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We study a representation formula of the form =3, {f, ¢o> ¥ for a distribu-
tion f on R This formula is obtained by discretizing and localizing a standard Lit-
tlewood-Paley decomposition. The map taking / to the sequence {{f, 94> }o, With
Q running over the dyadic cubes in R”, is called the ¢-transform. The functions ¢,
and ¥, have a particularly simple form. Moreover, most of the familiar distribution
spaces (L”-spaces, 1 <p < + o0, H” spaces, 0 <p < 1, Sobolev and potential spaces,
BMO, Besov and Triebel-Lizorkin spaces) are characterized by the magnitude of
the @-transform. This enables us to carry out a discrete Littlewood-Paley theory on
the sequence spaces corresponding to these distribution spaces. The sequence space
norms depend only on magnitudes; cancellation is accounted for in the ¢y’s and
¥ o's. Consequently, analysis on the sequence space level is often easy. With this we
can simplify, extend, and unify a variety of results in harmonic analysis. We obtain
conditions for the boundedness of linear operators on these distribution spaces by
considering corresponding conditions for matrices on the associated sequence spaces.
Applications include a general version of the Hormander (Fourier) multiplier
theorem and results for kernel operators of Calderon—-Zygmund type. We discuss
certain other, more general, decomposition methods, including the “smooth atomic
decomposition,” and the “generalized ¢-transform.” The smooth atomic decompo-
sition yields a simple method for dealing with restriction and extension phenomena
for hyperplanes in R”. We also consider pointwise multipliers. For the characteristic
function of a domain, we obtain boundedness results for a general class of domains
which properly includes Lipschitz domains. Several interpolation methods are easily
analyzed via the sequence spaces. For real interpolation, we obtain, among other
things, an extension to the case p=0. This in turn gives a new approach to the
traditional atomic decomposition of Hardy spaces. © 1990 Academic Press, Inc.
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1. INTRODUCTION AND SUMMARY OF RESULTS

A fundamental technique in harmonic analysis is to represent a function
or distribution as a linear combination of functions of an elementary form.
Familiar examples include the Fourier series representation on the circle,
and the “atomic decomposition” of the Hardy spaces H?(R"), O<p<1
[Co; Lal. A difficulty with Fourier series, however, is that few function
spaces of interest, other than L2 have simple characterizations in terms of
the coefficients in the Fourier expansion. On the other hand, in the Hardy
space atomic decomposition, the representing functions (“atoms™) vary
with the distribution being represented. Here we will study an elementary
representation formula, introduced in [Fr-J1], which avoids both of these
limitations. In particular, distributions on R” will be represented in terms
of a fixed, countable family of functions with convenient properties, and we
will see that most of the function spaces of interest in harmonic analysis are
characterized in terms of Littlewood—Paley expressions formed from the
coefficients in the expansion.

In [Fr-J1] we have discussed our representation in the context of the
Besov spaces B;q(IR") and B}?(R"), ae R, 0<p, g< + co. Here we extend
these results to include the Lebesgue spaces L?(R"), 1<p< + oo, the
Hardy spaces H”(R"), 0 <p <1, the Bessel potential spaces LZ(R"), a e R,
l<p< + o0, and the space of functions of bounded mean oscillation
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BMO(R”). In fact, we can deal with these cases in a unified manner by con-
sidering the more general Triebel-Lizorkin spaces F;q(R") (homogeneous)
and F ?(R") (inhomogeneous), xe R, 0 <p, ¢ < + oo (see Sections 2 and 12
for the definitions). Selecting the indices correctly gives the special cases
above; it is well known (e.g., see [Tr2]) that L? x F> ~ F* (1 <p< + ),
H”~F°2 (0<p<1), and LZ~F? (aeR, 1<p< +oo) We also have
BMO = FO2 (see Section 5). Although for many, the main interest in our
results w1ll be in these special cases, we will treat the full Triebel-Lizorkin
scale here. This allows greater generality, while the unified notation avoids
tedious repetition. More importantly, our approach proceeds most
naturally and transparently via the notation and techniques developed for
the Besov and Triebel-Lizorkin spaces by Peetre, Triebel, and others.
General references for this are [P3; Tr2].

