1 F(4.3) hold for some fi> N and E> [u. + l] + ). Observe that 

supp A c 3Q, !” xYA(x) dx = 0 if Iyl <fl, 

and, by Theorem 4.1, /IA (/ PY d c, as in (7.6). 

THEOREM 7.4. Suppose CI E Iw, 0 < p Q 1, and p < q < + 00. Then 

(i) IlfIIP;qzinf{(&.z I&Ip)“p:f=~kEZIZkY~ and each Yk is a 

wave-cluster for I??}, and 
. . 

(10 Ilf II ~“4 = in . fKL.. &JP)? f =c 
atom for p?}. ’ 

kgL lZkAk and each A,+ is an 

ProoJ One direction follows trivially from (7.6) and its analogue for 
atoms A and the inequality, for O<p < 1 and p<q< + co, 

Ilf +gll&,G llfll~;~+llgll&7~ (7.7) 

as in (7.4). The other direction follows readily from the definitions, 
Theorem 4.1, and Theorem 7.2. 1 

Remark 7.5. Recall that I?:% HP if O<p< + co and PzxBMO. 
Note that an atom A = Co c Q rpaQ for p: (0 <p < 1) satisfies 

supp A E 3Q, 

s 

(7.8) 
xYA(x) dx = 0 for IA 6 Cdl/v 111, 

and 

IIA II BMO<~ llrll~~<c lQl-“p. 

Thus, Theorem 7.4 yields a decomposition of HP (0 <p 6 1) into 
“BMO-atoms.” Also, using Remark 7.3 and the corresponding analogue of 
Theorem 7.4 for p,-atoms, we obtain the familiar decomposition of HP, 
O<p< 1, into LPI-atoms, 1 <p, < + co, which by definition satisfy (7.8) 
and IIAII Lp,<c @,l’pl-l’p (see [Co, La, Ca12, Wi]). 

Remark 7.6. There is no difficulty in obtaining 

Ilf II ny 

f= c &A,andeachA,isanatomforpT , 
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and similarly for the wave clusters, for all tx E Iw, 0 <p < + cc, and 
0 < q 6 + co, since (7.2) holds in general. We do not obtain equivalence 
(Theorem 7.4) unless 0 <p 6 1 and p < q < + cc simply because (7.7) fails. 
This indicates why there is a distinct break between the cases p < 1 and 
p > 1 for the traditional HP atomic decomposition, but not for the decom- 
positions in Theorems 2.2 and 4.1. 

Remark 7.7. For f E Y/S, let fQ = CecB (S, f )p tig, where Q is 
dyadic. By (7.3), Theorem 2.2, and Theorem 5.2, 

for ccEiW, O<p, q< + co. Taking a=O, q=2, and 1 <p-c + ~0 gives 

IifQ 11 LP G c 101 “’ llfll BMO* 

This is analogous to the John-Nirenberg inequality ([Joh-N]). Thus we 
see that Corollary 5.7 and (7.3) are analogous to the John-Nirenberg 
inequality for our sequence spaces. 

Remark 7.8. Instead of taking the equivalence between HP and pi 
(0 <p < + co), and between BMO and I?,, ‘* for granted and obtaining the 
traditional atomic decomposition, as in Remark 7.5, we can take the 
standard results for HP for granted and obtain these equivalences as conse- 
quences of the results above. First, (2.1)-(2.3) and Plancherel’s theorem 
easily imply that Py z L*. (See Appendix B for a discussion of the iden- 
tification.) By Remark 7.3 and as in Remark 7.5, we obtain a decomposi- 
tion of p: (0 <p < 1) into, say, L2-atoms. This yields the continuous 
imbedding I?; -+HP,O<p<l. 

The converse imbedding follows in a familiar way (see, e.g., [Torch, pp. 
341-342); it suffices to show that an L*-atom a(x) for HP, 0 <p < 1, 
satisfies (IaJI poz < c. Hence we have @p x HP for 0 <p Q 1 and for p = 2. 
Then real inierpolation ((6.12) and [Fef-S2]) between p = 1 and p = 2 
yields pp x Lp for 1 <p < 2. Duality yields the remaining cases. 

8. THE CALDER~N PRODUCT AND THE INTERPOLATION PROPERTY 

Given a pair W= (X0, X,) of (compatible) Banach spaces, there are 
many ways to construct intermediate spaces. For the special case of a pair 
of quasi-Banach lattices, there is a particularly simple construction, 
motivated by Holder’s inequality, known as the Calderon product (see 
[Call]). Although the distribution spaces py are not necessarily lattices, 
the sequence spaces r; are. In this section we will see that Calderbn 
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product for these sequence spaces is easily computed. Further, it is well 
known that, under mild conditions, the Calderon product coincides with 
the interpolation spaces obtained by several different interpolation 
methods. Using this, we will also obtain certain interpolation results for the 
p%” spaces immediately via the retract diagrams (Theorems 2.2 and 5.2). In 
particular, we will obtain the interpolation property for the f- and p-spaces 
in the greatest generality. 

Suppose (M, p) is a measure space and X is a quasi-Banach space of 
p-measurable functions (identified if equal p-a.e.). Then X is said to be a 
quasi-Banach lattice on M if the conditions f E X and Ig(x)l < If(x)1 p-a.e. 
imply that g E X and Ilgllx< Ilfllx. Now suppose X,, and X, are quasi- 
Banach lattices on 44. If 0 < 0 < 1, the Culderbn product XA-‘Xy of X0 and 
X1 is defined to be the set of p-measurable functions u on M such that 
there exists u EX~ with llullx,,< 1, w  EX, with I(wIIx, d 1, and 3, >O such 
that 

We set 

l4x)l 6A wr” Iw(xV for p-a.e. x. (8.1) 

Ilull,;-s$=inf(l>O: (8.1) holds with IJrllx,,< 1 and IJwIIx,< l}. 

Although restricted to the case of a lattice, the Calderon product has the 
advantage of being defined in the quasi-Banach case, and, frequently, of 
being easy to compute. It has the disadvantage that the interpolation 
property (i.e., the property that a linear transformation T bounded on X0 
and X, should be bounded on the space in between) is not clear, in general. 
However, we have an elementary substitute; recall that a linear operator T 
on a quasi-Banach lattice X is called positive if T(f) > 0 whenever f 2 0. 

PROPOSITION 8.1. Let Xi and Yi be quasi-Banach lattices, and let T be a 
positive linear operator bounded from Xi to Yi with operator norm 1) TJli, 
i = 0, 1. Then T is bounded from the Calderdn product X~-‘X~ to the 
Calderbn product YAP “YT, 0 < 19 < 1, with operator norm II Tile satisfying 

IITlleG IITII:,ke IITII!. 

Proof: This is just Holder’s inequality: the usual proof of this 
inequality, replacing the integral by the positive operator T, shows that 

T(lfol’~e U-II% WOI)‘~~ W-,I)e. 

The rest follows now by the definition of the Calderbn product. Namely, 
suppose f~ XhPeXy and M= (1 + E) llfll x;-~$, for an arbitrary E>O. 
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Then there exist f0 E X0 and fi E X, such that IlfOIIX, ,< 1, IlfiIIX, < 1, and 
VI GM lfol’-o I.f,le. Hence, 

and, consequently, Tf E Y A ~ ’ Yy with I/ Tf I( y;-oy; < I( T/( A ~ ' (( T(( f M. Here 
we have used the facts that I Tf 1 < T( I f I ) for any positive operator T and 
that g and (g( have the same norm in a quasi-Banach lattice. Letting E -+ 0 
gives the conclusion. 1 

As we pointed out above, the p:-spaces are not Banach lattices in 
general, but the sequence spaces fig are. Let M be the sequence space 
indexed by the dyadic cubes Q E R” and let p be counting measure on M. 
For sequences s= {so}, t= {to}, and r={re}, (8.1) becomes simply 
I.so( 6% Ir,(‘PB [toI@ for all Q. 

THEOREM 8.2. Suppose a,,a,~R, O<p,,pld +CO, O-cq,,ql< +CO, 
0<8<1, l/p=(1-8)/p,+8/p,, l/q=(l-8)/q,+8/q,, anda=(l-0)cl, 
+f?g,. Then 

Proof: We shall first prove the theorem assuming that po, p1 < + co. 
Let X0=fz90 and X, =f;i41. Suppose ~EX~-OX~. Given .s>O, let 
B=(l+e) JIsJI~;~~~~. Then there exist sequences r and t such that 
Ilrllxo<l, \ltllx,<l, and I~~I~BIr,I’-~It,I~forall Q. Applying Holder’s 
inequality with conjugate exponents qo/( 1 - tl)q and q,/qO yields 

; (let -+I by I iQYy 

<B 
( 

~(lQl-‘“‘n lreI~a)4’1-B’(lQl-uI’nIteI~8)qe 
Q ) 

l/Y 

GB C(lQl-ao’n IrQlie)90 ; (IQl-‘I’” liQ,iy)U1)n’9’. (8.2) 
Q 

Applying Holder’s inequality again with conjugate indices p,,/( 1 - (3) p and 
PI/p0 and letting E -+ 0 gives 

Ibllf~~ l141x;y~ llrllk;’ ll~ll~,~ lbllx;-y. (8.3) 

Now suppose SE if, and, to begin with, qo, q, < + co. To prove the 
estimate converse to (8.3), we may assume PO/q0 <pl/ql, since the contrary 
case follows from this one by interchanging X0 with X, and 8 with 1 - 8. 
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For k E Z, let 

and 

A,= {x: (c (IQ\ -“,a (sQI ~a(s)+2ij 
Q 

Ck={Qdyadic:lQnA,IBlQl/2and lQ~~k+II~lQ1/2). 

Note that if Q$ Ukez C,, then sQ = 0. Define sequences r and t by setting 

rQ = (ISQ IIAQY’~’ and TV = (1s~ ~/BQ)"'"'T 

where 

AQ=2ky lQl”, ,=~+L!& [ 1 3,’ 
n 2 q n 2 

and 

BQ=2kb IQI”, v=:+-- 1 41 x1 I 1 [ 1 n2qn2’ 

if QECk, and r,=to=O if Q#uk,,Ck, for 

Y = 1 - P4ohPo and 6 = 1 -P41/9P1. 

A calculation shows that (sQ I = IrQ I’-@ I tQ 1’. We would like to prove that 

ll~llxo~ C lbll$P and ll~ll., G c llq/‘. (8.4) 

Assuming (8.4) for the moment, we have 

IsQ 1 = c bllf;~ crQ/C bll$?)’ -’ ctQIC blI($‘)B. 

Thus (8.4) yields llsll x;-oTf 6 C llsll f;q. 
To prove (8.4), we notice that by Proposition 2.7 we have 

<c 1 N X4 
keZ! 

c 2-kYq(lQ,-M’n ,s~,~,,Y)~~‘~~. 
Q E Ck 

On the set A,, 2k < (CQ ([ QI Par’” (sQ 1 zQ(~))‘)l’Y, and since y < 0, we may 
replace 2k by this larger quantity. The right-hand side can then be 
estimated by C /Is// &. 
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The second estimate in (8.4) is similar. Replace Ed, qo, pO, and y with CX,, 
ql, pl, and 6, respectively, and XQ n ,+ with XQ n A; + , . Since 6 2 0 we can 
estimate 2-(k+1) by (CQ (lQlpa’n lspl ~Q(x))4))1’y on A;+ ,, and this leads 
to the desired conclusion. 

If q1 = + cg and q. < + co, the same arguments with the usual inter- 
pretation work; take A, as above and t, = A r, to get (8.4). Similarly if 
q1 < + co and qo= -t co. If qo=ql = + co, selecting rp and tp so that 

yields equality in (8.4) and, hence, the result. 
This proves the theorem when p0 and pi are finite. Let us now indicate 

the (minor) changes necessary to remove this restriction. 
The idea is simply to use Corollary 5.6. We first consider the case when 

only one is infinite, say p0 < + cc and pI = + 00. Assume for now, in addi- 
tion, qo, q1 < + 00. Corollary 5.6 then provides us with a set E, for each 
dyadic cube Q. In (8.2) we replace fQ by jE, and estimate the second factor 
by its Loo-norm. By using Proposition 2.7 and Corollary 5.6 (in the other 
direction), we get /JsIIrY < C [Is/I X0- I II~~ in place of (8.3). To show the con- 

verse we let 6 = 1 and define r and t as before. We then need to replace the 
estimate involving t in (8.4) by 

II 41 x, d c. 

This inequality follows as before once we notice that by Corollary 5.6 with 
E,=QnA;+,, 

The case when p. < + co, q. 6 + co, and p1 = q1 = + cc is elementary. 
The first part of the proof is direct; for the second part, replace the defini- 
tions of rQ and tQ given there by 

‘Q = (ISQ l/IQ1 B(a,/n + l/2) l/(1 ~ 0) ) and tQ = 1 Ql dn + 10. (8.5) 

The case when both p. and pI are infinite (and q. and q1 finite) is, 
in fact, the most complicated. However, it still only requires changes 
along similar lines. Suppose rEX,,=f~qO and t EX~ = fzql. According 
to Corollary 5.6, applied with 4 replaced by E = &, there exist for each 
dyadic cube Q subsets Ei = E:(r) with IEO,I/lQl > & and 
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Ilrll xo = I[(& (IQ --ao’n Ire 1 ~E;)40)1’yoIILm. There are also sets Et! corre- 
sponding to t with a similar property. Notice that E, E Ei n E b satisfies 
IE, I/IQ1 > A. In (8.2) we now replace fe by fE, and argue as before to 
obtain /I.rIItz 6 C Ilsli,:,~~~~:. To prove the converse we must modify the 

definition of the sets Ak and Ck. Suppose s E fz. Corollary 5.6, again with 
E = 6, then gives us sets E, satisfying, in particular, IE, I/IQ1 > &. For 
k E Z we let 

4= x: c (IQ1 -‘ln bQI i&)Y i ( 
114 

1 1 > Zk , 
Q 

and define %$ analogous to the sets Ck above with Ak replaced by &$j. Note 
that, since ) E, l/l Ql > A, we must still have so = 0 if Q $ Uke z $?k. Regard 
p/p0 =p/pl = 1 in the definition of 6 and y and in (8.4). In the proof 
of (8.4) we now replace Q n Ak by E, n dk if Q E %,,; note that 
IE,n&&[/lQl>&-~=$. Similarly, we replace QnA;,, by E,n&+,. 
The estimates of Ilrllxo and (JtJIx, can now be carried out as before. 

The final case is p. =pl = + co and qo< + co, q, = + co. Now one 
direction is immediate from the definitions. For the other we again define 
r and t by (8.5). Instead of (8.4) we then have Ilrll,,,< C ll,ll$-‘) and 
Iltll., = 1. I 

We can obtain results regarding complex interpolation from Theorem 
8.2. Let [X0, Xi], denote the space obtained from X0 and X, by the com- 
plex interpolation method (cf. [Call; or Be-L, Chap. 43). Suppose X0 and 
X, are Banach lattices on a measure space (M, p), and let X= Xh- “XT for 
some 8 E (0, 1). Suppose X has the property that the conditions f E X, 
If,(xN 6 If(x P- a.e. for each IZE H+, and lim,, o. fn = 0, p-a.e., imply 
lim, + m ilf, /Ix= 0. Calderbn [Call, p. 1251 then shows that XA-‘X4) = 
[X0, X, le. Hence, we obtain the following. 

COROLLARY 8.3. Suppose ao, cc1 E R, 1 dp,,, qo< + 00, 1 <pl, q1 d 
+co, a=(1 -0)a,+8c(,, l/p=(l-@/p,+B/p,, and l/q=(l-8)/q,,+ 
8/q,. Then 

and 

Proof: Since p, q < + co, the property needed to apply Calderon’s result 
to X= fy follows easily from the dominated convergence theorem. Hence 
Theorem 8.2 yields (8.6). Now (8.7) follows from (8.6) and the retraction 
diagram (Theorems 2.2 and 5.2), as usual. 1 
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Special cases of (8.7) are [H’, BMO]@= Lp, l/p= 1 - 0, and 
[H’, Lpl10 = Lp, l/p = 1 - 8 + e/pi, pi < + co, which are well known (see, 
e.g., the survey in [Jon]). The result for general a’s and q’s, at least when 
1 <pi, qi < + co, i=O, 1, is due to Triebel (cf. [Tr2]). Some of the results 
in the extreme cases pi = 1 and/or pi = + 00, i = 0, 1, may be new. 

In the case where we let q,, = q1 = + cc and/or p,, =pl = + cc in the set- 
ting of Corollary 8.3, it follows from Theorem 8.2 and a general result of 
Shestakov ([Sh], or see [N, p. 1401) that [fz”, r;;m], is the closure of 
f clam nf;;” in ff” and that [fzqO, iz4110 is the closure of fzqon fzi 

inPof2. 
We could also consider (8.6)-(8.7) for p, q < 1; it turns out that there are 

many ways to extend the complex method to the quasi-Banach space case 
(e.g., [Riv; Cal-T; J-J; Tr2]). However, we will not pursue this. Instead we 
consider two alternate methods of interpolation whose extension to the 
quasi-Banach case is straightforward and for which the interpolation 
property is immediate. 

The first of these methods is due to Gagliardo and is denoted (A,, A,), 
in [N] (cf. also [O; P6]). In [N] it is proved that for quasi-Banach 
lattices satisfying certain conditions (easily checked for the f-spaces), 

(X0, A-,)()= (Xp%~)“. (8.8) 

Here, in general, X” denotes the closure of X0 n X, in X. This now readily 
yields the following result for the f- and P-spaces. 

COROLLARY 8.4. Suppose ctO, ctl E R, Ocp,, qO< + 00, O<pl, q1 6 
+a, cr=(l-8)a,+Ba,, ~/P=(~-@/P,+WP,, and l/q=(l-8)/q,+ 
8/q,. Then 

(QO, if;“’ )s x r; (8.9) 

and 

(#Z,O, P‘f ;“I )e x Py. (8.10) 

Proof: By the trivial fact that finite sequences are dense in fy, 
p, q < + co, we have that ff” = (,F)‘. Hence, (8.9) follows by combining 
Theorem 8.2 and (8.8). By the standard retraction argument we then also 
get (8.10). 1 

Corollaries 8.3-8.4 yield the interpolation property for the f- and 
P-spaces for nearly all possible values of the indices ~1, p, and q. However, 
there is another method of interpolation which very easily yields the inter- 
polation property for all possible values of the indices. This method, due to 
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Gagliardo, Peetre [P6], and Gustavsson and Peetre [Gu-P], is known as 
the f-method of interpolation and is denoted (A,, A,, 0) in [N]. 

Again under appropriate mild conditions, which are satisfied in the case 
we are about to discuss, we have 

X’~eX~c(Xo,X1,e)c(X:,~BX~)~ 0 (8.11) 

(see [N]). Here, in general, X” is the Gagliardo closure of X in X0 + X, ; 
recall that x E X” if and only if there exists (x~)~~ with X~E X such that 
xi -+ x in X0 + X, as i -+ + co and llxi 11 x < 1. The norm on X” is then the 
i&mum of all such ,I’s. 

THEOREM 8.5. Suppose tco, CI~ E IR, O-cp,, qo< + 00, O-cp,, q1 < + 00, 
a= (1 -e)a,+&,, l/P=(l-wPo+~/P,~ and l/q=(l-0)/q,+B/q,. 
Then 

(Q”“, Q’, e> z to19 
P 

(8.12) 

and 

(iyyo, Py, e) z I??. (8.13) 

Proof: Theorem 8.2 and (8.11) will give (8.12) as soon as we have 
verified that 

p= (fy)-. (8.14) 

Trivially .fS c (fy)-, so we need to prove the converse. Suppose s E (f?) -. 
By defmrtton this means that there exists a sequence {si}zo such that 
JJsi (/ c < I and sj + s in t,, a0q0 + f%:ql as i -+ + co. In other words, there are 
sequences {s~}~~, and {sf}~FYo such that 

s-ssi=sp+sf 

and 

IlS:ll fzqj + 0, j=O, 1, 

as i-t + co. Since I(& ( < IQ/@+“2-1’p~ ll.$ilr~v/, we have (& + 0, 
j = 0, 1, and, using the identity above, (si)o + so as i + + co for each cube 
Q. This implies that 

~(lQlV”* l~Ql~Q)q)1’9dllfff~f(~(;Ql~a’.1 I(s,),li~)‘)liq 
Q 

(when p. =pl = + cc we should modify this slightly and only sum 
over cubes Q c P for an arbitrary fixed cube P). This yields 
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llsil rzq < lim inf,, m /Isi 11 raq 6 1, by Fatou’s lemma, and completes the proof 

of (6.14). Using the re&act diagrams again we also obtain (8.13). m 

Notice, in particular, that BMO = #“,’ can be obtained by interpolating 
between Fz and I?‘“,“, for instance. This answers a question recorded in 
[PSI. Similarly, the theorem tells us how to interpolate between I?“,’ and 
F”,“, and this yields the analogous results for BMOA and the Bloch-space, 
giving at least a partial solution to a problem by Peetre [P9, p. 2371. 

9. THE ALGEBRA OF ALMOST DIAGONAL OPERATORS 

In this section we further discuss the class of almost diagonal matrices 
(introduced in Section 3). We prove (Theorem 9.1) that this class is closed 
under composition and often under taking inverses. The class of all 
operators on the distribution space level, which correspond to almost 
diagonal matrices, is then also an algebra under composition. We consider 
various characterizations of this algebra and of the families of distributions 
naturally associated with it. These distribution families generalize families 
of smooth molecules; however, in the case a = 0 the two notions coincide 
(Theorem 9.15). We will see that our algebra contains fairly general 
families of Calderon-Zygmund and Fourier multiplier operators (Exam- 
ples 9.18 and 9.19). We have again put some of the proofs in an appendix, 
Appendix D. 

For fixed CI, p, and q, the class of almost diagonal operators of fy can 
be made into a normed space. Given an almost diagonal operator A with 
matrix {~o~}o,~, we define 

II A IIE = sup I4JPliqp44 
Q,P 

and 

I/Ailad= inf IIAIie. 
EZO 

Since I/ A 11 E is a nondecreasing function of E, it easily follows that 11 A 11 nd is 
a norm. We denote the class of almost diagonal operators on ry equipped 
with this norm by ad or ad?. 

THEOREM 9.1. Let OIER’ andO<p,q< +co. 

(i) IfA, BEadT, then AoBEadT. 

(ii) There exists 6 =B(&)>O such that if A ~ad;~ and III-A IIE <6, 
then A is invertible and A-’ cad?. 

Proof: See Appendix D. 1 
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In Theorems 3.5 and 3.7 we obtained certain basic estimates under 
relatively restrictive conditions. We now consider the most general families 
of functions for which these estimates hold (see Theorem 9.9). The fact that 
ad? is an algebra (Theorem 9.1(i)) is the crucial property used in analyzing 
these families. 

For each dyadic cube P, let ep be the sequence defined by (eP)o = 1 if 
P = Q and = 0 otherwise. Each operator A E ad%” corresponds to a family of 
sequences {AeP}p obtained by perturbing the standard unit basis (ep}p by 
A. That is, if A is represented by the matrix {cz~~}~,~, then AeP is the 
sequence with (AeP), = app. Theorem 9.1 implies that the collection of all 
such families. 

U= { (AeP}, : AeP= {cz~~}~ for some A ead;q}, 

is stable under ad:. Notice also that since ep is an element of f%” and an 
almost diagonal operator is bounded, each sequence AeP also belongs 
to y. 

Let us now fix cp and tj satisfying (2.1 b(2.4). The image of the collection 
U under the inverse q-transform T,,, consists of families (mP}p of elements 
mp= TtiAeP=&aQP$QEpF. By Theorems 9.1, 2.2, and 5.2 this collec- 
tion is precisely 

We shall say that {mp}p E M is an Ad-family (or Ad?-family). By 
Lemma 3.6, any family of smooth molecules is an Ad-family. 

The definition of Ad-family is independent of the choice of cp. 

PROPOSITION 9.2. Suppose (pC1), I,#~) and qC2), tiC2) each satisfy 
(2.1t(2.4). Then M(q”‘) = M(qC2’). 

Prooj Suppose (mp}pE M((pC2)). By Theorems 2.2 and 5.2, 

mp = .Z,(m,, (~2’) $$I. 

Hence, 

Cm p, cp$)> =C Cm,, (P!?>(*!?, cp$)). 
R 

This corresponds to the composition of two operators with matrices 
{ (mp, (P$)))Q,~ and (($g’, c+Y$))}~,~, respectively. By assumption, 
{(m,, q$‘))o .ead;!, and {($g), (~$))}o,~ belongs to all ad:-spaces. 
Theorem 9.1(i) ‘implies that the composition is also in ad;4 which means 
that {mp}p~M(~p’l~). By symmetry, this completes the proof. f 
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In fact, there are many other equivalent characterizations as we shall see 
next. Some of the ideas in the discussion below can be traced to Peetre’s 
book [P3, Chap. S] and the references given there. 

Given families (ao}o and {qo}o, let ((~~l~~)}o,~ be the matrix with 
entries 

where a$( .) = o~(. -y) and P, is the cube centered at the origin with twice 
the sidelength of P. We say that (G~}~ is a uniform Ad?-family if the 
matrix { (ap~cpe)}a,P~ad~. Lemma 3.6 implies that a family of smooth 
molecules is a uniform Ad-family, and it is easy to see that this new notion 
is less restrictive in general. 

We are interested in finding conditions on families {cpjp which enable 
us to characterize Ad-families (M~)~ in terms of the matrix 
{<~QhNQ,P. Recall that J = n/min( 1, p, q). 

THEOREM 9.3. Letcc~RandO<p,q6+oo,andlet {a,},beauniform 
Ad?-family with B = -a + J - n. If {m,} p is an Ad?-family, then 

Proof. According to Proposition 9.2 we may assume that the function cp 
in the definition of M(q) is such that cp = II/. Now, by Theorems 2.2 and 
5.2, we have the representation uy - Q - CR(o;, vR) (PR and, conxquently, 

This implies, with the notation above, that 

<aQlmP)<C (aQbR)l(mp?(PR)I. 
R 

Notice that {(aQIqP)}P,P~ad~; using the definition of o&s), it is 
readily seen that this is equivalent to our assumption that the transpose 
{(aplvQ))p,P E adpaY3 with p = -a + J - n. Thus {(aQlm,)}Q,p 
corresponds to and operator dominated by the composition of two 
operators in ad?, and, by Theorem 9.1(i), this operator is in ad7 as well. 

A result in the opposite direction, sufficient for our purposes, is the 
following. 
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THEOREM 9.4. Suppose a E [w, 0 <p, q 6 f co, and let CT be a function 
satisfying 

e(r) E C”, lq5)l ac>o if $<151<2. (9.2) 

Setap(~)=IP~-‘/2fs(2Y . -k) ifP= P,,. Suppose (op}, is a uniform Ad?- 
family with j? = -a + J- n. If (9.1) holds, then {mp}p is an Ad?-family. 

Proof Our assumptions on g guarantee that there is function 4 
satisfying (2.1 t(2.3) such that qn = 4 * (T. Hence, 40, = $5” * go if I(Q) = 2-’ 
and 

We define {app}Q,p to be the matrix with entries aQp = 0 if 1(Q) # l(P) and 
aQP = SUpyEQv,&k 2-“” h(Y)/ =SUpyEQO,~-k l@(Y)/ if p=h and Q=& 
Clearly this matrix corresponds to an operator in ad7, since $ is rapidly 
decreasing. The identity above shows that 

l(mP, qQ)l <c (oRImp> aQR. 
R 

Once again we thus obtain an estimate involving the composition of 
two operators in ad,” and, applying Theorem 9.1(i), we get the desired 
conclusion. 1 

Assume for a moment that (9.2) holds and that (T~( .) = 
) PI -Ii2 o(2”. -k) if P= Pvk. Then under a certain condition, namely that 
{G~}~ is a uniform Ad:-family, we have that (9.1) is equivalent to {mplp 
being an Ad?-family. In fact, this condition on { CF~}~ is sharp. To see this, 
note that { ‘pp}p is an Ad:-family. Hence, given the equivalence, (9.1) 
holds with (mp}p replaced by {(P~}~. This gives { (0~1 (pp)}Q,p~ ad?, or, 
equivalently, { (op 1 qQ ) } Q, p E adF. 

Remark 9.5. There are also analogues of Theorems 9.3 and 9.4 with the 
single function 0 replaced by a finite family { ci} r= i. Instead of (9.2) we 
then require that 

Suppose each {~a} p is a uniform Ad?-family with P = -a + J- n. Then 

{mp} p is an Ad?-family if and only if 

w($d}Q,P~ad~> i=l K. > . . . . 
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The only modification of the proof required in this case is to note that 
we can find {ei};K=,, with each ei satisfying (2.1)-(2.3) such that 
(p=ci@* 0’. 

Remark 9.6. Similarly, { mp} P is a uniform Ad?-family if and only if 

{SUP SUP I<mLa'p)l}Ead~ 

for a (or, equivalently, any) fixed uniform A!?-family {cJ~)~, 
fl= - c( + J- n, derived from a single function (T satisfymg (9.1). This can 
be proved in virtually the same way as Theorems 9.3 and 9.4. 

EXAMPLE 9.7. Consider for a moment the one-dimensional case. Let 
a(x) be the sawtooth 

Odx<l, 

l<x<2, a( -x) = -a(x), 

2 dx, 

and define crP in the usual way. Then {rrp}, is a family of smooth 
molecules for I?: for - 1 < 01< 1, 1 <p, q < + co, and thus also a uniform 
Ad?-family for these values of the parameters. Furthermore, 1 e(l) 1 > 0 on 
$ < 1 t 1 d 2. Combining Theorems 9.3 and 9.4 we see {mp} p is an Ad?- 
family if and only if (9.1) holds. 

EXAMPLE 9.8. Also in R’, let c(x) be the step function 

r 

-1, Odx<l, 

a(x)= 1, ldx<2, 

0, otherwise. 

Then {e,},, is a family of smooth molecules for p‘,“” for 
-l</?<O,l<~,qd+co,and Id(~)l>Ooni<I~I<2.ByTheorems9.3 
and 9.4, {mp}p is an Ady-family, 0 < a < 1, 1 <p, q 6 + co, if and only if 
(suP,~Qo 1 hh (‘;>I )Q,W-‘d:. Written out, this becomes a fairly explicit 
condition on {mp}p. Given a dyadic interval Q, we let Q+ and QP be its 
right and left halves, respectively. The condition is that 

IQ,-“* lj,+ mAx+yJdx-J m& + Y) dx 6 CmQf’(&), YEQO, 
Q- 

for some E > 0 and with C independent of y (and Q, P, of course). 
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Examples 9.7 and 9.8 also have analogues in higher dimensions. For 
instance, let a’(x), i= 1, . . . . n, be defined by 

a’(x) = i -1, O<Xi< 1, 
1, 1 6xiQ2, 0~x1, .-,-L~Z 

a’(x) = 0 otherwise. By using Remark 9.5 we easily see that these 
functions can be used to characterize Ad?-families when 0 <a < 1 and 
16p,q< +a. 

Several of the results we have previously stated for families of smooth 
molecules have obvious generalizations to Ad?-families. For example, 
Theorems 3.5 and 3.7 can be generalized as follows. 

THEOREM 9.9. Suppose CI E R, and 0 <p, q 6 + cc 

(i) lff= Ce sQmQy where {WI Q } p is an Ad:-family, then 

Ilf II ,+c IIisa)plltfu. 

(ii) IffEP; and { 6,) p is an Ad?-family, where /3 = -a + J- n, 
then 

Proof: For (i), see the proof of Theorem 3.5. For (ii), note that the con- 
dition {(II/pT bQ)),,, E ad,“4 is the same as our assumption on {b,}, and 
follow the proof of Theorem 3.7. 1 

Let us now consider operators between PT-spaces. Once again, we fix q 
and $ satisfying (2.1 k(2.4). If T is a continuous linear operator from Y to 
Y’, we say that T is almost diagonal on p‘%” if the corresponding matrix 
{(WpT (P~))Q,~ is in ad?. We denote the class of such almost diagonal 
operators by Ad?. Note that if S and T have associated matrices 
A = w*PY (PQ&l,P and B= { ( T$p, (~o)}o,~, then by Lemma 2.1, 
Wp=CR <Wpy vR) $R. Hence, 

i.e., TS has associated matrix BA. Theorem 9.1 thus tells us that Ad? is an 
algebra as well. 

It is immediate by the definitions that an operator T is in Ad? if and 
only if T maps the -family { I,G,}~ into an Ad%Q-family. In fact, such 
operators map general Ad?-families into Ady-families. 
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PROPOSITION 9.10. Suppose a E R’, 0 < p, q 6 + co, and let TE AdT. If 
{ mp}p is an Adlg-family, then { Tm,}, is also an Ad?-family. Furthermore, 
if{m.).isauniformAd~-family,then {sup,..,I(T(m~),cp,)(),,,~ad~. 

Proof. Since m,=CR (m,, pR) tiR, we have 

Pm,, ve> =c <VR, cPa>(mpy vR) 
R 

and this again corresponds to the composition of two operators in ady. 
Hence, { Tm,}, is an Ad?-family. Similarly, to show the last part of the 
theorem, we use that 

sup l(T(m~),cpa)16CI(TIC/.,cp,)I(m.Icp.). 1 
YEPO R 

In the other direction we have the next result. 

PROPOSITION 9.11. Suppose a E R, 0 < p, q < + CC, and let z be a function 
satisfying 

f(5) E C”, If(t)1 <c>o if +<15\<2. 

Set zp(.)=JPI-1’2t(2”.--k) if P=Pvk. Suppose {z~}~ is a uniform 
Ad? -family. If 

then TE Ad?. 

Proof. As in the proof of Theorem 9.4 we have 1+5 = $ * r with $ 
satisfying (2.1)-(2.3). Also as in that proof, this leads to the identity 

l(P) = 2-p, and the estimate 

I<WP, ‘pg)l GE sup I (T(z;), (P&d b,, 
R YERO 

with b eP=O if I(Q)#l(P) and b,,=sup,.,,,-, I&y)1 if P=P,, and 
Q = Qflk. Applying Thereom 9.1(i) concludes the proof. i 

Suppose that a family {rplp of functions has the property that 
Il/P=CRaRPtR with {aPP)e,P~adj44. Then a linear operator T belongs to 
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Ad? if ( Tz,}~ is an Ad:-family. This fact is a simple consequence of 
Theorem 9.1(i)), since 

Similarly, suppose we consider the collection of all smooth atoms for 
PT. We will say that a linear operator T maps families of smooth atoms 
(for py) to Ady-f amz res if, whenever {ap}, is a family of smooth atoms, ‘I’ 
there exist constants C and E > 0, independent of {ap}p, such that 
1 (Ta,, qe) 1 6 COAX. Similarly, we say that T maps smooth atoms to 
smooth molecules (for p’f”) if there exists 6>a* =c1-- [a], 
M > J = n/min( 1, p, q), and a constant C such that ( Ta,/C}, is a family of 
smooth (6, M)-molecules whenever {aa}a is a family of smooth atoms for 
PT (with 6, M, and C independent of {aQ}p). 

We now have the analogue of the characterization of Ady in Proposi- 
tions 9.10-9.11) with the family { zp> ,, replaced by the collection of all 
smooth atoms. 

PROPOSITION 9.12. Suppose CI E Iw, and 0 < p, q < + co. Then T maps 
families of smooth atoms to AdT-families if and only if TE Ad?. In par- 
ticular, if T maps smooth atoms to smooth molecules, then TE AIT. 

Proof: We first claim that for each dyadic cube P there exists a family 
{ aR}R of smooth atoms and a sequence { tRp} R such that *p = CR tRPaR, 
where ) tRp 1 < CoRp(s) for some C and E > 0 independent of P and R. To 
prove this, we see from the representation of $o in the proof of 
Theorem 4.1, that for any L > 0, we can write 

where apvb + , = 2”“/‘( 1 + I kOLgk(2”x- f)/C is a smooth atom if C is suf- 
ficiently large, depending on L. Changing notation yields the claim. 

The claim and the argument in the paragraph following the proof 
of Proposition 9.11 yield the “only if” part of the first statement we 
are proving. The second statement follows immediately from the first 
by Lemma 3.6. Similarly, since smooth atoms are smooth molecules, 
Proposition 9.10 (or, rather, its proof, to obtain the required uniformity in 
6 and J) yields the remaining “if” statement. fi 

We can characterize Ad?-families by representations like those for the 
tip’s in the proof of the last proposition. 



A DISCRETE TRANSFORM 107 

PROPOSITION 9.13. Suppose CI E [w, and 0 <p, q 6 + co. Then {mp}r is an 
AaT-family if and only if there exists a family of smooth atoms (a:}, 
for each P, and a matrix { tpp}p,PEady, such that mp = CR t,,ag. In 
particular, any family of smooth molecules can be represented this way. 

Proof We apply Lemma 2.1, and the result for the family {tip}, in the 
proof of Proposition 9.12, to write 

where 5s is a smooth atom corresponding to the cube R, for each Q, and 
I7,, ( Q CmRQ(c), for some C and E > 0. Let 

and 

ag=C crnP5 vQ> iRQir!itRP. 

Q 

Then each ui is a smooth atom (corresponding to R), since each dg is and 
since the sum is dominated by a convex combination. Now {mp} p E Ad?, 
so Proposition 9.1(i) shows that { tQp}Q,p E ad7, completing the proof of 
the “only if” statement. 

Noting that {a:}, is an AdT-family for each P (with uniform C 
and E), Proposition 9.1(i) yields the “if” part, since (mp, qQ) = 
CR tRP<a~3 vQ>. 1 

The identity mp = CR tRpai in the last proposition must be properly 
interpreted to avoid problems with polynomials. This comes from the fact 
that the representation mp = IQ (mp, qQ) $Q converges in .!Y’/.Y. 
However, if, say, gEYO, the expression CR tRp(ai, g) is absolutely con- 
vergent and coincides with (mp, g). 

In the special case a = 0, we can characterize Ady-families and the 
algebra Ad, aq in terms of smooth atoms and molecules. This is a conse- 
quence of the following technical lemma, whose analogue for c1# 0 is false. 

LEMMA 9.14. Suppose 0 <p, q< + co, E ~0, and 0~6, E< 42. Let 
{g,}, be a family of smooth (6, J+ E)-molecules (for p?), let Q be a fixed 
dyadic cube, and let { aQp} p be a sequence satisfying 1 an, 1 6 CopQ(&) for all 
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P. Define mg = Cp aQp g,. Then there exists c (depending only on the fixed 
parameters) such that me/Z’ is a smooth (6, J+ E’)-molecule. 

Proof: See Appendix D. 1 

We can now characterize Ad:-families as follows. 

THEOREM 9.15. Suppose 0 <p, q < + 00. Then { mr } r is an Ad:-family 
tf and only if {mr}r is a family of smooth molecules (for p:$). 

Proof One direction follows from Lemma 3.6. The other is a conse- 
quence of Proposition 9.13, Lemma 9.14, and the fact that smooth atoms 
are smooth molecules. 1 

Similarly, we can characterize the algebra Ad?. We say that T maps 
smooth molecules to smooth molecules (for I?‘,““) if, whenever {mQ}e is a 
family of smoth (6, M)-molecules (6 > 0, M> J), there exist T> 0, fi> J, 
and a constant C, depending on 6 and N, such that (Tm,/C}, is a family 
of smooth (8, a)-molecules (for l??). 

THEOREM 9.16. Suppose 0 <p, q < + co. The following are equivalent: 

(i) TEAdF; 

(ii) T maps smooth atoms to smooth molecules; 

(iii) T maps smooth molecules to smooth molecules. 

Proof The equivalence of (i) and (ii) follows from Proposition 9.12 and 
Theorem 9.15. Also, that (i) implies (iii) is a consequence of Theorem 9.15 
and the fact that an operator in Ad? preserves Ad?-families, i.e., Proposi- 
tion 9.10. Finally, (iii) trivially gives (ii). 

Remark 9.17. In Section 4 we considered decompositions of the form 
f=& (f; zQ> aQ, in which one of the families {rQ>Q or {Q~}~ could be 
chosen in a certain convenient, explicit way. We can now discuss the extent 
to which we can also control the other family. 