We would like to emphasize that our results hold exactly for those func-
tion spaces that have some sort of Littlewood-Paley characterization. The
reason for this is that our representation formula is set up so that the coef-
ficients in the expansion exactly capture the information in the Littlewood—
Paley norm defining the Triebel-Lizorkin spaces. Thus our approach can
be described as a reformulation of Littlewood-Paley theory. Our main
point is that the use of the representation formula makes this formulation
particularly direct and simple. Classical Littlewood-Paley theory on the
circle was developed by Littlewood, Paley, and the Zygmund school (see,
€.g, [Z, Chaps. 14-15]), while in the more modern context in R” it is
largely due to Stein and his colleagues (see, e.g., [St, Chap. 4]).

In the introduction to [Fr-J1] we trace the background of our work
through two general lines. One is the use of the Calderdn reproducing
formula to generate decompositions of functions into smooth bumps, as in
[Cal2; Ch-F1; Ul; Wi]. An alternate direction is that of Coifman and
Rochberg [Co-R], Ricci and Taibleson [Ric-T], and others. We refer back
to [Fr-J1] for discussion of these. However, there are many further referen-
ces which could have been given at the time of [Fr-J1] or which should
be mentioned specifically in connection with our current work. For exam-
ple, various forerunners of our ideas can be found in [Co-W2; Tai-W].
Also, the theory of tent spaces [Co-M-S] shares many key features with
our development; it can be regarded as a reformulation of Littlewood-
Paley theory alternate to ours here. We also mention [Str6-T], where an
earlier decomposition of L?, 1 <p< + oo, along different lines than ours,
is presented.

In any case, we want to make clear that virtually all of our techniques
already exist in some antecedent form. Nevertheless their particular com-
bination here leads to new conclusions and to sharpened versions of known
results. Moreover, our presentation reveals an elementary discrete structure
underlying a diverse range of topics in harmonic analysis.
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The work most closely related to our current work, however, is the theory
of “wavelets,” as developed by Stromberg, Meyer, Lemarié, Coifman,
and others (see, e.g., [Stro2; Le-M; Co-M1]). Both our theory and theirs
result from projects that have been ongoing for several years. Although the
projects are independent, there has been a certain amount of mutual inter-
change and influence, which we would like to acknowledge. The wavelet
theory can be regarded as a refinement of our earlier, more elementary,
“almost orthogonal” decomposition in [Fr-J1]. (For a discussion of
various almost orthogonal decompositions, including ours, see [DGM].)
Wavelets are a collection of functions similar to the representing functions
in our decomposition, but which are mutually orthogonal. In fact, wavelets
form an unconditional basis for the usual function spaces in harmonic
analysis listed above. Thus, unlike our theory, the wavelet theory is
immediately connected to the vast literature on the construction of explicit
unconditional bases for various function spaces. However, for the
applications that we have considered (not related to bases), our more
elementary decomposition has been sufficient. Thus, for reasons of
simplicity (and perhaps stubbornness) we have presented our results
without reference to the beautiful theory of wavelets. However, the reader
will readily note that our conclusions generally apply as well to the wavelet
decomposition.

In [Fr-J2] we have published a preliminary account of the results given
here. There one can also find some further expository background and a
few applications not presented here.

Our basic representation formula takes the form f=3%, {f, 9, ¥y,
where the sum runs over all dyadic cubes Q in R”, and ¢, and ¥, are
translates and dilates of functions ¢ and y, respectively, to Q. (See Section 2.
Here, and throughout the Introduction, the reader should refer to the main
text for the precise statement.) The functions ¢ and ¥ are assumed to
satisfy (2.1-2.4) below; in particular, they are smooth, rapidly decreasing,
and have compactly supported Fourier transform. We then have

SUpp G, o= {E:2° 7 I<IEI <2 il [Q)=2""

Therefore {@g,¥p> =0 unless 3<I/(Q)/I(P)<2; even then <@g, ¥pl
will be small if Q and P are far away from each other, since ¢, and ¥,
decay rapidly away from Q and P, respectively. Thus our decomposition
=20/, 90>V is “almost orthogonal.”