Suppose tx E IR, and 0 <p, q d + co. Then we have the following: 

(i) In Theorem 4.2, there exists pLo < 0 such that if p <pO, then 
{ zQ}~ is an Ad?-family, where /? = - c1+ J- n. 

(ii) In Theorem 4.4, there exists p0 < 0 such that if p d ,u~, then 
{c~}~ is an Ad?-family. 

We will show (ii) first. From the proof of Theorem 4.4, we see that 
(I- TJ tip= cCR SRmRy where {mR}R is a family of smooth molecules, 
and 
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for some E, p > 0 (see (4.26)). Hence, by Lemma 3.6 and Theorem 9.1(i), 

for some E”> 0. By Theorem 9.l(ii), there exists pLg such that T; ’ E Adf for 
~fl*o. BY (4.15t(4.17), {vQJQ is a family of smooth molecules and hence 
an Ady-family (Lemma 3.6). Since crQ = T;- ’ qQ, Proposition 9.10 implies 
that { oQ}Q is an Ad?-family. 

We now show (i), which is similar. By the proof of Theorem 4.2, we have 
(I- T,) tip= C2p’s CR~R~R, where {m,}, is a family of smooth 
molecules, and 

~R=~RwPHwl~2~ I@,~*Il/P(Y)IdY if I(R) = 2-“. 
R 

It is easy to check that 1 sR 1 6 CoRp(s) for some E > 0. So by the argument 
above, T; ’ E Ad?. Since the adjoint of an operator corresponds to the con- 
jugate transpose of the corresponding matrix, we have (T; ‘)* E Ad:. Since 
zQ = (T-l)* q Q, the result follows as in the previous case. This completes 
the proifs of (i) and (ii). 

By Theorem 9.9, (i) and (ii) above imply (4.5) and (4.6), respectively. 
Thus we have obtained stronger conclusions regarding the families {cJ”}Q 

and { TQ}~. Using our characterizations of Ad?-families, e.g., Proposi- 
tion 9.13, we obtain more explicit information on these families. In par- 
ticular, by Theorem 9.15, (z”} Q in (i) is a family of smooth molecules 
when /I = 0, and similarly for {G~}~ in (ii) when a = 0. 

The algebra Ad; contains many classes of operators usually encountered 
in harmonic analysis. An example is the class of CalderonZygmund kernel 
operators; we recall the standard notation and discuss some known results 
about this class next. 

EXAMPLE 9.18. Suppose T: Y -+ Y’ is a continuous linear operator. 
The Schwartz kernel theorem guarantees the existence of a kernel 
KE Y’( R” x KY) such that (T@, Y) = K( Y @ @) for all @, YE Y. K is a 
Calderdn-Zygmund kernel if it is given by a continuous function K on 
((x, y) E R” x R” : x # y } satisfying 

6) IW,y)l dClx-yl-“, 
(ii) IKky) - K(x’,y)l + IK(y,x) - K(y,x’)l d Clx - x’l’ 

IX-yl-(“+&), provided 2 lx-x’1 < (x-yl, 

for some O<E< 1, and 

CT@, W={j K(x, Y) @3(y) Y(x) dx 4 
R" x 88" 
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whenever @, YE G@ and supp @n supp Y= 0. We write TE CZK(E) if T’s 
kernel satisfies these conditions for a fixed E, or just TE CZK if the 
particular value of E is not important. 

A continuous linear operator T: GS + 53’ satisfies the weak boundedness 
property (WBP) if 

for all @, ‘YE 53 with supports having diameter at most t > 0. 
The fundamental result about operators TE CZK is the result by David 

and Journe ([DJ]). This reslt states that an operator TE CZK is bounded 
on L2 if and only Tl E BMO, T*l E BMO, and TE WBP. The proof of this 
can be reduced to the case when T satisfies Tl = T*l = 0 (cf. [DJ]). 

In [Fr-H-J-W] we showed that if TE CZK(c) n WBP and Tl = 0, then 
T maps smooth atoms to smooth molecules for ti7 whenever 0 < c( < E < 1, 
1 <p, q < + co. In paticular, by Proposition 9.12, we have TE Ady. Under 
the additional assumption T*l = 0, we also proved that T maps smooth 
atoms into smooth molecules for s$ (1 <p, q < + co), and, hence, 
TE Ad:. In particular, we have that T is bounded on @“z L2, i.e., the 
(reduced) David-Journe result. The approach in [Fr-H-J-W] has been 
extended to cover the full range GI E R, 0 <p, q < + CC in [FTW; Torr]; the 
main difference is that stronger regularity and cancellation conditions are 
assumed in the case of more general indices. 

For another example, let us consider Fourier multiplier operators. For 
mfzL”, let T, be the associated Fourier multiplier operator, i.e., 
(T,cp)” (t)=m(t)@(t) for, say, (peYO. We will say that T,,, is bounded 
on p; if IITm.fll~~~~ Ilfll~~ forfEY& Of course, if O<p, q< +a~, Y. 
is dense in pf”, so T, can be extended to a bounded operator on (all of) p3. 
In the cases p = + 00 or q = + co, so that Y0 is not dense, this convention 
is a convenient abuse of terminology. We also introduce the notation 

for vEZ. 

EXAMPLE 9.19. Let EER, O<p,q< +co, and J=n/min(l,p,q). 
Suppose that the function m satisfies 

sup 1 2y~vi2-y” lRV I 8Ym([)l d< < + 00. (9.3) 
” Irl=zCJ+11 

Then T,,, is almost diagonal and hence extends to a bounded operator on 
#y. More precisely, if E = [J+ l] -J, then 

I(Tm$m va)l ~c,,PQP(E). (9.4) 
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To show this we fix Q and P with I(Q)= 2-” and I(P) =2-” and put 
j=v-p and aQp= ( Tmtip, vQ>. We have 

aQp= (2n)-” (dp, eQ>, 

so by (2.2), aQp= 0 if 1 j] > 1. If ) j) < 1, then 1(P) z Z(Q), so the required 
estimate is merely 

A=sup (1 +l(Q))‘[~~-xoI)~~+” lappI < +co. 
P. Q 

Now (mtjp, cjQ> = 2- (p+ Y)n’2h(~Q -x,), where 

h(x) = h,,(x) = (27~)” (m$, fj,)” (x) = (2x)” 2”“(m(2”.) $(2’.) cj( .))” (2’~). 

Letting xj(x) = $(2’x) $5(x) and replacing 2”~ by X, we have 

A,<csup (1 + IxJ)~-‘+‘~ I(m(2”.)11/(.))” (x)1. 
Y, x 

Since (1 + (x()~~+~~zC,~,~~~+~, (x(lyl, we obtain 

2yiyI ) (i3Ym)(2Y<)I &, 
+I1 

by the Riemann-Lebesgue lemma and the chain rule, since X~-E 9 and 
supp xi c R,,. Changing variables shows that A is dominated by the expres- 
sion in (9.3), so (9.4) holds. 

Of course, there are more general classes of bounded multiplier operators 
than those satisfying the L’-Mihlin condition (9.3). For example, the 
familiar Hormander (Fourier) multiplier theorem states that LP-bounded- 
ness (1 <p < + co) holds under a weaker assumption, only involving an L* 
condition on [n/2 -I l] derivatives. We can obtain this result, and 
generalizations of it, by a variation of our argument above. We do this in 
the next section (Corollary 10.7 and Remark 10.9) by studying more 
precise criteria for boundedness of matrices on f7. 

10. SCHUR'S LEMMA AND FURTHER RESULTS ON OPERATORS 

We turn now to a more careful study of conditions for the boundedness 
of matrices on the ry spaces. We saw in Section 9 that the class of almost 
diagonal operators contains many familiar examples and has an interesting 
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structure: However, our methods can be modified to give much sharper 
boundedness criteria than almost diagonality. It fact, we will find necessary 
and sufficient conditions for a positive matrix to be bounded on all the 
spaces fy, 1 6p, q d + cc (for each fixed a). As an application we obtain 
a Fourier multiplier theorem for I?; which generalizes the well-known 
Hiirmander theorem for Lp and its Hardy space analogue (compare Exam- 
ple 9.19 and Remark 10.9 and note that (10.21) is weaker than (9.3), e.g., 
by the Sobolev imbedding theorem). Returning to our discussion of 
bounded positive matrix operators, we note several characterizations, 
closely related to the classical Schur’s lemma and to some work of Rubio 
de Francis. We conclude the section with some associated results about 
extrapolation of operators on the p’f” spaces, which also follow along the 
lines of Rubio de Francis’s work. 

Let us start with the simplest situation, namely with q =p < 1. Since fT 
is a weighted P-space, we have that an operator A is bounded from ry to 
another p-normed space X, 0 <p < 1, if and only if A is bounded on the 
standard basis vectors {eP},, i.e., 

(Recall that a space X is p-normed if II .[I $ satisfies the triangle inequality.) 
If X is a space of sequences {so}o, then A is represented by the matrix 

In terms of this matrix the above characterization 

SUP IPI a/n+1’2--‘p )I{uQp}QIlx< +co. (10.1) 
P 

In the particular case X=fy this says that 

SU~~(IU~~I(IQI/IPI)~~‘~-“*+~‘~)~< +co. 
p Q 

(10.2) 

Dually, suppose p = q = + co. A linear operator A with matrix {aQP}Q,P 
is bounded on tr if and only if 

SUPI IUQP I(IQI/IPI)-"'"-"*< +oO. 

Q P 

(10.3) 

When 1 <p = q < + co there is no complete characterization. Schur’s 
lemma (e.g., see [Gal) is a substitute for matrices with nonnegative entries. 
With our notations this lemma states (cf. [JaS, p. 3961) that if A is a 
positive operator with matrix {aQP}Q,P (i.e., aQp 2 0), then A is bounded 
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on ry, u E [w, 1 <p < + co, if and only if there exists a positive sequence 
{Q}~ such that 

and 

(The general statement of Schur’s lemma is that Tf = s K(x, y) f ( y) dp( y), 
K(x, y) B 0, is bounded on Lp(&), 1 <p < + co, if and only if there exists 
a positive function u such that j K(x, y) u(y)“’ L$L( y) < cup’(x) and 
J w, Y) u(x)” 44x) G CUP(Y).) 

The cases q fp are more complicated. We will obtain certain general 
boundedness criteria in Theorems 10.5 and 10.1 l-lo.13 for positive 
operators; of course, more generally, an operator with matrix {aQP}Q,P is 
bounded if the operator with matrix { I uQp I} Q,p is bounded. 

When p<l and q= +co and, dually, when p= +CQ, q=l, we have 
complete, rather explicit characterizations. Given a matrix A = { aQp} Q, p, 
we let u~,rZ,,, A*={“;fP}Q,P3 and IAl={la~~l>Q,P. 

PROPOSITION 10.1. Let A be a positive operator with matrix { uQp) Q,p. 

(i) If p < 1, then A is bounded on fz” if and only if 

p a/n+ 112 

’ 
< +co. (10.4) 

(ii) A is bounded on f$ ifund only if 

1 
sup - 
Qo IQ01 c 

uQp I Q I -a/n + l/2 < +co. (10.5) 
QcQo 

Proof: To prove (i) we note that A is bounded on f;” if and only if it 
is bounded for an arbitrary atom (cf. Theorem 7.2). In fact, since A is 
positive, we only need to consider atoms of the particular form 
r= {IPI z’n-1’2/( Po~l’p}pcpo for an arbitrary dyadic cube PO. Written out, 
this is exactly (i). 

Now (ii) follows from (i) by a duality argument. Suppose first (10.5) 
holds. By Remark 5.10 and Proposition 5.5, we have that I (s, t ) ) < 
c II s )I r;., (1 t II ri. Then, by a constructive argument, similar to (but even 
easier than) the second part of the proof of Theorem 5.9, we see that 

II t 11 r; x sup ( I (s, t ) I : s is finite and II s 1) r;,, < 1 }. (10.6) 

By (10.6), {cz;~;~}~,~ is bounded on f ;‘“, and the results follows. 
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For the other direction of (ii), let f ‘;” denote the closure of finite sequen- 
ces in f”;“. Then (f cam)* z!:, by (10.6) and the fact that (f Tam)* must 
be a sequence space. By the Hahn-Banach theorem, we obtain the 
analogue of (10.6) with fg and i;‘, interchanged. Now the conclusion 
follows as before. 1 

Suppose q < + co. As in the case q = + co, an operator A is bounded on 
ty, 0 cp < 1, p <q, if and only if it is bounded on atoms (for fy). 
However, when q is finite, the resulting condition is, unfortunately, not 
very explicit. 

Let b denote the class of matrices A such that 1 A 1 is bounded on f? for 
all 1 <p, q < + co. Proposition 10.1 gives the following explicit charac- 
terization of the class b. 

COROLLARY 10.2. A matrix {aQP}Q,P belongs to b if and only if 

{bQPl >Q,P satisfies the conditions (10.2)-( 10.5) with a = 0 and p = 1. 

ProoJ: This follows from Proposition 10.1 by interpolation (in fact, 
only Proposition 8.1 and Theorem 8.2 are used). 1 

Clearly, b is closed under composition and, by definition, under taking 
“adjoints,” i.e., A E b implies A* E b. We equip the algebra b with the 
obvious norm, namely the maximum of the quantities, with a=0 and 
p = 1, that are assumed to be finite in (10.2)-(10.5). Similarly to 
Theorem 9.l(ii), there exists E > 0 with the property that if I/ A - II), < E, 
then A-’ exists and belongs to b. In particular, the class b has all the essen- 
tial properties we used about ad;4 in Section 9. Hence, there are analogues 
for b of the results in the previous section (up through Proposition 9.11) 
describing the basic features of the algebra ad:. 

The class b is clearly larger than the class of almost diagonal operators 
on f?, 1 <p, q < + co, since almost diagonal operators are bounded 
(Theorem 3.3). Our next theorem makes the comparison between these two 
classes easier and shows that the class b is considerably larger. 

THEOREM 10.3. rf the matrix A = {aQp}p,p satisfies 

B,=sup ~(la~~~l/(~ 
( 

(1o.7) 

Q P 

QPb)))” mQP(E)(I pI/I e I )‘l’)“’ < + O3 

and 

112 
B,* = SUP 1 (laQPI/to 

( 
QPk)))” wQp(E)(I Q i/i pi )1’2 

> 
< +a, (10.8) 

p Q 

for some E > 0 and s > 1, then {aQp}Q,p E b. In particular, A is a bounded 
operator on f? for all 1 < p, q d + 00. 
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Proof: It is easy to see that 

sup c c+(s)(I PI/I e I )l’* < + 00 
Q P 

By Holder’s inequality, B, is an (essentially) increasing function of s (i.e., 
B, 6 c,,B, if r <s). Hence, the analogous condition with s = 1 is also 
satisfied, and this is exactly the condition (10.3). Similarly, (10.8) implies 
the condition (10.2) with p = 1. By the symmetry of our assumptions, it is 
thus enough to show that 

(10.9) 

To prove this, we put the cubes Q in the two disjoint families 
C= {Q: Qc2OP,} and D = {Q : Q g 2OP,,}. For the cubes in C the 
required estimate is immediate. We have just seen that (10.7) implies (10.3). 
Hence. 

<csup 
Q 

( C l~~~l~l~l/lQl~~~~)~~~~~ 
PCPO 

For the family D we get, by using the imbedding ryl + ty”, 

I1=j& iI{ c bQPl tpl”*} 
PCPO 

11 
QED fy= 

y& iI{ c l%?pllw~*) 
PCPO 

11 
QED f:’ 

=A c 1 I~,,IIP11’2 IQ,“*. 
0 PcP,J QED 

By Holder’s inequality this is dominated by 

Bf 1’01 PCPo QeD 
J- 1 ( 2 ipl”~Qp~~)(lQl/lPI)Lli)l’~‘~ 

By an elementary calculation, summarized in the lemma below, and using 
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that there are 1 P, l/l PI cubes P of the same sidelength l(P) contained in 
P,, we have 

1 
IIGcBf lPOl pcpo - c I p I u~wmJ)E’2S’ G ce,s~,*. 

This shows that I and II are finite and gives the desired conclusion 
(10.9). 1 

LEMMA 10.4. For P c P, fixed and D = {Q : Q g 2OP,,} we have 

c a~&)( I Q l/l PI I”* G MW4W)“‘2. 

Prooj Let 2-p = l(P) and 2-po = 1(P,), and define D, = {Q E D : 
I(Q) = 2-“}, v E Z. By some elementary calculations we obtain that 
&EDv~eP(~)(I Ql/l Pl)l/* is bounded by ~~2’(‘-~)/* if v<pO, and by 
C,2E(Po-(v+P)/2) ‘f > 1 v ,pO. Here, to obtain the second estimate, we consider 
p < v and p,, < v <p, separately. Using these estimates and summing the 
obvious geometric series yield the desired conclusion. 1 

As we noticed in the proof of the theorem, the quantity B, in (10.7) is 
an (essentially) increasing function of s. If we let s -+ + co in (10.7), then 
in the limit we get our almost diagonality condition (3.1). 

Suppose that fi = {Go,},,, is a positive matrix satisfying 

“if: IPOI pcpo 
L c lPl( 1 ~,,(lQl/lPl)1’2)1’~‘<+~, (10.10) 

Q iz 2OPll 

for some fixed s > 1. We note that the proof of the theorem shows that the 
matrix A = {aBp)a,p corresponds to a bounded operator on fy” if, for 
each cube PO, 

for some constant C (independent of PO), and 

A is bounded on f”,“. (10.12) 

(Note by (10.3) that (10.12) is equivalent to supo &, 1 aopl( 1 PI/I Q l)l/* 
<C.) 

Similar results can. also be proved for operators on the spaces fy, 
1 <q < + co. We shall give one example, and to keep notations fairly 
simple, we restrict ourselves to the case of iy2. 
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THEOREM 10.5. Suppose sZ= {SZoP>e,P is a positive matrix satisfying 

(10.13) 

If the matrix A = (aQP}Q,P is bounded on fy and satisfies 

( 1 

112 
C*-sup ~~l~a~ll~~p~2~~~~lQl/l~I~1’2 < + 03, (10.14) 

p Q 

then A is bounded on fy’. 

Proof The proof parallels that of Theorem 10.3. Using the decomposi- 
tion of fy’ into 2-atoms (cf. Remark 7.3) it is enough to show that 

for an arbitrary 2-atom 
2-atom if 

II C(Ar),)Jlr 

r = {rp>pcp,. 

II 

‘<C (10.15) 

Recall that r = {r.}.,., is a 

PO I ~ “2. 

To prove (10.15) we again divide the cubes Q into the two disjoint families 
C= {Q: Qc20P,} and D = {Q : Q g 20Po}. Using first Holder’s 
inequality and then that A is bounded on fi2, we have 

II {(Ar)a)aeclltp2 

6 c I PoI 1’2 II {tArI,), llfy < c I PO1 “’ II {rp}p IIt; f C. 

By the imbedding fy’ + fy, 

d 1 1 laQpl Irpl IQI”‘. 
PcP,, QsD 

Applying Cauchy-Schwarz twice, this can be estimated by 

C* C lrpl lP11’2 
PCPO 

( 1 &41Ql/lpl)‘-2)“2 
QED 

d C* II {rp)pIlt;2 p& IPI ,cD n,~~lQlllPl)li)l’~. 
E 
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Since II {rp}pll~;G lPol -1’2, our assumption (10.13) implies that the last 
expression is fimte. The proof is complete. 1 

We may also use the atomic decomposition to prove results for p, q < 1. 
However, as we have already seen in the proof of Theorem 3.3, a simpler 
argument can often be used to reduce to the case p, q > 1. Consider, for 
example, the following general version of Theorem 10.3. We temporarily set 

G)pp(E) = 1 + ( mal;lY,,:f,h),)~n-‘min[(~), ($j)]‘“““‘; 

i.e.,, (3&s) is indeendent of CI, q, and p; when c( = 0 and p, q 2 1, O&E) 
coincides with G&E) (cf. (3.1)). 