We define a map §S,, the ¢-tranform, which takes the distribution f
to the sequence of coefficients {{f, ©0) }0dyasic- FOr any sequence
5= {50} 0 ayadic Of complex numbers, we define the map T,, the inverse
¢-transform, which takes s to Tys=Y,s,¥,. Then our representation
formula states that f=7T,(S,f) To make these formal statements
meaningful, we introduce quantitative assumptions on f and s which



38 FRAZIER AND JAWERTH

guarantee convergence in the appropriate sense. Let f;" (xeR,
O<p<+o, 0<g<+o0) be the collection of all sequences

S= {SQ}Qdyadic SO that

< + o0,
P

l/q
bl = | (3 001" ol )
where the sum runs over all dyadic cubes in R” and 7, = Q| "? 1, is the
L*-normalized characteristic function of Q. Note that the quantity inside
the L”-norm is a generalized (to g #2), discrete Littlewood- Paley expres-
sion. Our basic result is that f=3, (S, f)o ¥, and that fe F“" if and
only if S fef“" (with || £l 20 R 1S, /1 fuq) In fact, F“‘q s a retract of f“”
under S, and T,, or, in other words, we have the followmg theorem.

THEOREM 2.2. The operators S,: F"‘"—»f * and T,:129-F are
bounded, and T, - S, is the identity on F""

The proof of Theorem 2.2 is given in Section 2 and Appendix A (we
frequently put technical, elementary computations in appendices); it is a
variant of the proof given earlier in [Fr-J2]. We will use this result
repeatedly to obtain applications regarding the F“" spaces in the following
way. First we formulate and prove a correspondmg assertion for f “9; this
is generally easier because the l' *? norm is discrete and depends only on the
magnltude of the sequence elements Then the result for F“" can be derived
via Theorem 2.2. The general principle is that once L1tt1ewood Paley
theory, in the guise of the ¢-transform, has been applied to reduce the
problem to the sequence space level, one only has to deal with “size”
estimates of a combinatorial nature.

In Section 2 we also note Proposition 2.7, which is very simple but quite
useful in applications. It states that we may replace y, in the definition 37
with yg, if, for each Q, E, = Q and |EQ|/|Q| >e>0.

In Section 3 we study operators on F“" by considering corresponding
operators on f x4 Associated to a l1near operator B on F;q is a linear
operator S B= S oB-T, on f 24, and B is bounded if and only if S%B is
bounded. It is easy to see that for 0<p,g< + o0, a bounded hnear
operator on the sequence space f;” corresponds to a matrix {agp}g p; in
particular, S%B then corresponds to the matrix having entries
agp={BYp, (pQ> Thus conditions implying boundedness on f *4 translate
into conditions for operator boundedness on F“"

We consider one such matrix condition in deta11. We say that a matrix
A={ayp}, pis almost diagonal if (3.1) is satisfied, which requires |a,p| to
decay at a certain rate away from the diagonal (when Q= P); i, |aypl|
must decay as /(Q)/I(P) goes to 0 or o0, and as P and Q get far away from
each other. We then have the following.
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THEOREM 3.3.  An almost diagonal operator is bounded.

In Section 9 we will note that appropriate Calderon-Zygmund operators
and certain classes of Fourier multiplier operators correspond to almost
diagonal matrices. Thus, the ¢-transform simultaneously “almost
diagonalizes” these operators. To put this another way, note the obvious
fact that if {e,}, is an orthonormal basis for any Hilbert space, the matrix
{(Ade,, ¢;>},; is diagonal if and only if each e, is an eigenfunction of the
operator 4. Due to the almost orthogonality of the functions {y,}, and
{90} 0, we regard the functions {i,}, as “approximate eigenfunctions” of
an operator B if the matrix {{By,, ¢}, p is almost diagonal. Thus the
¥ p's are simultaneous approximate eigenfunctions for the operators men-
tioned above. This corresponds to the familiar fact that the Fourier charac-
ters {¢™},.p are simultaneous eigenfunctions for translation invariant
operators on R”. The basic trade-off in our approach is that we give up
having exact eigenfunctions in order to obtain the norm-characterization in
Theorem 2.2.