COROLLARY 10.6. Suppose 0 cp, q< + cc and r = min(l,p, q). Zf the 
matrix A = { aQp}p,p satisfies 

sup c (la@4 wlllQl YY ~~)Q~~~~~I~lllQl,“‘,~” < + a (10.16) 
Q P 

and 

sup c (IQPI (IQWI) 1’r-“2)r (~Qp(E)((P(/lQl)1’2,~6< +co, (10.17) 
p Q 

for some E, 6 > 0, then A is a bounded operator on f,““. 

Proof: We pick t so that 6 = r/t - 1, in particular, 0 < t < r < 1. We then 
let A”= (ii,,)o,, be defined by 

d,,= l~e~I’~lQlll~I~1’2-r’2. 

We have p/t, q/t > 1, and the boundedness of A” on &” will imply the 
boundedness of A on f:, as in the proof of Theorem 3.3. But (10.7) and 
(10.8) for A” = {dQP}e,P are exactly our assumptions (10.16) and (10.17), 
respectively, with s = r/t. So Therorem 10.3 yields the required boundedness 
of A”. 1 

We remark that when studying the boundedness of matrices on ry, 
we usually pick a = 0 to simplify notation. This causes no real loss of 
generality, since a matrix A = { apP}Q,P is bounded on i%” if and only if 

a= {(lQlllPI)-“‘“app)e,P (10.18) 

is bounded on f$. 
Let us now consider Fourier multipliers again. 
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COROLLARY 10.7. Let tl E R, 0 <p, q 6 + co, and r = min( 1, p, q). Sup- 
pose that T,,, is a Fourier multiplier operator with multiplier m, which 
satisfies 

(10.19) 

for some 6 > 0. Then T,,, is a bounded operator on PT. 

Proof: It is sufficient to show that the operator on ff with matrix 
iaQP)Q,P= Wdpl (P~))~,~ is bounded (cf. Proposition 3.1). Since T,,, is 
a Fourier multiplier operator, agp= 0 unless $ d l(Q)/l(P) < 2. By making 
the reduction (10.18) we may take 01= 0. Hence, we only need to prove that 
the conditions (10.16) and (10.17) are satisfied. In fact, for a Fourier 
multiplier operator these are equivalent, and, furthermore, they are both 
equivalent to (10.19). This is a consequence of the general fact (cf. Proposi- 
tion 10.14) that the retract diagram in Theorem 2.2, and its analogue for 
Besov spaces, also holds with certain more general measures w(x) dx 
replacing dx. In Appendix E we sketch a direct proof in this particular case. 
Modulo the proof of the following lemma, the proof is thus complete. 1 

LEMMA 10.8. Let 6,&>0, and let {aQP}e,P= {(T,,,$,, (P~))~,~. Then 

supI (la,,1 WlllQl)“‘)’ (~,gp(&)(lPl/lQl)“‘)” 
Q P 

dcsup ll(l+ 14)xW2y~)~(~))v (x)llrLr, 

where %= 6(n + E)/r. 

ProoJ: See Appendix E. 1 

Notice that if we formally set 6 =0 in (10.19), then we obtain the 
condition 

sup II(m(2'.)@)" (x)IILr< +co. (10.20) 

In fact, when p = q < 1, this condition is equivalent (see Corollary 10.7 
and Appendix E) to (10.2) with c1= 0 for the matrix with entries 
aQp = (T,,, i,Gp, qPa). Thus (10.20) is necessary and sufficient for a multiplier 
operator to be bounded on FF, 0 <p = r d 1. When p = q = 1 this is a 
result of Taibleson (cf. [Tail and also [Tay, p. 264]), and appears to be 
folklore for p = q < 1. 

Remark 10.9. By Holder’s inequality, Corollary 10.7 easily implies the 
following general Fourier multiplier result of the Hormander-Mihlin type, 
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which, in the case of general CI, p, and q, is due to Triebel (cf. [Tr2]). 
Recall that Li%F! is the usual Bessel potential space, with norm 
Ilfll L; = ll”m1+ I<12Y’211 LZ. 

Suppose c1 E IR, 0 <p, q 6 + co, J= n/min( 1, p, q), and T, is a Fourier 
multiplier operator with multiplier m, which satisfies 

sup II m(W 4(t)llL~--m?+c < + 00, 
Y 

(10.21) 

for some E > 0. Then T, is a bounded operator on Py. 
As remarked in the Introduction, special cases of this are the results of 

Hormander [Hiirl] for Lp, 1 <p < + co, Fefferman-Stein [Fef-S2] for H’, 
and Calderon-Torchinsky [Cal-T] for HP, 0 <p < 1. 

It is well known (see, e.g., [Ba-S, p. 211) that Hormander’s theorem fails 
if we only assume (10.21) with E = 0, when p = 1 and q = 2, i.e., n/2 
derivatives. To get an idea how close we are to a sharp result with our 
rather simple approach, we record the following consequences of 
Theorem 10.5 and our remarks concerning (10.10~(10.12). 

COROLLARY 10.10. Suppose Q(t), t B 0, is a nondecreasing function 
satisfying G(O) = 1, @(2t) < c@(t), t 3 0, and that T,,, is a Fourier multiplier 
operator (on KY’) with multiplier m such that 

sup II @(I x I P2 (m(2’. ) $( .)) ” (x)11 L2 < + 00. (10.22) 

1 
-dx 1 “2 dt 

(xEn”:lxl>t) @(1x1) t<+my 
(10.23) 

then T,,, is a bounded operator on I?:, a E R, 1 <p, q < + CC 

(ii) Zf 

00 
I s 

1 
d.xd’< +co 

2 {xER”:Ix(>f)@(IXI) t ’ 

then T,,, is a bounded operator on p;“, a E R. 

Proof: We define the matrix Q = {a,,} by 

(10.24) 

QQp = l/@(Ix, - xp Ilmax(W, 4Q))) if 4 < Z(P)/4 Q) < 2, 
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and 0, otherwise. By discretizing, it follows that (10.23) and (10.24) are 
equivalent to (10.10) with s’ = 2, and (10.13), respectively. The analogue of 
Lemma 10.8 is also true (cf. Remark E.l): 

6 c sup Il@qlxl)1’2 (42”. ) &,,” (X)IlLZ, 

with {aQplQ,P= {<TmII/py (P~)I~,~. To prove (i) it remains only to verify 
(10.12). For this, first note jl/@( I x I) dx < + cc by our assumptions. Hence, 
by applying Cauchy-Schwarz and using (10.22), (10.20) follows. By 
Taibleson’s theorem noted above, T,,, is bounded on py’, and thus by 
duality on I?‘“,“. Passing back to the matrix A (cf. Proposition 3.1), we 
obtain (10.12). This completes the proof of (i). To complete (ii), our defini- 
tion of a multiplier operator includes the assumption m E L”. So T, is 
bounded on L2 and {agp}p,p is thus bounded on f:‘. 1 

For example, in (i) we may take 

@(x)=(1 + Ixl)“(l +log+ [X1)3+& 

for any fixed E > 0, and in (ii) 

@(x)=(1 + 1x1)” (1 +log+ IX/)2fZ. 

Roughly speaking, to obtain a version of Hormander’s theorem on 
H’ z I?:’ with our approach, we thus need n/2 “full” derivatives and a little 
more than one “logarithmic derivative.” It would be interesting to see if our 
methods could be applied to obtain the results of Baernstein and Sawyer 
[Ba-S]. 

We return to our study of positive operators bounded on 17 when q fp. 
The next two theorems are (essentially) special cases of results due 
to Maurey [Maul and, especially, Rubio de Francis [RdF2] (cf. also 
[ GC-RdF] ). 

Let w  be a nonnegative function. We define the weighted sequence space 
f?(w), 0 <p < + OD, by requiring 

lbllrpq = 
I( 

; (lelr’* bQl1QYy~~ < +oo. 
LP(w dx) 

THEOREM 10.11. Let c1 E R, and 0 < q<p < + 00, and set r = (p/q)‘, 
/3 = n/2. For a positive operator A the following are equivalent: 

(i) A is bounded on ff”. 



122 FRAZIER AND JAWERTH 

(ii) For each positive sequence t = { ta}e E if” there exists a positive 
sequence z = {z~}~ E rfw such that 

and 

a’“- 1’2 (As),)4 z Q<C~(lQl-a’n-“2sQ)qzQ 
Q 

for all nonnegative sequences s = {sQ}Q. 

(iii) For each positive v E L’ there exists a positive function w  E L’ such 
that 

and 

v(x) < w(x) a.e., 

IlWll.~~ c IIVIIL’> 

IMsll f;qw) d c II41 fT(,$,) 

for all nonnegative sequences s = {sQ >Q. 

The constants C are independent of t and v, respectively. 

THEOREM 10.12. Let a E R, and 0 <p < q < + co, and set r = (q/p)‘/(q/p), 
/I = n(q/q’ - 4). F or a positive operator A the following are equivalent: 

(i) A is bounded on fy. 

(ii) For each positive sequence t = ( tQ}Q E rF* there exists a positive 
sequence T = (TQ}Q E rf” such that 

and 

=/JJ + 11-7 (As)Q)q z; 1 <C~(@-=“‘+“‘S~)~T;~ 
Q 

for ad nonnegative sequences s = {sQ}Q. 

(iii) For each positive function v E L’ there exists a positive function 
w  E L’ such that 

v(x) < w(x) a.e., 

II4L’G c IlvllLr, 
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and 

IlAsllqqw-I) G c llsll t;qw,-‘) 

for all nonnegative sequences s = (sp}a. 

The constants C are independent of t and v, respectively. 

The proofs of Theorems 10.11 and 10.12 are in Appendix E; ultimately 
they depend on the Hahn-Banach theorem. 

There are also versions of these theorems with the boundedness of A on 
fy being equivalent to boundedness on some other, weighted, fy-space. 
The “diagonal” case we have stated here is of particular interest since we 
can use Schur’s lemma to get one step further. 

THEOREM 10.13. Let o! E R and 1 <q<p < + cc, and set r = (p/q)‘, 
/3 = n/2. For a positive operator A with matrix {aa,}Q,P the following are 
equivalen 1: 

(i) A is bounded on fy. 

(ii) For each positive sequence t = { ta}e ELF” there exist positive 
sequences z= {z,},E~!~ and a= {upJQ such that 

and 

ProojI This is just Schur’s lemma combined with Theorem 10.11. We 
use counting measure in Schur’s lemma and replace sP in Theorem 10.11 (ii) 
by gP= I PI -+-I’* +s,. 1 

There is a similar theorem when p < q; we then just replace (TQ/tp) by 
(r&,), use the value of /I in Theorem 10.12, and replace the exponent 
-u/n--f by -a/n+& 

One of the applications of characterizations like those in 
Theorems 10.11-10.12 is to prove extrapolation theorems, see [RdF2]. We 
shall only consider one theorem of this kind, not directly relying on 
the previous theorems. Let w  be a nonnegative function satisfying the 
“doubling condition” w(2Q) < cw(Q), Q dyadic, where, for a measurable 
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set E, w(E) = jEw(x) dx. We define the weighted Triebel-Lizorkin space 
p?(w), CI E Iw, 0 <p < + co, and 0 < q < + co, by requiring 

II f II y(w) = 
ll( 

< +m. 
LP(w dx) 

PROPOSITION 10.14. Suppose ae(w,O<p< +oo,O<q< +co,cp and $ 
satisfy (2.1)-(2.4) and that w  is doubling. The operators S,: l??(w) + f?(w) 
and Tti : f?(w) -+ l?f”( ) w  are bounded, Furthermore, T, 0 S, is the identity 
on p?(w). 

Proof: The proof follows the same lines as that of Theorem 2.2 and is 
outlined in Appendix E. 1 

Let us recall the definition of Muckenhoupt’s A,-classes (cf. [GC-RdF]). 
Let 1 <p < + co. We say that a nonnegative function w  belongs to A,, 
weAp, if 

&, jQw(x)dx(&,jQw(x)-l@l)dx)p~l<c 

uniformly for all cubes Q (not necessarily dyadic). When p = 1, this should 
be interpreted as 

1 

EQ s 
w(x) dx < c ess. inf w(x). 

XEQ 

The classes A, are increasing in p, i.e., 

APO = A,, if podpI. 

We also set 

A,= u A,. 
P=-l 

We recall the following fact about A,-weights. 

LEMMA 10.15. Let 1 <p < + 00. The following are equivalent: 

6) WEAN; 

(ii) there is a constant c such that given any function he L’(dx), 
II h II L~(dX,=l, there are weights w,, w,EA, with w=w:-Pw2, h<w,w*, and 
II Wl w2 II L’(dx) d c. 
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ProoJ: This is a simple consequence of Rubio de Francis’s [RdFl ] 
proof of Peter Jones’ factorization of A,-weights; see also Corollary 6.1 and 
Lemma 6.5 in [JaS]. 1 

It is well known that p:(w) E Lp(w) as long as w  E A, (this is essentially 
just the fact that the square function is bounded on Lp(w) when WE A,). 
The next theorem thus generalizes Rubio de Francis’s theorem about 
extrapolation of weighted Lp-spaces (cf. [GC-RdF]). 

THEOREM 10.16. Suppose that T: pz(w) -+ l?;?(w) is a bounded linear 
operator whenever w E A ,,0ll, forsomefixedO<p,< +co,O<q,< +c~,and 
0 < I< pO. Then T : p$“( w) + pp( w) is bounded whenever w E Api>., for 
each A<p< +m. 

Proof. The proof follows a standard procedure (see [ RdFl ; GC-RdF; 
Ja5]). For a distribution h, we set 

( > 

I/Y0 
W)(x) = 1 I (TV * h(x)IYo 

Y 

(with a cp satisfying (2.1)-(2.3) as usual). Let us first assume p>pO. For 
w  E A,, and f fixed, there is a function g E LCpipO)‘(w dx), 11 gl/ L,p~OO~sCW dXj = 1, 
such that 

j IS(T 4x1 dx= j IS(Tf)b)lpo&) 4x1 dx 
( > 

PIP0 

. 

Since I/ g(p’po) w  11 Ll(dX) = 1, Lemma 10.15 yields A,-weights w1 and w2 such 
that w  = wi-P’“w2, gcp’po)‘w d w,wZ and 11 wlwZ /ILl(dX) d c. As a conse- 
quence, gw < w: -p0l’ w2, and, since w, , w2 E A,, we have that 
w~-~~“w~EA~~,~. By hypothesis, then, 

1 IS(Tf)Ipogwdx<~ IS(Tf)Ipow;-Po’“wZdx 

<c IS(f) w;-po’*w,dx. s 

By Holder’s inequality this is dominated by 

> 
POIP 

c IS(f w;-p’“w,dx (II WI w2 II L~(dx)P(p’po)’ 

POIP 

, 

which is what we had to prove. 
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If we instead assume that pO>p, then, given S(f) ELP(w dx) with 
WE A,,,, there exists g E LPl”“-P)(w dx), 1) g(l Lp/(po--p~(wdXj = 1, such that 

j- IS(f 4x1 dx= j- IS(f) (g(x))-’ w(x) dx > 

PIP0 

(Take g = L%Wf II sucLP(wJpo-p.) L emma 10.15 implies that there are weights 
~1, ~2 E A, that w  = w:-PJ’w2, gPI’~-P)w < w1w2, and 
llw,~~Il~~(~~,<c. Now ~j~~~‘~w~<g~‘w and w~-P”“w2~Apgll, so we can 
use the boundedness for Apgll -weights and Holder’s inequality as before. 1 

THEOREM 10.17. Suppose T,,, is a Fourier multiplier operator which is 
bounded ori pF(w) whenever w E Apoll, for some fixed 0 < p,,, q0 < + co and 
0 < II <pO. Then T,,, : p:(w) + p:(w) is bounded whenever w E Apli, for all 
II<p,q< +a. 

Proof The simple observation we need about multiplier operators is 
that if T,,, is bounded on p?(w), then it is also bounded on the “diagonal” 
space p?(w). (This follows, for the weighted case, by the usual argument 
(see [Tr2]) combined with the fact that convolution with (py is uniformly 
bounded on P:(w), cf. [Ja6].) Suppose now that we want to verify that 
T,,, is bounded on P?(w). Since T is bounded on PF( w), w  E A,,,,, 
Theorem 10.16 implies the boundedness on P?(w), w  E A4,1, and the 
observation then shows that T,,, is bounded on p?(w), w  E AyIA .̂ Applying 
Theorem 10.16 again yields that T,,, is bounded on p:(w), WE Apll. This 
completes the proof. i 

Notice that the proofs of Theorems 10.16 and 10.17 use virtually nothing 
about our particular Littelewood-Paley function (XV 1 (py * f(x) 1”) 1’g, and 
similar theorems can be proved for more general Littlewood-Paley func- 
tions, such as those related to the Nagel-Stein-Wainger results [NSW], 
(cf. [JaS, Theorem 7.3, p. 4071). 

COROLLARY 10.18. Suppose T,,, is a Fourier multiplier operator which is 
bounded on RF(w) whenever w E A,, for somefixed 0 <p,,, q0 < + co. Then 

T,,,:BF(w)+p’pOq( ). b dd h w 1s oun e w enever wEA, for allO<p,q< +a~. 

Proof: Let w  E A,. Then, by definition, there exists 2 such that 
w~Ap,,t. By assumption, T,,, is bounded on p$“(o), u E ApolL c A,. By 
Theorem 10.17, T,,, is bounded on p:(w). 1 

Theorem 10.17 and Corollary 10.18 should be compared to the classical 
example by Stein-Zygmund [St-Z] of a multiplier operator bounded on 
fip which is not bounded on PF if p # 2. 



A DISCRETE TRANSFORM 127 

11. TRACE RESULTS 

The pointwise restriction, or trace, operator Trf(x’) =f(x’, 0), 
X’E Rnpl, is originally defined for f~ 9’( R”) or f~ sP,(Rn) (see 
[Tr 2, p. 2371). If Tr extends to a continuous map from X into Y for some 
function or distribution spaces X and Y, we say the trace of X exists in Y. 
If this extension is onto we write Tr X= Y. We have the following results 
for the py-spaces. 

THEOREM 11.1. Let ME@ O<p< +OO, andO<q< +CCI. 

(a) rfcr>(n-1)(1/p-1).+1/p, thenTr~~([W”)=~~~‘ip,p([Wn-l). 

(b) rfO<p~1,TrP~‘~~4([W”)=LP([Wn-‘), while ifl<p+co, 

Tr Pi’p,q(Rn) does not exist in Y’/9(K!“-‘). 

(c) Zf tl < l/p, Tr pT(Rn) does not exist in Y’/9([Wn- ‘) or in 
LP+ Lm(lY1). 

(d) IfO<p<1andl/p<cr<(n-l)(l/p-1)+l/p,Tr~~(R”)exists 
in Lp+ Lm([Wnpl), hut not in sP’/Y(rWflp’). 

(e) IfO<p<l and a=(n-1)(1/p--1)+1/p, Trpy(R”) exists in 
Lp+L”(Wpl) and in Y’/9(kYp’). 

Here (a) is known [Ja3] and indicates the essential peculiarity that 
Tr py does not depend on q. Also, (d) is known [Ja4; P53 and (c) is 
essentially known [Trl] as well. Perhaps (b) and (e) are new. 

Proof This is easy from the standpoint of the smooth atomic decom- 
position in Theorem 4.1 if we apply Proposition 2.7. We will show directly 
that Tr pf” is independent of q. Given this, we have Tr I?7 = Tr py, and 
all conclusions follow from the results in [FrJl, Section 51, since 
ti? = sy. (We point out here that the statement in the introduction of 
[Fr-Jl] has max( 1, p) incorrectly in place of min( 1, p); the statement in 
Section 5 is correct, however.) 

Suppose 0 < q < r < + co. Then trivially Tr P%” c Tr pr and so we need 
to prove the converse inclusion. We denote a general point x in R” by 
x = (x’, x,), x’ E R” - I, and x,ER. Let A={QcR”:Q is a dyadic cube 
and Qn{xER”:x,=O}#@}. 

Now, if f~ l?;(R”), then by Theorem 4.1, f= & spaQ, where each a, 
is a smooth atom (for fiy) associated with Q and the sequence 
s = {so ) o dyadic satisfies llsjl r=, E 11 f lIR.“,. We claim that there is an 
7~ l?y(lIV) with Tr f = Trx T6 see thisPwe define the sequence ? by setting 
9, = so if Q E A and S, = 0 otherwise. Note that for each Q E A there exists 
a function c?o(x) satisfying iio(x’, 0) = a,(~‘, 0) such that d, is, up to a 

5W93’,-9 
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constant, a smooth atom for Q for Py. For q 3 min( 1, p), we can just take 
E, = aQ; in general, we can take Go(x’, x,) =g(x,) ao(x’, 0), where 
g E Y’( [w), g(0) = 1, s tkg(t) dt = 0 for all k < N (defined above), supp g c 
(-l(Q), Z(Q)), and Id’g(t)/dt’I <c,I(Q)-‘for all ?E[W andjk0. We now let 
.7=x Q FQliQ. We clearly have Tr f= TrJ For Q E A, we let E, = {xe Q : 
I(Q)/2 -C Ix, I Q I(Q)}. Obviously, IE, I/IQ1 = 4, so by Proposition 2.7, 

Il+~ !I( ,cA (IQ1 por’n bal LJY . 
E LP 

However, for Q EA, the Ee’s are disjoint so the q and l/q in this last 
expression cancel and can be replaced by r and l/r. In particular, SE r; 
and fE py( NV). This verifies our claim and shows that Tr l$’ c Tr PT and, 
consequently, the trace is independent of q. 1 

The case p = + cc is essentially the same, except that we need to be more 
careful about the meaning of the trace operator, since Y0 is not dense in 
p4 

“We first note that the trivial imbeddings of f? and p? into f: and p$, 
respectively, for 0 < q 6 r d + co, also hold for p = + co. For r < + co thus 
follows from the definitions (5.1) and (5.4) combined with the imbedding 
of Iq into I’ and Holder’s inequality. Recall the definition llsllram = 
s”PQ IQI - ‘In- I” Iso I. If Y = + co, then, the result for the f-spaces is trrvial 
by (5.5) and implies the result for the #-spaces. 

For a>O, PLm is a homogeneous version of c”, and it is well known 
that each equivalence class in p‘“,” has a continuous representative. Hence 
the trace operator is defined on pz c I?z by pointwise restriction for 
0 <q < + co and a > 0. For tl< 0, we shall say that Tr fiz does not exist 
if the restriction operator does not have a continuous extension from Y0 to 
the closure of Y0 in p‘“,“. With this understanding, we have the p = + 00 
analogue of Theorem 11.1. 

THEOREM 11.2. Let NE R, and O<q< + co. 

(a) Ifcr>O, then Tr#“,4([W”)=~~(RY1). 

(b) Ifcr<O, Tr ~~(1W’) does not exist in 9”/9(RnP1), 

ProoJ: As in Theorem 11.1, we only need to show that Tr Pz is inde- 
pendent of q, since then the results follow from the corresponding results 
for pz = tiz in [Fr-Jl]. Let f~ pz and writef= & souo, where each 
up is a smooth atom and s E f”,“. Define A, S, 1 and E, exactly as in the 
proof of Theorem 11.1. By Proposition 5.4, 

IFII I” = sup m 
P dyadic 
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The term inside the supremum is 0 unless PEA. If PEA, then 

CQcP.QE~ xEe=xP. Hence, 

Thus by the p = + co version of Theorem 3.5,7~ I?:. Since Try= Trf, we 
have Tr I?‘“,” c Tr l?z. The converse inclusion is trivial by the aforemen- 
tioned imbedding, and the result follows. 1 

Part (a) of Theorem 11.2 for q > 1 has been proved by Marshall [Mar]. 

12. INHOMOGENEOUS TRIEBEL-LXZORKIN SPACES 

Until now we have considered only the homogeneous spaces pf”. The 
usual Sobolev speces, however, are included within the scale of the 
inhomogeneous spaces Fy(R”). More generally, we have Lz xF;* for 
1 <p < + CC and tx > 0 [Tr2, p. 873, where Lf is the usual Bessel potential 
space. (We have FE z Lp for 1 <p < + co, as for i;:.) The inhomogeneous 
spaces have the advantage of being invariant under diffeomorphisms [Tr2, 
p. 1741 and hence are sometimes more appropriate for local problems. All 
of our methods and results so far easily adapt to the inhomogeneous case, 
except for a few notational inconveniences. Hence, the purpose of this 
section is only to set notation and summarize the corresponding results for 
the inhomogeneous case, pointing out occasionally where differences arise. 

Select a function @ E Y( 5X”) satisfying 

supp &c {<&R”: 151 a2>, 

and 

(12.1) 

p&)1 >,c>o if ItI<$ (12.2) 

Let cp satisfy (2.1)-(2.3) and define {(~~),,~z as usual. For CIER, 
0 <p < + co, and 0 <q < + co, Fy is the collection of all f~ Y’([w”) such 
that 

IIfIIFy= Il@*fll.,+ < + 00. (12.3) 
LP 

Note that II .IIFY is a (quasi-)norm on Y’ (rather than Y/p), since 
6(O) # 0. In (12.3) the lower frequencies off have been combined in one 
term; naturally there are many equivalent ways to do this. For example, if 
we set @,Jx) = 2k”~(2k~) for k E Z, we have the following easy fact. 
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LEMMA 12.1. For each k E Z, we have 

for f c Y’, with constants depending on k, ~1, p, and q. 

Proof: Suppose for example that k < 0. Suppose we wish to prove that 
I)@ *f I( Lp is dominated by the left side (LS) of the asserted equivalence. 
We can find rly E 9, v = k, . . . . 1, such that 

@*f= @,*)?k+ 
i 

t; ‘pv*vv *f, 
,,=k+l 1 

by (2.3) and (12.2). Then 

Here, if 1 dp< + KI, we have used Minkowski’s inequality, and, if 
0 <p < 1, a standard result for functions of exponential type, which follows 
from the Plancherel-Polya theorem [Pl-P], or see, e.g., [Fr-Jl, (2.11)]. 
The converse estimates hold for similar reasons, e.g., writing Gk *f= 
Q, *f* q, and so on. The case k > 0 follows in the same way. 1 

Our inhomogeneous sequence spaces f: will be indexed by the set of 
dyadic cubes Q with I(Q)<l. For s= (s~},~~)~,, CXE’R, 0-cp-c +co, and 
O<q< +co, we set 

‘lq 
W-“” bpl &I” 

> Ii 
rPi +co. 

The relation between f.;q and fy is trivial. To be explicit, define Y: fy + ti 
by setting (Vs)o = so if I(Q) < 1, and (Vs), = 0 otherwise. Obviously V is 
an isometric imbedding of f%” in f7. Virtually any result for f? has an 
immediate analogue for f%” obtained by applying the homogeneous results 
to vs. If w: f? -+ f; is defined by setting ( Ws), = so for 1(Q) < 1, then W 
is continuous and Wo V is the identity on ‘7. So fy is a retract of rFq. 

Next we want to show that the relation between fy and Fy is as one 
expects. Given cp and @ as above, we can select tj satisfying (2.1)-(2.3) and 
YE 9’ satisfying the same conditions as @ in (12.1)-(12.2), such that 

c&t, !&)+ f $(2-Y) $(2-Y)= 1 for all 5, 
v=, 
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where, as usual, s(x) = @5(-x), and similarly for 4”. For Q = Qok (so that 
1(Q) = l), set @o(x) = @(x-k), and similarly for Yy,. As in Lemma 2.1, we 
then have the identity 

f= 1 (.L@Q>yQ+ f 1 WPQ>rl/@ (12.4) 
j(Q) = 1 I’=1 r(Q)=2-’ 

for ,fe 5“’ (with convergence in 9”). We define the q-transform 
S,:Fy+fy by setting (SVf)p=(L(PQ) if I(Q)<1 and (SPf)e= 
(f, Qp) if l(Q)= 1. We define the inverse cp-transform T,: f?-Fy by 

l(Q)= 1 l(Q)< 1 

We now have the following analogue of Theorem 2.2. 

THEOREM 12.2. Suppose aELf%, O<p<+m, and O<q<+oo. The 
operators S, : Fy -+ fy and T, : fy + FT are bounded. Furthermore, 
T, 0 S, is the identity on FT. In particular, 11 f 11 FY z 11 S, f II’?, and Fy can 

be identified with a complemented subspace of fy. 

Proof. Lemma 2.3 with fy in place of 12 follows immediately from the 
homogeneous result. Define supo( f) and info,,(f) as in Section 2 if i(Q) < 1, 
and similarly for Z(Q) = 1, except with 8 in place of @jO. Lemma A.4 only 
requires exponential type and hence applies to 8 *f: Using Lemma 12.1, 
the proof of Lemma A.5 goes through, and hence Lemma 2.5 follows. This 
yields the boundedness of S,. Dropping terms like cp _, and tiJ for Z(J) > 1, 
and replacing ‘pO and $J for Z(J) = 1 with Q, and YJ, respectively, the proof 
of the boundedness of Tti in Section 2 goes through as well. By (12.4) 
T, o S, is the identity on Fy. 1 

The analogues of Remark 2.6 and Proposition 2.7 are now clear. 
We can formally define Sz: LZ’(Fy) -+ JZ(fT) and T$: P’(fy) -+ Y(FT) 

as in Section 3, obtaining the retract diagram at the operator level and the 
equivalence 

IlS;Bll zyry, X II BII 1y($4). 

Here a linear operator B on FT, O< q < + 00, is associated with the 
operator on f; with matrix {aQP},~p~a ,, ,(pj9, defined by aQP = 
( Btip, qQ ) for 1(Q) < 1 and I(P) < 1, and similarly in the other cases, 
except with tip replaced by Y, if 1(P) = 1 and qa replaced by @o if 
I(Q) = 1. We define almost diagonality by the condition 

sup lappIl~Qp(~) < + 00, 
/(Q)<~./(P)<I 
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for o&s) as before. The analogue of Theorem 3.3 for fp now holds. We 
define a family {me} of smooth molecules for FT as above if I(Q) < 1. If 
I(Q)= 1, we assume (3.5) (3.6) and 

which differs from (3.4) only if c1< 0. We do not assume that me has any 
vanishing moments if 1(Q) = 1. With a similar modification of the condi- 
tions (3.7)-(3.10), we obtain that {(m,, 6,)) is almost diagonal as in 
Lemma 3.8. This follows simply because the vanishing moment conditions 
for ma (and the additional decay in the case c1< 0) are only used in 
Lemma 3.8 when we take h = mp and apply Lemma B.l, i.e., when 
1(P) < I(Q). In the inhomogeneous case, this never happens if I(P) = 1 
(similarly for 6, if I(Q) = 1). Hence, we obtain the inhomogeneous 
analogue of Theorem 3.5. Similar modifications work in Theorem 3.7. For 
Remark 3.10 (and similarly for Proposition 3.11) we start with b as above 
and a function B satisfying (3.13))(3.14) and IB(x)l ~(1 +1x1)-““. We 
define Be(x) = B(x-xg) for I(Q) = 1, and 6, as before for Z(Q) < 1, to 
obtain 

For the analogue of the smooth atomic decomposition in Theorem 4.1 
we obtain 

f= c sQAQ+ c sQaQ 
&Q)=l 4Qhl 

(12.5) 

with the aQ’s as before and each A, satisfying 

and 

suPP A, = 3Q (12.6) 

I dYAQ(x)I < 1 if IyI <E (12.7) 

Similarly, we obtain inhomogeneous versions of Theorem 4.2 and 
Corollary 4.3 (resp. Theorem 4.4 and Corollary 4.5) if we begin with func- 
tions u as above and U satisfying (4.9) (resp. (4.21)), except only with 
decay of order M, (4.10)-(4.11) (resp., (4.22k(4.23)), and 

I ml >c>o if I51 < $, 

in place of (4.7). We define eQ (resp., rQ) as before for I(Q) < 1, while for 
I(Q) = 1 we use U in place of U. 
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For c( E R, and 0 < q 6 + co, we let F”,Y be the set of all f~ 9” such that 

1 

“f”F~=“~*f”L~+,~~~l ‘P’ p,,=_,og*I(p) (-I f (,“a ‘cp” *f(x)‘)” dx 1/Y 
) 

< +co. (12.8) 

We get an equivalent norm if we delete the II @ *f IlLa term, but take the 
supremum over Z(P) < 1 and replace cpO by @. This follows from the fact 
that 

which is a consequence of a local Plancherel-Polya estimate, as in (2.11) 
of [Fr-Jl]. 

We define f”,” simply by restricting the supremum in (5.4) to I(P) d 1. 
With Kfz-+fz and wf2-f: formally defined as before, it follows 
easily again that V is an isometry and Wo V is the identity on f 2, so f”,” 
is a retract of fz. Now the results of Section 5 carry over, restricting defini- 
tions, sums, and sups to I(P) < 1 and I(Q) < 1 whenever appropriate. 
In particular, since Fi z hp, O<p< 1 (cf. [Tr, p. SO]), we have 
FO,Z-,(Fy*)*zb mo, where hP and bmo are the local Hardy and BMO 
spaces (cf. [Go]). 

The interpolation results in Section 6 easily yield their inhomogeneous 
counterparts. For s= {~g)c~a~~I we set Ibllf,,= I UsOZOQl as above. 
Defining I’: f,, -+ f, and W: f, -+ f, as before, the fact that fy is a retract 
of f: extends to f, and f, also. This allows us to derive real interpolation 
results, including characterizations of K-functionals, for fy, from the results 
for f?. Then the fact that FT is a retract of f: (by Theorem 12.2) gives 
corresponding results for the Fy spaces. 

In analogy with our definition in Section 7, we say that Y = { re},ce,~, is 
an atom for fy, 0 <p< 1, p<q< + co, if r satisfies the definition of an 
atom for fy for some & with I(Q) 6 1. Then Theorem 7.2, with fy replaced 
by ff”, holds. However, the statement of Theorem 7.4 requires further 
modification in the inhomogeneous case. The reason for this is that in 
(12.5) the up’s may have vanishing moments, but the Ao’s may not. Hence, 
the two types of terms should not be combined, Instead we write 
f= &A,A,+ xi yihi with Ajs satisfying (12.6)-( 12.7) and the his being 
atoms for Fy. We obtain 

,'f"F+ 'bj")"'+(~ 'bi")"'? 

in place of (ii) in Theorem 7.4, with a corresponding result for (i). 
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Theorem 8.2 yields its own inhomogeneous version by considering 
VSE~~ for sEf7. This yields all of the interpolation results in Section 8, 
with fy in place of f%“, which alternatively can be obtained by retraction 
of the fy results. Retraction again gives the results for Fy. 

In Section 9, all of the results about sequences carry over immediately. 
With the same type of modifications regarding @ and Y as above, the 
results on the distribution space level up through Proposition 9.13 have 
analogues. Lemma 9.14 and its consequences Theorems 9.15-9.16, which 
are restricted to c1= 0, do not have immediate counterparts. This is due to 
the fact that in Lemma 9.14, the vanishing moment condition is lost in the 
summation. Remark 9.17 and Examples 9.18-9.19 do have appropriate 
analogues. 

The inhomogeneous versions of all of the results in Section 10 follow 
immediately, with the exception of the Fourier multiplier results. In fact, 
these only require minor modifications. E.g., in Corollary 10.7, the 
supremum is taken only over v 2 0, and for v = 0, we replace 4 by & (cf. 
[Tr2, p. 721, for a similar formulation). 

The trace results in Section 11 carry over to the Fy spaces, as well, by 
the same reduction to the diagonal case and then using the results for 
FP = By in [Fr-Jl]. 

13. POINTWISE MULTIPLIERS 

In this section we shall consider pointwise multipliers on the 
inhomogeneous spaces Fy . Our main result, Theorem 13.3, gives sufficient 
conditions for the characteristic function of a domain 52 E F!” to be a 
pointwise multiplier on F; for appropriate values of the indices. In 
Theorem 13.7 we also study a geometric condition characterizing the sets 52 
for which a certain restriction phenomenon does not depend on q in ‘7. 

For our purposes it suffices to consider locally bounded functions b(x) 
as pointwise multipliers. In general, if X is a quasi-Banach space con- 
tinuously imbedded in y’(lV), we define pointwise multipliers on X in the 
following way, e.g., as in [Tr2, p. 1401. Let y E Y([w”) satisfy f(t) = 1 for 
151 < 1 and let y,(x) = 2’“y(2”x) for v = 0, 1,2, . . . . Then for b E Y’, the func- 
tion b, = b * yy is smooth. We say that b(x) is a pointwise multiplier for X, 
and write b E MX if, for all fe X, the sequence b, f converges in Y’ as 
v + co to an element g E X, and there exists c > 0, independent off, such 
that IlgljX< c 11 f (IX. If Y is a quasi-Banach space of locally bounded func- 
tions on IF!“, we write Y c MA’ if b E MX for each b E Y and there exists 
c > 0 such that Illim, _ a, 6, f 1) X < c llbll y II f II X for all b E Y and f E X. It is 
easy to see that if X is a Banach space, then MX= MX*, but if X is quasi- 
Banach we only have MXG MX*. 
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In case Y is dense in X in the quasi-norm on X, e.g., X= Fy for 
0 cp, q < + co, it is sufficient to show that llbf /IX < c I( f )I X for all f~ Y, 
and extend the action of b to all of X by linearity, to prove that bEMX. 
However, in the general case we require the interpretation above. 

To start, we would like to make two observations about pointwise multi- 
pliers on the F; spaces. The first is well known [Tr2, p. 1433, but is 
particularly simple from our point of view. 

Remark 13.1. For fi > 0, let Cp = Fp,” ( = A, = BLa) denote the usual 
Holder or Lipschitz spaces. We have CB E MFT if either 

o<p,q< +a and /?>cr>J-n, (13.1) 

or 

l<p,q< +oo and P> Ial. (13.2) 

To see this, we consider (13.1) first. By (12.5), we can write each f~ F; 
as f= Cl(e) G 1 SQaQ5 where each aQ satisfies 

SUPP aQ E 3Q, (13.3) 

and 

ldYaQ(x)l < lQ,-“2--ly”n if IA 6 [a+ ll,, (13.4) 

and the sequence s = (sQ}[(Q) Q I satisfies 

(13.5) 

If we set mQ = baQ, then supp mQ S 3Q, and since Z(Q) < 1, it is easy to see 
that (3.4k(3.6) hold for 6 = min(1, /J- [IX]) > c1*. Since (3.3) is void for 
a>J-n, mp is a smooth molecule for Q. Thus by the inhomogeneous 
version of Theorem 3.5, 

Then (13.2) follows from ( 13.1) by duality and interpolation (the 
inhomogeneous analogues of Remark 5.14 and Theorem 8.5). 

Triebel states [Tr2, p. 1433 that if p <q and p < max(a, J-n - CI), then 
there exists g E CB which is not a pointwise multiplier for Fy. This indicates 
that (3.4)-(3.6) are reasonably sharp conditions, since, for example if 
J- n - CI < a and p < q, we cannot take 0 < 6 < a* in (3.6) and still obtain 
Theorem 3.5 in the homogeneous case, else our argument would apply for 
some p c LX, contradicting Triebel’s remark. 
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Remark 13.2. For q = 2 and 1 <p < + co, FF z Lp, so it is clear that 
MFF = L”. This can be regarded as a limiting case of the result from 
Lemma 13.1 that for l<p,q< +co, CBcMFT for all b>O. For 
1 <p, q < + cc and c1 E IX, duality and interpolation ( [FT, FT~~‘] r,* = 
Fy = L*) show that MFT sML2 = L”. From the trace problem 
in Section 11, one might expect that MFT is “independent of q,” i.e., 
that MFF = L” for al q. However, it is easy to see that if the complex 
exponentials were pointwise multipliers on f? (or even if they just mapped 
F$ into F.jm), then this would imply that F$ c Lp x Fy , 1 -K q < + 00. Of 
course, this is only possible if q < 2. Hence, by duality, if 1 <p, q Q + 00 
and q # 2 we have L” s MF$. This answers a point that arose in [AF J. 
(To verify the statement about the complex exponentials, let cp satisfy 
(2.1)-(2.3) and @(l, 0, . . . . 0)= 1. Then /Isup, Ivy *fl IILp< IlfllFom. If we let 
O(x)=e’“‘cp(x), then d(O)= 1 and IIfIILPzlimv,, IIf* 0,/I.,< 
sup” II f* ei2yx1(py II Lp = sup” II(e-‘2’x!f) * vy II LP G c I/f II q.) 