In Theorem 35 we obtain an estimate of the form
120 stQHF:ch [Is]] £ whenever the my’s are “smooth molecules,” ie.,
when the m’s satisfy the smoothness, decay, and cancellation properties
(3.3)-(3.6). This generalizes the boundedness of 7, in Theorem 2.2 which
guarantees that this estimate holds if mg, = ,. Similarly, Theorem 3.7
generalizes the boundedness of S,; we have [{<f,by)}l e <c LSl £
whenever the b,’s satisfy (3.7)-(3.10).

This leads us to look for generalized versions of Theorem 2.2. For exam-
ple, it is useful in Sections 11 and 13 to decompose f into a sum of com-
pactly supported functions. This can be done fairly easily based on
Theorem 2.2; in Theorem 4.1 we show that each fe F;” has a “smooth
atomic” decomposition. By this we mean that we can write =3, 5,4,
with | {sQ}QH,;qs c |l fIl #o0> where the a,’s are “smooth atoms™—ie.,
(4.1)-(4.3) hold. (In fact, we may take a, € 2.) However, in this result the
ay’s depend on f, and the coefficients are not linearly determined by f.
In Theorems 4.2 and 44 we obtain decompositions of the form
=X, {f. 12> with appropriate estimates, under fairly general condi-
tions on the families {r°}, and {c?},. In particular, we may take either
family (though perhaps not both) to consist of translates and dilates to Q
of a function in 2.

We discuss the spaces F*/ in Section 5. The main difficulty is to find the
“right” definition of these spaces. The immediate analogue of the definition
for p < + o is not satisfactory, while certain other approaches have been
given which are not computationally explicit. We define

oCc

1 /g
o= e (5], % @ loswirr)

P dyadic 'Pl P —loga/(P)
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Also, we define a corresponding sequence space f*¢ with the norm

1 l/q
Isllpw = sup ( [ % agr= lsgrzg(x))qu> :

P dyadic |Pl PQcP
We obtain in Theorem 5.2 the analogue for p= + oo of Theorem 2.2. To
show that our definition yields a continuous extension of the p < + oo case,
we consider an operator m*, which is a discrete variant, for our sequence

spaces, of the local square function. From this we obtain the operator
A**=m*- S, on the function space level, which has the property that

1A o2 1 f

for all e R, and 0 < p, g < + oo (Corollary 5.8). Further, in Theorem 5.13,
we obtain the desired duality

(FT")* ~ Fo—oaq”

where 2 e R, and ¢ and ¢’ are conjugate indices. This is derived from the
corresponding result, Theorem 5.9, for the sequence spaces. In particular,
we have F2~BMO. (Other cases of the duality for p# 1 are easier; we
consider these in Remark 5.14, including one case formerly left open.) The
theory for p= + oo is clarified by Corollary 5.6 in which we note that a
sequence s= {s,}, belongs to f* if and only if there exists for each Q a
subset E, = Q, satisfying |E,|/|Q] 2 3, such that

l/q
[ (Z (gl " |sQ|zEQ)q)

0
With this the @-transform yields another perspective on the H'-BMO
duality, although this perspective is implicit in the second proof of this
duality in [Fef-S2].
Real interpolation is considered in Section 6. We define a sequence space
f, which acts as a common endpoint space for p=0 for the scales f o
0<p< + oo, for each fixed « and 4. With the norm

U e

sQ#0

< + 0.

L®

”S||f0=

£l

f, is a quasi-normed Abelian group. Then Peetre’s K-functional for the pair
(fo, £29) is characterized as follows.

THEOREM 6.4. K(t, 5; T, T%9) = K(t, m*(s); L°, L*).
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Using this, reiteration, and retraction, we have the following function
space result.

CoroLLARY 6.7. K(t, f; F“"F"‘") K(t, A%, L, L) for 0<po<p, <
+ 0.

Then the following real interpolation result are easily established:
(fz¢, £29), ,~F2  (Corollary 6.6),
and

(F

po°

k), ,~F3  (Corollary 6.7)

for 1/p=(1—8)/po+0/p,, 0<p,<p,< + 0. We do not, however, obtain
a satisfactory function space analogue of f,. The natural analogue of f, has
the undesirable property that it depends on the choice of the original test
function ¢.