We now turn to the main problem we wish to consider. Let Q be an 
open subset of R” (not necessarily bounded or connected). We ask for 
conditions yielding x = xn E MFY for appropriate a, p, and q. 

Fix 0. We consider a quantitative condition on 52. For x E R”, let 6(x) 
be the distance from x to sZ’= R”\!J. For s>O and Q a cube in R”, not 
necessarily dyadic, let 

We let D, be the set of domains s1 c R” such that 

II Q II s = sup P&Q, 52) < + ~0. (13.6) 
Q dyadic, 4 Q) $ 1 

We shall make several remarks about the condition BED,. First, the 
condition is monotonic; that is, by Holder’s inequality D, E D, for s > t. 
To get a better understanding of the class D,, we make an elementary 
computation in the special case a = tR: = {x E IF!” : x, > O}. Suppose Q is 
dyadic with r(Q) = 2-U, and 0 <s < 1. Then 

It follows that rW: ED, for 0 <s< 1. This is typical for an Sz with a nice 
boundary. 
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Now suppose Sz = P” for a dyadic cube P with l(P) < 1 (where E” 
denotes the interior of the set E). Let hi(x) be the distance from x to the 
ith face of P, i= 1, . . . . 2n. Then obviously 6,(x))‘< S(x))‘< 2 x7= i 6,(x))’ 
for each s > 0. Hence, if 0 < s < 1, the previous calculation and a dilation 
argument show that jP 6(x) -’ dx = c,/(P)“~‘. For an arbitrary Q this 
implies that Se 6(x) -’ dx < c,Z(Q)~-’ whenever Q is a cube with Q c Q 
and 0 < s < 1. As a consequence 

so we only need check (13.6) for Q such that Q n cX~ # a, if 0 < s < 1. 
For that matter, it s&ices to check (13.6) only for all sufficiently small 

dyadic cubes intersecting a!Z? To see this, suppose k E Z, k > 0, and 

If Q is dyadic with I(Q) = 2Pk+ I, and { Q,}fl 1 are the dyadic subcubes of 
Q with Z(Qj)=2-k, then 

This shows that A,-, Q2Ak and \lQll,<2kAk< + co. Finally, it is clear 
that there exists c,,, such that for any cube, not necessarily dyadic, 
P,(Q, Q) d c,,, IP-4,. 

For our next theorem we also need a slight modification of the Whitney 
decomposition. For an open set 52 c R”, let %0 be the set of dyadic cubes 
in the Whitney decomposition of Sz. The basic properties of this decom- 
position (see [St, pp. 167-1691) that we require are: 

(J P=Q, 
Qe-6 

Qi’nQ;=0 if Ql#Q2, Q,, Q+% 
diam Q < dist( Q, 52’) < 4 diam Q if QE%~, 

$~4Q,MQz)~4 if Ql,Q2~% and Q,nQ,#(Zi, 

(13.8) 

(13.9) 

(13.10) 

(13.11) 

and 

if x E Sz, then there exist at most c, cubes Q E %0 such that x E l.lQ. (13.12) 

Since the dyadic cubes in our decomposition of FT satisfy I(Q) < 1, we 
subdivide the cubes in %0 of sidelength greater than 1. Let 

%i={QE%o:I(Q)>l}, %z = %O\@) 
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and 

4 = {Q dyadic : I(Q) = 1 and there exists Q E & such that Q c Q}. 

The collection we shall use is p = 4 u 4. It is easy to see then that 
(13.8)-(13.9) and (13.11)-(13.12), with & replaced by 9, still hold. In 
place of (13.10) we have in general only diam Q 6 dist(Q, KY) if Q E 9. Let 

%‘= {Pdyadic:Z(P)<l and(3P)“n%2#@}. 

Note that if PE V, then dist(P, fin’) < diam P, and hence P# 5 and no 
dyadic cube containing P belongs to 9. For P E W, let 

N(3P)= Qd:Qn3P#12/ 

If Q E N(3P), then diam Q < dist(Q, !X) < 3 diam P. This implies that 
I(Q) < 21(P), since we must have Z(Q) = 2kl(P) for some k E h. In particular, 
it follows that 

u {Q:QEN(~P)}s~P if PEW. (13.13) 

(The precise number 7 will not be important though.) 
We also note that dist(Q, 52’) <4 diam Q if Q E N(3P) for some PEW. 

(For QE~ such that r(Q)< 1, this follows by (13.10). If f(Q)= 1, then 
dist( Q, CY) < 3 diam P d 3 ,,& = 3 diam Q, since I(P) < 1 for all P E V.). 
Hence, for all P E %‘, Q E N(3P), and x E Q, we have 

,,/% 1(Q) < dist(x, a’) < 5 $r 1(Q). (13.14) 

We construct a partition of unity of Q corresponding to 9 in a standard 
way. Fix a function y E 9 satisfying 0 <y(x) < 1 for all x, and 
suppyc C-0.1, 1.11”. For P dyadic, let y*(P)(x)=y((x-x,)/Z(P)). For 
Pc9, let 

Y(P)(X) = Y:(X) c r*(Q)(x). 
,i Qe* 

It is clear that C PE.9 Y(P)(X) = 1 f or x E a, 0 d y(P)(x) < 1 for all x and P, 
y(P) E C@ for all P, and supp y(P) E 1.1 P. It also follows (as in [St, p. 1741) 
that 

I a”y(P)(x)l < c/#p for all fi and all P E 9. 

Finally, by (13.11) for 9 (and since & -C i), we have 

(13.15) 

c Y(Q)(X) = 1 for x~3Pnf2 and PE%‘. (13.16) 
QsN(3P) 
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THEOREM 13.3. Let Q be a domain in R”, and let x = xa. Suppose 
O<p<+co, O<q<+co, and QED, for some s>O. Then XEMFT if 
either 

or 

O<pdl and J-n-ca<sJp, (13.17) 

l<p<+cc and J-ncacs/p. (13.18) 

Proof: First assume q = + co. By (12.5), we can write f =& spap, 
where 

Ilsllr;m~c llf Ilp 

for s= (SPlPdyadic7 and each up satisfies supp up E 3P, and 

lPa,(x)l < 1 PI -1’2p’y”n if IyI<Ca+ll+. 

(13.19) 

(13.20) 

(Since we are in the range c1> J- n, we have N = - 1 and the moment 
condition (4.2) may be taken to be void.) 

Let a = (P dyadic: I(P) < 1 and (3P)’ G 52) and 8 = (P dyadic: I(P) < 1 
and (3P)’ E W}. Let 

f= 1 spap+ 1 spa,+ 1 spap=fi +f2 +f3. 
PEW PEB PEB 

Then xf3=0 and xf2=fi, hence llxf211Fn~= IIf211Fu~‘Pc IIsIlf;~6c Ilf IIF:. 
So we only need to consider fi , and thus “we assum: sp = 0 if P $ %Y. 

Given P E %‘, by (13.16) we can write 

xap(x) = c r(Q)(x) ap(x). 
Q E N(3P) 

By Leibniz’s rule, (13.15), (13.20), and the fact that r(Q)<2l(P) for 
Q E N(3P), we have 

I ~%(Q)(x) ap(x))l 

G c c,,,,(Q)-‘“’ 1 PI -“2 l(P)-‘“‘< C IQ1 -1’2 Z(Q)p’B’, 
p+n=fi 

if I~I~[cc+ll+. Hence, if, for P E % and Q E N(3P), we define 

r(Q)(x) ap(x), 
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then b,(P) is a smooth atom corresponding to Q. We have 

ti= 1 J,XU,= C 1 sp 1 (lQlllPI)1’2~Q(P). 
PEW PEM Q E N(3p) 

Define tQ = 0 and h,(x) = 0 if Q 4 9, and if Q E 9 set 

tQ = 1 (lQlll~I)“* ISPI 
PE’B:QEN(~P) 

and 

h, =; p ,:;,,,,, (IQW’I I”* s,bQV’)W 
E 

Then xf=CQsy la&. Each h, is a smooth atom corresponding to Q, 
since estimates for 8'h, are dominated by those for a convex combination 
of the smooth atoms b,(P) for Q. By the inhomogeneous version of 
Theorem 3.5, we have jlxf 11 F;m Q c 11 tll~;~. Hence, by (13.19), the conclusion 
follows if 

IItIlf;mGC II+. (13.21) 

If we define the matrix A = {u~~}~,~ by 

aQP=(lQl/lPl)“2 if P E % and Q E N(3P), 

and a op = 0 otherwise, then t = A(s). We thus see that (13.21) is equivalent 
to the fact that A is bounded on f;“. To prove this we consider the cases 
0 <p < 1 and p > 1, separately. 

Suppose 0 <p d 1. For Q E 9 and P, fixed, we set ‘X0 = %&p,,n = 
{P E V: P c P, and Q E N(3P) >. Using Proposition 10.1, we see that A is 
bounded on f%” if and only if 

IIA II 
1 

- =,p,ao = “;f I p, I Ilp p& I Q I “* If’laln 

Notice now that there are at most a fixed number of dyadic cubes P of a 
given sidelength in %‘o (for Q fixed), since such a cube must satisfy 
f(Q) <21(P) and, by (13.13), Q c 7P. Hence, as long as LX> 0, the sum in 
(13.22) is (essentially) geometric and can be estimated by c IQ1 ‘I2 1 P, I a'n. 
Inserting this in (13.22), we find that 

IIAII 
1 

a,p, co G c sup 
PO Ip,I’h-=ln II {lQl”‘I,:,., r;” II 
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If %‘o#@, then, by (13.13), Qc7P,nG?, and, by (13.14), lQl”n~&x) for 
x E Q. This and the fact that the cubes Q in 9 are pairwise disjoint shows 
that 

This yields 

IlAll z,p,m~c llfa$< +a, 

and completes the proof when 0 <p d 1. 
Let us now consider 1 <p < + co. By (10.3), the matrix A is bounded on 

f 2” if and only if 

IIA II 12,,3c,m = sup g p:QxN,3p, (IWIQl,a”n< +a. 
E 

For a fixed Q, we have I(Q) < 21(P) if Q E N(3P). So, there are at most a 
fixed number of cubes P of any given sidelength such that Q E N(3P). 
Hence, the series sums and IlAll I,rOO,CO < + cc exactly when c1i < 0. 
Therefore, if 0 ED,, A is bounded on fy” with CI~=S, by the first part 
of the proof, and on fz” for any a, < 0. By interpolation (again only 
Proposition 8.1 and Theorem 8.2 are needed), A is bounded on f;” with 
l/p=(l-8) and cr=(l-B)s+@x,. Taking cxl < 0 sufficiently close to 0, 
we obtain boundedness of A for an arbitrary c( < s/p. This proves the 
theorem in the case q = + co. 

In the general case, note that our assumptions (13.17)-( 13.18) guarantee 
that we are always in the case where no vanishing moments are required 
for smooth molecules for FF. Hence, writing xf= C tghQ as before (where 
sp = 0 for P $ %, as before also), each h, is a smooth atom for Fy for Q 
and, similar to the case q = + co, it suffices to prove 

IItllf;4- IMy (13.22) 

By (13.9), the cubes in S are pairwise disjoint; therefore, 

Iltllr~= Iltllr;~. (13.23) 

By the case q = + co, Iltllf.m d c ll.sllrtim. The trivial imbedding ff” + f;” now 
yields (13.22), completing the prooi 1 

Assume for a moment that l&Y21 = 0. Then xan = 0 in Y’ and hence the 
operator f + xan f is zero on FT. If b is the domain complementary to Q, 
i.e., d = (Sz’)‘, then xn E MFY if and only if ~0 E MFY. This indicates 
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that the D, condition can be symmetrized. We define a class 8, for s > 0 
consisting of all domains such that 

sup min {p,(Q, Q), P,(Q, a)> < + ~0. 
Q dyadic, I(Q) < 1 

(The function 6 in p,(Q, s’) is the distance to fin.) Then Theorem 13.3 and 
the following two corollaries hold with a,V in place of D,. To see this, 
partition the set 9 from the proof into two sets & and %?, so that 
s”PQ~W,, PAQ, a)< + a, and s”PQ,6p, PAQ, fib + a. 

We can use duality and interpolation in a standard way to extend the 
range of indices in (13.17)-(13.18). 

COROLLARY 13.4. Suppose 1 <p, q < + co, and l2 E D, for some s > 0. 
Let x = xn. Then x E MF; if either p< +cc and s(l/p-l)<cr<O or 
p= +co and -s<a<O. 

Proof These cases follow from Theorem 13.3 and duality (MX= MX* 
if Xcr Y’( W”) and X is a Banach space), via Theorem 5.13 and 
Remark 5.14. 1 

COROLLARY 13.5. Suppose 1 <p-c +co, O<q< +CCI, and QED, for 
some s > 0. Then x = xn E MFT if 

s(l/p- l)+n(l/q- l), <cr<s/p. 

Proof For q > 1, only the case CI = 0 remains, which follows by inter- 
polation, e.g., Corollary 8.3. For 0 <q < 1, we apply the interpolation 
property, justified by, say, Theorem 8.5. Now let E > 0 be sufficiently small, 
and set qO= l+s, po=p+c, and ~~~=s(l/p~-l)+.s. Let pr=l and let 
0 = 0(c) = &/p(p + E - l), so that l/p = (1 - 0)/p, + 8/p,. Let q, satisfy l/q = 
(l-B)/q,+8/q,(henceq,<l)andsetcr,=n(l/q,-l)+&.ThenXisboun- 
ded on Fzqo and F%iql by Corollary 13.5 and Theorem 13.3, respectively. 
Hence x is bounded on Fy for 

Taking E > 0 sufficiently small (and hence e(s) small) yields the result. m 

Earlier we noted that Sz = rW: ED, for 0 <s < 1. A similar computation 
show that whenever @ : [w” - r -+ R’ is Lipschitz if order 1 (i.e., 
I@(x)--@(y)l <Mix-yl for all X, y~lR”-‘), then 

Q = ((X,) *.., X”)E(Wfl:X,>~(X1,...,X,~l)} 
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belongs to D, for 0 <s < 1. Since the D, condition is essentially local, it is 
also true that Sz E D, for 0 <s < 1 if Sz is a bounded Lipschitz domain. 
Hence we have the following. 

COROLLARY 13.6. Suppose Q E R” is a bounded Lipschitz domain, and 
O<q6 +oo. Then x=x~EMFT ifeither 

O<p<l and J-n < CI < l/p, 

l<p<cC and (l/p- l)+J-n<a< l/p. 

Proof: Take s close enough to 1 and apply Theorem 13.3 and 
Corollary 13.5. 1 

These results agree with those in Triebel [Tr2, p. I.%], for the case 
sZ=lR;, and overlap with results independently obtained by Strichartz 
[Stri] for potentials of Hardy spaces. 

Finally, we note that there are non-Lipschitz domains which belong to 
D, for 0 < s < 1, and hence for which xn E MFY (for the indices allowed in 
Corollary 13.6). One example is 

for O<E< 1. 
Note the independence of q in (13.23) for the sequence t in the proof 

of Theorem 13.3. This is a trivial conseqence of the disjointness of the 
Whitney cubes. Recall also that in this proof, the functionf, consists of the 
terms corresponding to the boundary in the decomposition off: For a 
“reasonable” domain there will be an analogous independence of q for f,, 
i.e., II fi II gum = 11 f, 11 pcy for all q. Our next theorem gives a precise charac- 
terization ‘of the domains for which this happens. This characterization 
describes exactly under what geometrical conditions on the domain the 
technique used in the trace problem (Theorem 11.1) can be applied. 

Recall that 

V={Qdyadic:l(Q)<l and (3Q)“nXI#@}. 

For a sequence s= {.~~},~o)~~, let S= {.?o},(o)~l be defined by Slo=~o if 
QE%? and Z,=O if not. For cr~[w and O<p,q< +co, set 

IISII fy(JC2) = lisllf~. 

We say C~ENST (not so terrible) if there exists ALE Z, p > 0, with the 
property that for any dyadic cube Q with Z(Q) < 1 satisfying Q n XI # 0, 
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there exists a dyadic cube P G Q with Z(P) = 2-“/(Q) such that 
Ponasz=Qr. 

THEOREM 13.7. Suppose 0 <p < + CC and c1 E R. Then the following are 
equivalent: 

(i) ~~ENST; 

(ii) for all q, 4 with 0 < q, @d + 03, JJsl/ r~can, x IJ.YJ)~~~(~~,; 
(iii) there exist q and Lj with 0 <q < 4 < + CC such that 

lbll cfv(an) d c lbllr~(an). 

Here the constants in (ii) and (iii) are independent of s. 

Proof. First suppose Cr E NST, and let ,u be the number given by the 
definition. Note that for any Q E V, we can select a dyadic cube E, E Q 
such that Z(E,) = 2-“-2l(Q), and (3E,)” n 852 = Qr. To see this, first select 
P G Q, P dyadic, with Z(P) = 2-V(Q), such that P” n %2 = 0; this is 
possible by assumption if P n 6X2 # @, and trivial otherwise. Then let E, 
be any dyadic cube satisfying f(E,) = Z(P)/4 and E, G P”. 

We define p + 2 pairwise disjoint families of dyadic cubes as follows. Let 

for i = 0, 1, . . . . p + 1. The main observation is that for each i, the cubes 
belonging to {E, : Q E Ai} have pairwise disjoint interiors. To see this, sup- 
pose to the contrary that for some i, Ql, Q2 E Ai, Ql # Q2, Z(Q,) < l(Q*), 
say, and E & n E & # @. Since the cubes are dyadic, and QF n Q; # 121, we 
must have Z(Qr ) < I(Q,). But then by definition of Ai, we must have 
Z(Qr) < 2-(“+*)1(Q2) = I(E&. Then since QF n EL2 # % and the cubes are 
dyadic, it follows that Q, E E,,. But (3E,,)” n aG = Qr, contradicting 
Q,E~. 

For i = 0, 1, . . . . p + 1, define Si= {(Si)o}rCQ)G r by (SJe =S, if Q gAi, and 
(Si), = 0 otherwise. Since 1 E, I= 2 --(/1 + 2)n IQl, Proposition 2.7 and the 
disjointness of the E,‘s for Q E Ai yield, for any q and Q satisfying 
O<q,ijd +m, 

ll:ll r;q= il( 2 (IQ1 -“’ 

= ; (IQ1 -W 
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Hence 

Therefore (i) implies (ii). Obviously (ii) implies (iii). 
Now suppose (iii) holds, and suppose (i) fails, i.e., D $NST. Then for 

arbitrarily large p, there exists Q dyadic with 1(Q) 6 1, and Q n %2 # 0, 
such that for all dyadic cubes P z Q with I(P) = 2-“Z(Q), we have 
P” n 82 # 0. Define a sequence s = { sP} ,(Pj G i by setting sP = I PI ‘I2 + “’ if 
P&Q and l(P)>2mpl(Q), and sp = 0 otherwise. Then 

114 
II4 p < fN’Y( ?Q) = 

I( 
c x”p 

PcQ J il 
= (p+ l)‘ly IQl”? 

LP 

l(P)22-“((8) 

Making the same observation for g contradicts (iii) if p is sufficiently large. 
Hence (iii) implies (i). i 

We remark that the D,s and NST conditions are not strictly comparable. 
Indeed, there exists 52 ED,, for all 0 <s < 1, such that 0 4NST. On the 
other hand, if SZENST with p= 1, then QED, for O<s< -log2(l-2P”), 
but not necessarily for s b -log,( 1 - 2-“). For the first assertion, we may 
construct an example as follows. Let n(k) grow sufficiently rapidly as 
k + + co. For each dyadic Q c [0, 1 I”, with I(Q) = 2Pk, let P(Q) be any 
subcube of Q with sidelength 2- n(k) Then let 52 = U {P(Q)“: Q is dyadic, . 
Q c [0, IIn}. We omit the details of the verification. For the second asser- 
tion, the case which gives the largest D, “norm” is particularly easy to 
determine because of the assumption that p = 1. An explicit calculation, 
which we omit, gives the result. 

14. CONCLUSION 

We conclude with a brief description of some directions that further 
research along the lines of this paper either has been taken or could be 
taken. 

As we have mentioned in the introduction, there are a variety of 
approaches to nonorthogonal decompositions that have been studied, as in 
[DGM] and the references given there. In [DGM] the relation of these 
approaches to mathematical physics and the theory of coherent states 
is stressed. Also, the p-transform and the wavelet decomposition 
([Le-M; Co-M] as discussed in Section 1) are being studied for possible 
computational applications in engineering and applied mathematics. 

More abstract generalizations have been considered by Feichtinger and 
Griichenig; see, e.g., [Fei-G]. Their approach stresses the underlying group 



146 FRAZIER AND JAWERTH 

structure (in our case, the group of translations and dilations on Iw”, see 
Remark 3.2). From this perspective, they consider other group structures, 
leading to a unified perspective on various types of decompositions. Their 
techniques in some ways resemble ours in Section 4; in particular, a 
Neumann series is summed to invert an operator, to obtain the decomposi- 
tion. This method has been used previously, e.g., in CCo-R; DJS]. 

Another direction has been considered in [HJTW]. They consider a 
definition of tiy that avoids dependence on an underlying translation 
structure. Namely, it is seen in [HJTW] that an equivalent definition of 
I?; can be obtained under appropriate restrictions by replacing the 
convolution operators (py *f with kernel operators of the form 

TAX) = j KAXY Y)f(Y) dY3 

where KL is an “s-family of operators” (cf. [CJ] ), i.e. the kernels K, 
satisfy natural size and smoothness assumptions. This approach may allow 
adaptation of our results to cases where there is a natural dilation struc- 
ture, but no translation structure. 

The geometrical aspects of the f?-spaces may be useful for studying 
potential theory and capacities. The results in [Ja-P-W] are examples of 
this. There it is shown that the positive cone in py is independent of q, for 
u < 0 (this result is due to David Adams for most values of p and q; cf. 
[Ja-P-W] for a precise statement and references); this fact is directly 
related to the close connection between potentials and fractional maximal 
operators. 

Possible settings which may allow full or partial adaptation of our 
results include homogenous groups, spaces of homogeneous type (in the 
sense of Coifman and Weiss [Co-W1 I), and the polydisk. We have noted 
previously [Fr-Jl, Section S] that Folland. and Stein [Fo-S, p. 471 have 
constructed a resolution of the a-function on homogeneous groups, which 
yields a version of the Calderon reproducing formula. Calderon’s formula 
was, of course, the starting point of our work here. For spaces of 
homogeneous type, one special case of particular interest is that of 
Lipschitz domains in [w”. For this setting, and others, the generalized 
cp-transform from Section 4 may be a useful tool. 

APPENDIX A: PROOFS OF LEMMAS 2.3 AND 2.5 

To prove Lemma 2.3 we need the Fefferman-Stein vector-valued maxi- 
mal inequality. Let M be the Hardy-Littlewood maximal operator, 

M.(x) = SUP IQ1 -I j I ./-(Y)I &, 
i t Q Q 
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where the sup is taken over all cubes (not necessarily dyadic) with sides 
parallel to the axes. 

THEOREM A.1 (Fefferman and Stein [Fef-Sl ] ). Suppose 1 < p < + co and 
l<q< +oo. Then 

The sequence s,* can be majorized by M; this is essentially just a special 
case of the standard fact that the convolution with a radial, decreasing 
L’-function can be majorized (pointwise) by M. 

LEMMA A.2. Suppose O<a<r -=c + 00, and 1>nrJa. Fix p, VE Z with 
p < v. For each dyadic cube Q with Z(Q) = 2-” and each x E Q, 

( 
c IspI’/(l +z(P)-1 Ix,-x,1)” ‘jr 

/(P)=z-P ) 

<c 
( ( 

M 1 
I(P) = 2-r ) ) 

110 
bPlaXP (x) 9 

where c depends only on n and A- nr/a. 

Proof We may assume xo = 0. Let A, = {P dyadic : Z(P) = 2 -p and 
/x,1/Z(P) < l} and, for k= 1,2, 3, . . . . let Ak= {Pdyadic: Z(P)=2-p and 
2k-1 < Ix,I/Z(P)<~~}. Then 

c Is, I’/(1 + Ih4/4Pw 
PEA,, 

lSPIF 
PEAR 

<c2-k” 1 
( 

< c2 -kQwla 
PE/ It 

ISP ly” (1 1 IsPl%)“= 
PEAk 

<c2-&-nda) M , ( ( c ls,l”xp) q. 
PEAk 

Summing over k and taking the rth roots yields the result. 1 

Remark A.3. With the same restrictions on a, r, and 1, we have a more 
general estimate. For each dyadic cube Q with Z(Q) = 2-” and each x E Q, 

sso/93/1-I I 
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<cp-v)+n/a (M( c /wxp) (xy”~ 
/(P)=2-” 

where c depends only on n and 1 -m/a; here (p - v), = max(p - v, 0). 
To prove this when p > v, replace A, in the above by B,, = {P dyadic: 
Z(P)=2-” and (x,1/2-“~1) and Ak by B,={Pdyadic:f(P)=2-p, and 
2k-‘< 1x,(/2-‘<29 

Proof of Lemma 2.3. Let r = min(p, q) and E = - 1 + n/n > 0. Let 
a=~/(1 +s/2). Then O<a<r, and 1>nr/a. Hence, by Lemma A.3 with 
P = v, 

/(Q)=2-” 

for all v E Z. Hence, 

Since p/a, q/a > 1, the Fefferman-Stein inequality (Theorem A.l) allows us 
to remove M in the last expression, to obtain IIs,* )I r7 < c llsll r?. The other 
direction is trivial since 1 sQ I 6 (s,*)Q for all Q. 1 

To prove Lemma 2.5 we need two additional lemmas; the first is an 
adaptation of Peetre’s mean-value theorem estimate for (py** [P2]. 

LEMMA A.4. Suppose f c 9" and suppf(<) c { 5 : 151 6 2). Let y E Z, with 
y > 0. For Q dyadic, let aQ = sup, E Q If(y)I andbQ,,=max{infY.Q If(y)I : 
Z(&)=2-Yl(Q), QGQ}. Let a= {aQ}Q and b= {b,,},. zf 0-Cr-C -I-Co, 
Z(Q) = 1 and y is sufficiently large, then 

@:)Q = (b:),, 

with constants independent off and Q, 

Proof: We may assume Q = Qoo. First, suppose fey and suppf~ 
{ 5 : 151 < 3). By the mean-value theorem, 

a,sbb,,+c2-Yw IVf(y)l, 
YE P 



A DISCRETE TRANSFORM 149 

if E(P)= 1. Let dp=supyEp jV’(y)l and d= (dp}p. Then 

(a,*)g < C(bP), + c2-W,*)p 

Let geY satisfy g(t)= 1 if 151 ~3 and supp g(<)z {r : Ill <n}. Writing 
f=f*g=(&)” and proceeding as in the proof of Lemma 2.1 in 
[Fr-Jl], we obtain 

Hence, 

f(x)= 1 f(k)&-k)= c f(xJ)dx-xJ). 
ksE” I(J) = 1 

d,Gsup c iftxJ)i ivg(Y-xJ)i 
YeP I(J)= I 

<sup 1 iftxJ)i ivg(Y-xJ)l(l + iXJ-XPi)“r 

Ycf’ /(J)=l 

x (1 + lXjZl)A’r/(l + lxJI)““. 

Since gE9, we have sup,..lVg(y-xJ)I <c,(l + IxJ-x~I)-~ for any 
ME Z. Therefore, taking L sufficiently large, 

I I/r 
c If(~J)ll(l+I~Jl)~‘~(l+I~J-~~I)L )) 

by Minkowski’s inequality if I > 1, or by the r-triangle inequality followed 
by Minkowski’s inequality if r < 1. Since f E Y, we have (a,*)p < + co. 
Thus, taking y sufficiently large above yields (u,*)~ < c(b,*)o. 

More generally, let f E 9” with supp PC {l : 151 6 2). Then f is slowly 
increasing and infinitely differentiable (e.g., [H&2, p. 211). We now apply 
a standard regularization argument (see, e.g., [Tr2, p. 223). Let ge 9’ 
satisfy supp go (< : 151 <l}, d(l)>O, and g(O)= 1. Then I g(x)1 < 1 for 
all x, by Fourier inversion. For 0 < 6 < 1, let fa(x) = f (x) g(6x). Then supp 
f6~{t;:15j<3}, fsESP, Ifsl<lfl, and fs+f as d-+0, uniformly on 
compact sets. Applying our result to fs, noting that supyeP I fJy)I < 
supYsP I f (y)l for all P, and letting 6 + 0, we obtain (u,*)~ 6 ~(b,*)~. 

The converse estimate is trivial. 1 

The next lemma is very simple; let us recall that info,,(f) = 
IQl”* max{inf,.Q I@, *f (y)l : 40) =2-y&?), D E Q}. 

LEMMA AS. For f e Y/Y, c1 E R, 0 <p < + co, and 0 < q < + co, 

II inf,(f )I1 t;q < cy,n.p,q II f Ilq. 
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Proof: Let t = {t,}, be defined by 

t.l= W2yi~fJ I4,-, *f(y)1 if Z(J) = 2 -p. 

Then for O<r< +co, 

infQ,,(f) IQ < Cn,,P” c (t,*),L 
JsQ 

I(J) = 2-rl(Q) 

for Q dyadic and J, as in the definition of s,*. Picking r = min(p, q) and 
applying Lemma 2.3, 

11 inf,(f)/r7 < ~2~(““-~) IIt,* Iltb4 < ~2~~“~~‘) )I t)lfeq P P 

< c2y(Q-a) IK 
llq 

1 (2”, I& * f I)” 
YEH > II LP 

< dY,+ II f II y. I 

Proof of Lemma 2.5. The estimate II f I/ paq 6 c Ilsup( f )I/ rs follows from 
the definitions. Applying Lemma A.4 to eachPof the functio& 4, * f(2-“x) 
leads to the inequality 

if r = min(p, q) and Z(Q) = 2-“. Then Lemma 2.3 gives 

Ilswdf III fy G c II inf,(f HI fT. 

Finally, Lemma A.5 completes the proof. 1 

APPENDIX B: PROOFS OF LEMMAS 3.6 AND 3.8 

We need the following two technical lemmas. 

LEMMA B.l. Suppose R > n, 0 < 0 < 1, j, kE Z, j> k, LE Z, L> 0, 
S > L + n + 0, and x1 E W. Suppose g, h E L’(W) satisfy 

lPg(x)l <2j(fl’2+‘r’)(l +2’Ixl)-R if IYI GL, (B.1) 

JPg(X)-aYg(y)l<2j(“‘2+L+e)(X-yle sup (1+2jlz-xl)-R 03.2) 
I4 G IY--*I 

if IYI =L 

/h(x)/ ~2~“‘~(1 +2k Ix-xi l))max(R*S), (B.3) 
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and 

s xYh(x) dx = 0 if Iyl <L. 03.4) 

Then 

Ig*h(x)l~c2~(k~j)(L+B+n’2)(1+2jIx-x11)~R, WI 

where c is independent of k, j, x, and x, . 

Proof Using translations and dilations, we may assume x1 = 0 and 
j=O. Let A={y:ly--x163}, B={y:ly-xl>3 and Iyl<x1/2}, and 
C= {y : IJI-X[ >3 and (yl> 1x1/2}. Then 

For y E A, (B.2) implies that 

g(y)- 1 aPg(x)(y-x)p/p <c Ix-ylL+e sup (l+ lz-Xl)-R 
IPI =s L IZI < 3 

<c Ix-ylL+e (1+ Ixl)-R, 

since 1 + lz-xX( > $(l + [xl) if IzI Q 3. Using this and (B.3), we see that 

I A 
<~2”‘*(1+lxI)-~]~ I~-yf+~(1+2~Ix--yJ)-~dy 

<c2-W+@+4)(1 + lxl)-R, 

since S>L+n+B. 
For y E B, 1x1/2 6 ( y-xl 6 3 1x1/2, so 2k Ix - yl> 42k( 1 + [xl), since 

I y-x( 3 3. Therefore, 

1 i[ 1 lx - yl IS’ 

B Gc B (l+lyl)R +,p;L(1+14)R 1 
x 2kn/22-kS(l + lXl)pmax(Rg s) dy 

<,2-k(S-n’*)(1 + Ix/)-R 

x D IAL 
(l+~y’)-Rdy+(l+lxl)s {lyl<Ixl/Z) s 

4 1 
< c2-k’S-n’2)(1 + Ix/)-R, 

as needed, since S > L + n + 8. 
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ForyEC,l+(y(~~(l+Ixi), so 

J j[ 
1 Ix-yp 

c dc c (l+lyl)R +,P;Lu+IXI)R 1 2k”‘2(1 +2k lx-yl)-9y 

dC2k”‘2(1 + Ixl)-Rj3a (;:i;*I;S~~GeZ*(~-“/*)(l + 1x1)-R, 

yielding (B.5). 1 

The case in which no vanishing moments on h are assumed (formally 
L = - 1) is very simple. 

LEMMA B.2. Suppose R > n, j, k E h, j< k, and x1 E W’. Suppose g, 
h E Ll([w”) satisfy 

and 

/g(x)1 Q 2’“‘2(1 + 2’ Ixl)-R, (B.6) 

Then 

/h(x)1 <2k”‘*(1 +2k (x-x, I)-“. 03.7) 

Proof. Again we may assume x, = 0 and j = 0. Let A, B, and C be as 
intheproofofLemmaB.l.ForyEAuC, l+lyl>~(l+lxl),so 

s AUC Idr)l IW-y)l &64l+ IxI)-~~~~‘~ jRn (1 +zk I,~-.4-Rdy 

6c2?‘2(1+ Ixl)-R. 

For YE B, 2k Ix- yl 2 i2k( 1 + /xl), SO 

s B ldy)l IW-y)l dyGc2- k(R-n/2)(1 + IX/)-~ j (1 + lyI)-Rdy, 
W” 

yielding (B.8), since R > n. 1 

By choosing all numbers and the functions g, h properly, Lemmas B.l 
and B.2 yield the following corollary, which includes both Lemmas 3.6 
and 3.8. 

COROLLARY B.3. Let M>J, (J-a)*<p<l, and a*<6<1. Suppose 
that {mQ}e is a family of smooth molecules satisfying (3.3)-(3.6), and that 
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{b,}, is afamiZy ff t o uric ions satisfying (3.7)-(3.10). Then there exist &I and 
a constant C, independent of P and Q, such that 

I(m P> b, >I d Cwp(&) if &GE,. 

Proof Possibly reducing 6, p, or M, we may assume that 6 -a* = 
(M-J)/2=p-(J-a)*>O. 

If I(Q)=2-“~2~“=Z(P), and a>O, we apply LemmaB.l with R=M, 
tl=6, k=v,j=p, L=[a], S=M+n+a-J, x1=x,, g(x)=m,(x,-x), 
and h = b,. We obtain 

I Cm,, b&l = lg* h(xp)l ~~2-(“--“)(~~‘+~+~‘*)(1 +2p Ix,-x&~, 

yielding the desired estimate, since MBJ+E and [a]+6+n/2> 
c/2 + a + n/2 if E > 0 is small enough. Similarly, when a < 0, Lemma B.2 
gives 

I Cm,, b,)I < c~-(“-P)~‘~ (1+2r lx,-Xpl))M, 

which again is satisfactory since n/2 > nj2 + a + ~12 if 0 < E < -2a, say. 
If I(P)=2-‘<2-“=Z(Q), and N>O, we apply LemmaB.l with R=M, 

0=p, k=p, j=v, L=N, S=M-a, x,=xp, g(x)=b,(x,-x), and 
h = mp. We obtain 

I(m ,,, b,)I 6 (g * h(xp)( <~2-(“-“)(~+~+“‘*)(1 +2’ Ix,-x&“, 

which is as required because N + p + n/2 >/ ~12 + J - a - n/2, again if E > 0 is 
small enough. Similarly, when N = - 1, Lemma B.2 gives 

I Cm,, b, ) I < &! - (fi ~ “b’* (1+2” Ix,-Xal))M, 

as desired, since N = - 1 implies n + a > J, so that n/2 > -a + n/2 + ~12 + 
J-n if &<2(n+a-J). 

Remark B.4. As we pointed out in Section 3, some care is sometimes 
necessary when interpreting expressions like (f, b,) for f E Y/Y. For this, 
we briefly recall Peetre’s discussion on pp. 52-56 of [P3]. 

For fczY'/P and cp and $ satisfying (2.1)-(2.4), C,“=, i$” * 1+9” *f 
converges in 9”, where as usual G”(x) = cp”( -x). Using standard estimates 
(see e.g., [P3, p. 54; TR2, pp. 17-18]), if fep:, aE [w, O<p< + co, and 
O<qd +oo, we have 

II@@” * ti” *f IILWG Il@l(/“II.~ II@” *f IIL” 
< c2”“@’ +dp) II& *f I( p 
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Hence, if I/? >a-n/p (or if I/31 =a-n/p and q< l), 

It follows that there exists a sequence of polynomials {P,,, } G= , with degree 
<L for all N, where L = [a -n/p], such that 

gr lim 
N-m 

exists in 9”. By (2.4), if f0 is any representative of the equivalence class 
f+ 9, then SUPP(~ -jO) = {O}, so g is another representative of this class. 

Now suppose, for i= 1,2, that $i, $‘, {Pk},"=,, and g’ are as in the 
previous paragraph. Since g’ and g* represent the same equivalence class, 
g’-g* is a polynomial. For i= 1,2, denote 3: * 1+9: *f by ft. If //?I > L, 
and rl E 9, then 

= lim 
N-U2 v= -N I 

However, by (2.1)-(2.4), supp(C,“, -,(f i -f 2)")s (5 : I<[ ~2-~+l). Let 
XEY satisfy f(t)=1 for 151 ~2 and f(t)=0 for 1<1>4, and set 
x”(x) = 2’“~(2’x) for v E Z. Then 

-N+2 

=~=~N(X-N*ft-Y~N*ft). 

by (2.2). Hence, 

I(@(g’-g’) ?)I = lim 7 lN+m (~~*~~(x-N*f:-z-N*f~),s)( 
Y=  -N 

for IpI > L, by the estimates above. Hence, deg( g’ - g2) <L. 
Thus, we see that for f e p’p, the representative g above is well defined 

modulo P,., the set of polynomials of degree <L = [cc -n/p]. In other 
words, by identifying the equivalence class f + 9’ for f E By with its 
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“canonical” representative g above, the elements of F%” can be regarded as 
equivalence classes of tempered distributions modulo YL. (Note that for 
CI < n/p, the above discussion shows that if f~ Ff, then CvsB 9, * $” *f 
converges in Y’ and represents f in Y/9. This is useful when considering 
equivalences of I?; with other spaces; for example, the identification of 
FF with HP, 0 <p < + co, is obtained by identifying f~ FF with its 
canonical representative C, t z 4” * tjy *f: Note that in a certain sense, this 
representative is chosen to be minimal at infinity.) 

Note that if b, satisfies (3.7)(3.8) for some M> J, then J x,bQ(x) dx = 0 
for (y[ d L. In this case, forfE Fy let (PN}z=, be any sequence of polyno- 
mials of degree <L such that C,“= pN 4, *1I/” *f+ P, converges in 9” as 
N + + co. We define 

(A b,)= lim N-m 5 @,*l//v*f+P.wJQ 
Y= -N > 

whenever this last sum converges absolutely. In the case we are considering 
in Theorem 3.7 and Lemma 3.8, we have @, * ey *f= &p~=z-ysp$p. 
Hence, 

and our argument in the proof of Lemma 3.8 guarantees absolute con- 
vergence. 

APPENDIX C: PROOF OF PROPOSITION 7.1 

We break up the proof of Proposition 7.1 into two (known) lemmas. For 
a pair of “quasi-normed Abelian groups” (X0, X,) and the E-functional 
E(t, x; 8), defined in Section 6, we set 

I&.,:.=( c 
l/q 

(2 w(l-@q2”, x; g))cl-o/ . 