In Section 7 we obtain an analogue of the traditional “non-smooth”
atomic Hardy space decomposition, for the F;"-spaces, in the range
O<p<l, p<ggs + .

THEOREM 7.4. Each fe F"‘" for these p and q can be written in the form

f=%kcz i with (Xiez |/1k|”)‘/”<c 1fllgze, where each Ay is an “atom
for F“" ”

An “atom for F%¢” is different from a “smooth atom for ¥ (introduced
in Section 4). In particular, each A, satisfies the usual H” compact support
and vanishing moment conditions, and satisfies 4, € F* (and || 4| g <€)
In the case of H” ~F°2, we obtain the usual atomic decomposmoﬁ with
“BMO-atoms.” The range of indices above is natural, since this is exactly
the range for which |- ||£ Fae is subadditive, yielding the estimate converse to

the one in Theorem 7.4. Although there are more direct proofs of Theorem
7.4, similar to certain proofs of the H?-decomposition (e.g., [Fo-S]), we
have given a proof based on the real interpolation results for f, and % in
Section 6. The finite measure condition in the definition of f, leads to the
compact support of the atoms. We give this treatment to stress the recipro-
cal relation between interpolation and atomic decompositions. It has been
a natural conjecture from the time of Coifman’s original proof [Co] that
the atomic decomposition could be explicitly reduced to the “Fundamental
Lemma” of real interpolation (see [Be-L1). Our presentation verifies this
conjecture.

We take advantage of the fact that the discrete spaces f o7 are
(quasi-)Banach lattices when we discuss other interpolation methods in
Section 8. Because of the lattice structure, the Calder6én product of a pair
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of f »-spaces is defined. We show in Theorem 8.2 that this product is the
natural intermediate f Si-space. For lattices, many interpolation methods
are known to coincide (under mild conditions) with the Calderon product.
Thus we obtain various interpolation results for f 5%, and this yields
corresponding results for F:" by retraction. For example for Calderdn’s
complex method of interpolation, we easily derive the following (known)

result.

CoROLLARY 83. [Fue Fx97,xF for 4, a,€R, 1<p,, go< + o0,
1<py, q, < + o0, where the indices an related in the usual way.

We obtain similar results for the {A,, 4, >, method (Corollary 8.4) and
the +method (Theorem 8.5). This last method yields the interpolation
property for the F“q-spaces in the greatest generality. That is, if 7 is a linear
operator such that T Foa— F#7i is bounded, i=0, 1, then T:F2 — F% is
bounded, where the a s q’s, and p’s are related as in Corollary 8.3, and
similarly for the f’s, r’s, and t’s, for the full range of possible indices
(0<p;, g;, ri, 1;< + 00). We note that we obtain this directly by applying
Corollary 5.6 and thus we avoid relying on Wolff’s reiteration
theorem [Wo].

We discuss the almost diagonality condition from Section 3 further in
Section 9.

THEOREM 9.1.  The composition of almost diagonal operators is almost
diagonal.

Thus the collection of almost diagonal operators for f;", which we
denote ad;?, is an algebra under composition.

We say that a family of functions {m,}p 4yaqc is an Ad3?-family if the
matrix {{mp, o) }o pcady’. We noted in Section 3 that a family of
smooth molecules is an Ad;’family. For « =0, the converse is true also
(Theorem 9.15), but for o # 0 the smooth molecule conditions are stronger
than necessary. In Theorems 9.3-9.4 we give an exact characterization of
Ad}?-families. We also show the following:

THEOREM 9.9. If f=3 o somg, where {my}, is an Ad}*-family, then
1S N gee < € ||{SQ}Q|lf;"-

Hence, by our decomposition results, if T is a linear operator mapping
an arbitrary family of smooth atoms {a,},, or the family {y,,},, into an
Ad;"-family, then T is bounded on F 27 Let Ad;q be the set of all linear
operators such that {{Ty,, 9,> } o »cad}?. By Section 3 we know that the
operators in Ad;? are bounded, and from Theorem 9.1 it follows easily that
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Ad;? is closed under composition. It is shown in [Fr-H-J-W; FW; Torr ]
that certain generalized Calderon-Zygmund operators (of the type con-
sidered by David and Journé in [DJ]) map smooth atoms to smooth
molecules and hence belong to Ad%’. In Example 9.19 we see that Fourier
multiplier operators satisfying an L'-Mihlin condition belong to Ad;? also.
Hence, the algebra Adj? is fairly rich.