VEL > 

We have 

LEMMA C.l. Let 0<8<1 and O<q< +co. Then (X0,X,),,= 

(X0, Xlhiq;E. 
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Proof: This is an immediate consequence of the facts that K(t) x K,(t) 
and that K,(t)/t and E(s)/s are inverse (cf. (6.2)); making the change of 
variables t + E(s)/3 we find 

Il4le.q = (J ,x (t-eKm(t, x; x0, X,))$ 1 1’q 

= coy 0 cc (sH’(l~e)E(S,X;XO,XI))q(l-e)~ ) 
l/Y . 

0 

This proves the lemma modulo the discretization, which is trivial since E 
is nonincreasing. 1 

For more details we refer to [Be-L, Theorem 7.1.7; Ja-R-W, Section 23. 
The second lemma requires a straightforward (known) modification of 

the so-called Fundamental Lemma (see [Be-L]); we need it for the E- and 
e-functionals instead of the standard K and J. 

LEMMA C.2. Let 0<8< 1 and O<q< +co. Then 

II-dlt?,q;E~ IIXIIB,q;e. 

Proof: We give the proof in the normed case, with the usual modifica- 
tions (in particular, the use of Lemma 3.10.2 in [Be-L]) required for the 
adaptation to the quasi-normed case. 

Suppose first that x = CVEH x, with e(2”, x,; X) < + cc for each v E E. 
Then llxvIIx, d 2’ and e(2”, x,; X) = /Ix, 11 x,,. Therefore, for each p E Z, 
IIC::! m x,II x, 6 2P, and hence 

Consequently, using Minkowski’s inequality, 

ll~Il0.,;,~( c ( 2 
(1 -B)q I/q 

2’~ - ~)eiu - qw(1~ we(2v, x,; x) 
llEZ v=p > > 

GC llxlle,q;e. 

For the converse inequality, we have, for each v E Z, elements xsy and 
xl,v such that x=xo,v+xl,v, IIx~,~II x, < 2”, and IIx~,~ II x0 d cE(2”, x; X). Let 
u,=xl,“-x I,v-1=xo,“-I-x0,“. Then Jlu,/I,,~2’+2’~‘<2”+‘, so 

42 y+l~~y;~)=Il~yII </I xc,\ xo,.~,II~,+IIx,,.II,,d~~~2”~‘,x;~~, 
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since E is nonincreasing. If IJx[I~,~;~< + co, then E(2”, x; Y) is finite for all 
v and lim, _ oo E(2”, x; x) = 0. This readily implies that x = C u,. Letting 
x,, = u,_ i we get the desired result. 1 

Of course, Proposition 7.1 immediately follows by combining these two 
lemmas. 

APPENDIX D. PROOFS OF THEOREM 9.1 AND LEMMA 9.14 

We first consider the proof of Theorem 9.1. For this, we need the 
following fact. 

LEMMA D.l. Suppose Z(S) < l(T), r E Z, and M > n. For x E [w”, let 

gs,T,M,r(x) = c 
I(R)=2-’ 

1 + ma~;(,;x,) 
-M 

> 

Then with l(R) = 2-‘, 

Proof. 
2-‘=l(R 

We first note the following simple estimate. Suppose 
d 1(U). Then for all x E R”, 

CD.11 

This and the trivial fact (1 + IxR - x,l/max(l(R), l(T)))-“” < 1 yield the 
desired estimate in the case Ix - xTI d 100 Jn max(l(R), I(T)). Suppose 
now that Ix -x=1 > 100 ,/;; max(l(R), Z(T)). We let 

A,=(R:Z(R)=2P’andIxR-x,l<~lx-x,l}, 

and 

Af= (R: I(R)=2-‘and IxR-xTl >$ Ix-xTI}. 

Note that for REA, we have Ix-xxRI 2; Ix-xTI. Write 

gS,T,M,r(x)= 1 + 1 =I+“’ 
RtA, RsA; 
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We easily get the desired estimate for II from (D.l ), since 

( 
IXR-XTI -“<c 1+ 

’ + max(Z(R), Z(T)) 1 ( 
Ix-XT1 -M 

max(4R), Z(T)) ) 

for REAT. For REA, we have 

1+ b--RI -l” 
max(l(R), 4s)) 

Ix--XT1 
’ +max(Z(R), Z(T)) 

since Z(S) Q Z(T), M > n, and Ix - xT( z c max(Z( R), Z(T)). However, using 
(D.1) again, we have 

Putting these estimates together, we obtain the result. 1 

The previous result is used to establish a technical estimate which we 
present next. It is convenient to introduce some notation. Let 
.Z= n/min( 1, p, q). We set 

W) OL 
( H 

I+-%I 
) 

-J-p 
qp4PY Y) = I(p) ’ + max(40, 4Q)) 

xmin [(a&+y (ug”*+J-n], 

and 

THEOREM D.2. Suppose /?, yI, y2 >O, y, #y,, and y1 +y2>2p. Then 
there exists a constant c = c,, J,B,Y,,yz such that 

Proof: Let y = min(y,, y2). We first consider the case Z(P) <Z(Q). We 
may assume that a = 0 since the terms Z(R)’ cancel in the sum defining 
W,, leaving (I( Q)/Z(P))a. We write 

w,Pml,Y2)= c + 1 + c 
l(R < l(P) d I(Q) I(P) < l(R) < l(Q) NP) a l(Q) < l(R) 

= I + II + III. 
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If I(R) = 2-‘, f(P) = 2-p, and I(Q) = 2-4, then 

I= f 
c ( r=p+l I(R)=2-’ 

1 + Ix~~;‘l)-f-~(4m)(~+y’)‘~+J-~ 

4(Yl + Y2)/2 + J) 
gf’,Q,f+b,r(XP). 

By using Lemma D.l, this can be estimated by 

C24((“+Y1)/2+J-n) 2-p(n-yz)/2 1 + Ixf’-xQI -‘-’ 

4Q) ) 

f 2- r((Y/l+Y2)/2+J-n) 

r=p+l 

1 + lx;;;e’)-J-b (UJ)‘““““““, 

which is the required estimate. II can also be estimated by this quantity. 
The proof of this is essentially the same, starting from the identity 

11=2q((n+Y1)/2)+J--n)2-P((“+Y2)/2+J~n) 
i 2-‘(Y’-yz)‘2gP,Q,f+~,r(XP), 

r=p 

and using Lemma D. 1. Finally, 

111 = 2-d”+ Yl)/Q -p((n + Y2V2 +J ~ n) 
c 2 

~((Yl+YZv2+4 
gP,Q,J+/3,r(XP). 

,=-co 

Here, using Lemma D.l again, 

1 + 
Ix,-x,1 -J-p 

W ) 

1 +lx;~~Q1)-J-~(~)~J~u. 

Inserting this in the sum, we readily get 

and this completes the proof in the case Z(P) < l(Q). 
The case r(Q) < I(P) follows by symmetry; we apply the previous case 

with P and Q interchanged and u replaced by -u + J - n. Alternatively, we 
may give a direct proof, virtually the same as the one just completed. 1 
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Proof of Theorem 9.1. We prove (i) first. If A= {aQp}p,p, B= 
{bQPIQ,PE ad?, then by definition there are sA, ss > 0 such that 
lagpI < CO&E,) and lbePl < CW&E,). Since o&s) is a nonincreasing 
function of E, we may assume that sA > Ed. By the definitions, we have 
O&E) = w~,(E, E) and O&E) < w&/I, y) if p, y 6 E. Hence, Theorem D.2 
implies that 

This proves (i). 
It remains to show (ii). Let A” = (I-A). Suppose we have 

IA”oP I < 800p(s) for some E, 6 > 0. Clearly, O&E) < o&E, E) 6 o&E, 8) 
for any fixed 0 < E< E. The proof of (i), with A replaced by A”, B by A”“-l, 
.sA by E, and .sg by E, shows that [(A”“),,1 < (SC)fl o&E, E) for any 
nonnegative integer n and some constant C independent of n and 6. For 
a sufficiently small 6 > 0 we have 6C < 1, and, hence, the Neumann 
series Cn,,, (A”)” converges to (I -2))’ = A-‘. Furthermore, (A-‘),, 6 
(1 AC)-< w&E”) and A-’ E ad?. 1 

We now turn to the proof of Lemma 9.14. 

Proof of Lemma 9.14. To estimate Ime(x with Z(Q) = 2Py, write 

Im&)l G C ~PQ(4IgPw + c %&)I~&)I - I+ 11. 
/(P)G~Q) 4P)>QQ) 

Then, in the notation of Lemma D.l, with Z(R) = 2-’ replaced by 
Z(P)=2-P, 

< 2q(n+E’/2 5 2-p”/2gp,Q,J+E,p(x) 
P’4 
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Similarly, for II we have, by Lemma D.l, 

This yields 

Ima d C IQI - ‘-2( 1 I lb-$l)-J-F. 
CD.21 

Now note that our proof of (D.2) shows that for IyI < [J-n], 

s 2 lxly IqJ IsAx)l dx< +cc 
P 

Therefore the vanishing moment condition 

s xYmQ(x) dx = 0 if Iyl 6 [J-n] 

is inherited by mQ from the corresponding condition on the g,‘s. 
It remains only to verify that 

kg(x) - me(Y)1 

<C IQ1 -“2-6’n Ix--yl’ sup (D.3) 
I~ldlY--~l 

To prove this, we may assume Ix - yl < Z(Q), since otherwise (D.l) and the 
trivial estimate Imp(x) - me(y)1 < [ma(x)/ + ImQ(y)I yield (D.3). 

With Ix-y1 <Z(Q), we have 

Im&) -m&II Q 1 (jJPp(E)(I g&)I + I &TP(Y)l) 
NP)< lx--Y1 

+ c WPQ(&)Ig&) -gA.Y)l 
lx-y1 GKP)G4Q) 

+ c mPQ(E)I gPtx) - gP( y)l 
&Q)</(P) 

= III + IV + v. 
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To estimate III, let ke Z be such that 2-k < lx-y1 6 2pkf1. Then, 
similarly to I above, 

<c l+Iy-xQI 

4Q) 

-J--Bp(n+e),z cc c 2-Pd2 

P=k 

< c ( Q 1 - I/2 - d2n 

which is dominated by the right-hand side of (D.3) since 6 < c/2. The same 
estimate holds for &,) < ,x-y, ~pQ(s)l gp(x)l , and hence for III. For IV and 
V we use the estimate 

Igp(x)-gp(y)l d lw1’2-6’” IX-Ylb SUP 
MGlY--xl ( 

1 + Ix-z-xxpl -f--I 

4P) ) 

< IpI -1/2--6/n lx-ylb (1 +$gyy-: 

since lzI< [y-xl <I(P) gives 1+ Ix-z-x,1/Z(P)% 1+ Ix-xpI/I(P). 
With this, the estimates for IV and V are almost the same as for I and II. 
For IV we obtain Cl;: 2p(6-‘E/2), which converges, since 6 < ~12. For V we 
get cg I y m  2PV + El2 - e, which is better than in II. These estimates yield 
(D.3) and complete the proof. 1 

APPENDIX E. FR~~FS OF LEMMA 10.8, THEOREMS 10.11-10.12, 
AND FR~P~~TI~N 10.14 

Proof of Lemma 10.8. Since T,,, is a Fourier multiplier operator, 
uQp = ( Ttip, cpQ) = 0 unless 4 < I(Q)/l(P) < 2. When aQp # 0 we have, as in 
Example 9.19, aQp = (27~~” 2p(G+v)“/2 hpv(xQ - xp), where I(P) = 2-“, 
Z(Q) = 2-‘, and hJx) = (271)” 2Yn(m(2v. ) x,( .)) ” (2’~). With these nota- 
tions, we will estimate 

V+l 

z=sup sup 1 1 
Y /(Q)=2-’ p=~--l ,(~)=2-r 

x (( 1 + 2” IXQ - xp I)"-'" lhp~(~Q - xP)l )‘. 

Now, supp lfiy c { 5 : [<I< 2,+‘}, so h,, is of exponential type. By the 
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proof of (2.11) in [ Fr-Jl ] (essentially the Plancherel-Polya theorem), we 
have 

for each L, where SP.a,r= {xa + 2-Y-x: x E P}, and h,(x) = (R$~)” (x). 
For x E SP,Q,r 

(1+2p Ixo -xpl)z 1 +2p Jx-2-Y 6 1 +2p ]xI+ III 

6 2(1 + 2” 1x1 )(l + Ill), (E.2) 

for 1~ - VI 6 1. Substituting (E.l) and (E.2) into I, taking the sum on I out- 
side, noting that Up SP,o,, = R” for each Q and I, and picking L sufliciently 
large, we obtain 

V+l 
Z6Csup c 2-““+‘) (1 +2” I~])~Ih,(x)l)‘dx. s Y U=V-1 

By a change of variables this last expression is dominated by the right-hand 
side in Lemma 10.8. 1 

Remark E.l. Suppose more generally that Q(t), t > 0, is a nondecreas- 
ing function with @(2t) d C@(t), and @(O) = 1. In Corollary 10.10, we need 
the analogue of Lemma 10.8 for @(lx])‘/* in place of (1 + 1~1)~. The proof 
in this more general case is almost the same. We first notice that there 
is a /3 > 0 such that @( Itx]) < C( 1 + t)B @(Ix] ), t > 0. To estimate 
@(2p ]xp - x, I) we argue as in the proof above. For x E Sp,o,/, we have 

@(2” Ix,-xQI)< c@(2px-f)6 c@((l +2” [x()(1 + Ill)) 

<C(l+ lzl)fi@(l +2’ lx])6C(l+ ]1))~@(2” IX]). 

Now the proof can be continued as before. 

Proof of Theorem 10.11. We first show that (ii) and (iii) are equivalent. 
Assume that (ii) holds. Given a function V(X) EL’ we define the sequence 
t= {tQIQ by tQ=JQ Iv(x)] dx. We have ]Jtlltflm= I]MdullL,, where Md 
denotes the “dyadic” maximal operator (i.e., the supremum being taken 
over averages only over dyadic cubes). Since r > 1, this and the maximal 
theorem imply that t EI~~. Now (ii) provides us with a sequence 
t = (ro}o and we define W(X)= SUP,,~ 1 IQI-’ zQxg(x)l. Clearby u(X) < 
Mdo(x) < w(x), and IIwIIL~ = I]zllrp~ < c /ItI/ t;p” <c ]IuIIL~. Furthermore, 

580/93/l-12 
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llY l/+q”) = ;(lQl- dn- 1’2 (As)Q)q t, 

ISQI )” TQ)“’ d c II4 qqw,. 

This is (iii) except for the fact that we now have different weights on the 
left and right. However, using the inductive argument in the proof of 
Theorem A’ in [RdFZ], this gives us the full statement. 

The proof that (ii) is a consequence of (iii) is similar. Given the sequence 
t = { tQ}Q we put u(x) = supQ 1 IQ\ --I tQXQ(x)j and zQ = Se W(X) dx, and 
obtain 

; (IQ1 - =‘* - l’*(As)Qy tp IbQI)“ie)l~ 

Again the argument in [RdF2] shows that this implies (ii). 
That either (ii) or (iii) implies (i) is a simple argument based on duality. 

For instance, let us assume (ii). Since (f?:@‘)* E if” (Remark 5.1 I), there 
is a nonnegative sequence t = (tQ} Q E f!?, /) t)l t;= = 1, such that 

IMsll~= lI{lQl- or’n- I” I&)Q 1 } II;;;81 

> 

Pi4 

~‘-“21(AS)Ql)~ tQ . 

By (ii) there is a sequence r = {z~}~ so that this is dominated by 

Using the duality once more and that ((z (( tBa < c yields 

IIM ;q d c llsll&. P 

The converse implication, that (i) implies (ii) or (iii), is harder. Here we 
simply rely on Section 3 of [RdF2]. According to the results there, we only 
have to check that the lattice fy is q-convex, which is trivial. 

Theorem 10.12 follows by the duality (I”)* z I”’ and Theorem 10.11, cf. 
[RdF2]. 

Proof of Proposition 10.14. The proof proceeds as the proof of 
Theorem 2.2 with two minor modifications. First, instead of the usual 
Fefferman-Stein vector-valued maximal inequality (Theorem A.l) we use a 
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version for doubling measures wdx. We let M, be the weighted Hardy- 
Littlewood maximal operator, 

wJ-(x)=~~Pwrlj- If( W(Y)hJ. 
xeQ Q 

When w  = 1, this is just the ordinary maximal operator M. Now for 
l<p<+coandl<q<+co,wehave 

For a proof of this, see [AJ; or Ja-Tl]. 
The second modification we need is a variant of Lemma A.2. It is easy 

to see that w  satisfies the doubling condition if and only if there is an a > 0 
such that 

w(Q) <c IQI” 
w(E)‘ ( ) IEl 

for each cube Q and each subcube E c Q. Using this and weighted averages 
in the proof of Lemma A.2, we again get a geometric series, which this time 
can be summed as long as 2 > nar/a. In this way we obtain the inequality 

( ,(p)g2mp bPl’/(l+4w lxP-~,lY)“r 

<C(M,>( 1 IMXP) (xy 
I(P)=2-fl 

for each XEQ with l(Q)=2-” and p<v. Here O<a<r< +co and 
I > ncrr/a. With these two modifications, we can proceed as in the proof of 
Theorem 2.2 (there is no difficulty in adapting the proof, since 1 may be 
taken arbitrarily large in Appendix A). 1 

APPENDIX F: NOTATION 

We generally define our notation as it is introduced, but for convenience 
we list here our more commonly used conventions. The Fourier transform 
f of a function on R” is defined by 

f(<, = jJ(x, CiX.C dx. 
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The inverse Fourier transform is denoted ” . Here n always refers to the 
Euclidean dimension, which is fixed. 

9’ = Y( KY) is the Schwartz space of rapidly decreasing test functions, Y’ 
its dual, and Y0 = {f~ 9’ : 0 4 suppf}. Throughout, supp f denotes the 
closed support off: S is the space of all polynomials. 

For k E E” and v E Z, QVk is the dyadic cube 

Qv,c= {(xl, . ..> x,): ki62’xi<ki+ 1 for i= 1, . . . . n>. 

We let xQ = 2-“k (for Q= QVk) be the “lower left corner” of Q. The 
sidelength of any cube Q is denoted I(Q), and for r > 0, rQ is the cube 
concentric with Q having sidelength d(Q). We often let Q represent an 
index set, as in Ce or { . } e. This means that the index set is the collection 
of all dyadic cubes in R”. For v E Z, fv is the 2-“-dilate of f, i.e., 
f"(X) = 2’7(2’x). f. is the L2-normalized characteristic function of Q, i.e., 
l?&) = IQ1 - ‘I2 if x E Q and z&x) = 0 otherwise. 

The pairing (f, g), is always linear in f and conjugate linear in g. In the 
case when f is a distribution and g is a test function, this means that 
(f,g)=f(d.Asusual, <.Lg)=jfgwhenLgEL2. 

For XE R, we let [x] be the greatest integer in x (the integer satisfying 
x - 1 < [x] <x), x* = x - [x], and x, = max(x, 0). In Section 3 we intro- 
duce the quantities J, N, and M, which are referred to frequently. Here 

J= nlmin(l, P, 41, N=max([J-n-cc], -l), 

and M is some fixed real number greater than J. (Only N is necessarily an 
integer.) 

We use the standard multi-index notation. For y = (yl, . . . . y,), where 
yi E Z, yi 2 0 for each i = 1, . . . . n, we have xy = XT’ . . .x2, P = 
BY1/8~;1...~Yn/d~~, Y!=Y~!...Y~!, and Ivl=yi+ ... +yn. 

In general, the notation 11 f IIX% II f II ,, (or just 1). [lxx II.I) Y) means that 
the quasi-norms 1) . II X and (I .[I Y are equivalent; i.e., there exists a constant 
csuchthatc-‘Ilfll,~Ilfll.dcIlfll,forallfwithIlfl(,orIlfl(.finite. 
As usual, c and C will in general represent various constants at various 
times. 

The weighted Lebesgue space Lp(w dx) is equipped with the norm 
(s I f (x)1” w(x) dx)‘lp. For a measurable subset Ec R”, IEl is the Lebesgue 
measure of E. 
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