In Section 10 we consider conditions, more precise than almost
diagonality, under which boundedness on f o or F““’ is obtained. The
general philosophy is that cancellation aspects of the F”‘q spaces are
accounted for by the Littlewood—Paley theory implicit in the @-transform;
then, on the sequence space level, it should be possible to obtain key infor-
mation through estimates depending only on magnitudes. Consistent with
this philosophy, we discuss size estimates yielding boundedness of a matrix
of f “_For this purpose we consider a number of characterizations related
to the classical Schur’s lemma. For each of the spaces f ¥ 0<p<l,
fre f ;°°, 0<p<1, and %!, we obtain necessary and suﬁiment conditions
for a positive matrix to be bounded. Using this, in Theorem 10.3 we obtain
simple conditions under which a matrix is bounded on f S0 for all
1<p,g< + o (and aeR fixed). In Corollary 10.6, we obtain sufficient
conditions for general p and g by a reduction to the case p,g>1.

Passing to the F;’," spaces, we get as an application a sufficient condition,
(10.19), for a Fourier multiplier operator to be bounded. From this and
Holder’s inequality, we obtain (Remark 10.9) a relatively straightforward
proof of the known fact (see [Tr2]) that for ae R, 0<p, ¢ < + 0, a func-
tion m satisfying

“ Li—n/2+s < + oo

sup [|m(2°¢) ¢(&)
is a bounded multiplier on F3*. (Here J=n/min(1, p, ), and L;=F5?is
the usual Bessel potential space.) This unifies a number of results about
Fourier multipliers. When 1<p< + o0 and ¢g=2 this is the familiar
Hormander multiplier theorem [Horl]. If 0<p <1, and g=2, this gives
the H’-analogue, since here J=n/p (see [Fef-S2; Cal-T]). (Recall that
FP~L?, 1<p< +o0, and FP?~H?, 0<p<1.) We remark that in our
approach, the HP-result, 0<p<1, is obtained from the L’-result,
1<p< + o0, by a simple reduction (on the sequence space side), some-
what like the classical reduction in one dimension of H” to L” via Blaschke
products. This may seem surprising, but it is already implicit in [P2].
In fact, our methods can be sharpened to obtain the following refinement
of the Hormander (Fourier) multiplier theorem.

CoroLLARY 10.10. Suppose ®(t), t=0, is a nondecreasing function
satisfying ®(0)=1, ®21) < Cd(t), t 20, and
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NI ]‘”d’<+oo
X — .
2 sz P(|x]) t

Suppose m satisfies

sup [[@(x])"2 (m(2"-) $(-)) ¥ (x)]l 2 < + c0.

Then m is a bounded Fourier multiplier on F;q(R")for 2eR, 1<p, g< + .

We continue by further discussing boundedness criteria for positive
matrices. Using a theorem by Rubio de Francia [RdF2] to reduce to the
[?-case, and then Schur’s lemma, we obtain a characterization (Theorem
10.13) of positive matrices bounded on f;", 1<p, g< +c0. Applying the
ideas of Rubio de Francia (see, e.g., [GC-RdF]) in our context gives some
extrapolation results, for instance, the following. (See Section 10 for the
relevant definitions.)

THEOREM 10.17.  Suppose T,, is a Fourier multiplier operator bounded on
Fgg"(w), for all we A, for some fixed p, and q, with 1 <pg, go< + .
Then T,, is bounded on Fg"(w)for all 1<p,q< + 00, and all we 4,.

The problem of restricting distributions in a certain F ' space on R" to
the hyperplane R" ' = R” is considered in Section 11. It has been observed
before that the restriction, or trace, results for F:" are independent of the
index ¢ (e.g., [Ja3]). By considering our sequence spaces 57 and exploiting
Proposition 2.7 in conjunction with the geometry of the trace problem, we
obtain a simple geometric explanation of this fact. From this and the result
in the diagonal case ¢=p in [Fr-J1] (F;” coincides with the Besov space
B;"), we obtain complete trace results for F;" in Theorem 11.1. This
includes the known cases and some that may be new.

Our treatment so far has dealt only with the homogeneous spaces F;".
In Section 12 we describe the corresponding results for the inhomogeneous
spaces F,?, which include, for example, the Bessel potential spaces LZ. The
main difference is that instead of using all dyadic cubes in R”, we use only
cubes Q with sidelength /(Q)< 1, and the functions corresponding to cubes
Q with /(Q)=1 are slightly different. Otherwise, everything is essentially
the same and all our results for F:q have inhomogeneous analogues.

We consider pointwise multipliers for the F}? spaces in Section 13. After
some general remarks, we restrict attention to the case of the characteristic
function x, of a domain QeR" and ask when the operator Tf(x)=
xa(x) f(x) is bounded on F3?. We consider the following condition: we say
QeD, (s>0)if

1 1 Vs
sup I(Q)(I—Qljghgmdx> < 4+ oo,

Q dyadic,/(Q)< 1
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where 0(x) is the distance from x to the complement of Q. Our main result
is Theorem 13.3, which states that if Qe D, then y, is a pointwise multi-
plier for F}? for « in a certain range depending on s, p, and g (see
(13.17)-(13.18)). In the proof of this theorem we exploit the smooth atomic
decomposition and certain precise conditions from Section 10 for matrix
boundedness on the sequence spaces f »¢. By duality and interpolation, we
deduce, in Corollaries 13.4-13.5, that y, is a bounded multiplier for a
larger range of indices. To understand the meaning of these results, it is
easy to check that if € is the upper half space R" , then Qe D, for 0 <s <1
(see (13.7)). Then our results for R” agree with the known results (e.g,,
those in [ Tr2]). More generally, however, the classes D, 0 < s < 1, include,
but are not restricted to, all bounded Lipschitz domains. Thus our
pointwise multiplier results for y, apply to certain general classes of
domains 2, which properly include Lipschitz domains.

Finaily, in Section 14 we suggest some possible extensions of our results
and make a few concluding comments.

2. THE @-TRANSFORM AND SOME Basic Facts

In this section we shall start by recalling the definition of the
p-transform (cf. [Fr-J1; Fr-J2]). The main result is Theorem 2.2 which
shows that the g@-transform allows us to identify the Triebel-Lizorkin
spaces F;" with subspaces of the analogously defined sequence spaces f pa
(precise definitions are given below). To prove this theorem we need
several basic facts. These are either known or follow by quite elementary
arguments from well-known results. In the latter case we have deferred
proofs to Appendix A. We conclude the section by showing another basic,
geometric property of the f ~4-spaces (Proposition 2.7).

To set notation, let ¢ and y satisfy

o, ¥ e S (R"), (2.1)
supp ¢, = {Ee R L<|¢| <2}, (2.2)
), () =e>0 if 2g|E1<3, (2.3)
and
P2’ Y(2°¢) =1 if £#0. (2.4)

We set ¢, (x)=2"¢(2"x) and ¥ (x)=2"¢(2"x), ve Z.
For veZ and ke Z", we let Q,, be the dyadic cube

Qu={(xy, s x)eR"k;<2x;<k;+1,i=1,..,n}
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We denote the “lower left-corner” 27"k of @ =0, by x, and the side
length 27" by /(Q). Define

9o(x)=101""? o(2’x~ k)= 0] p(x—xp)  if Q=0

and similarly define ¥,. Note that ||yl 2= @l ,2 and |, 2= (Y] 2 for
all dyadic Q,

Supp o, Yo S {€:2° I <IEI<2 T} if HQ)=27",  (25)

and
107@0l, 107l C, L 1Q1 2" (1 +1Q) " Ix—xgl) =71, (26)

for each L €7, and multi-index y of length |y| = 0.

For ¢ and y satisfying (2.1)-(2.4), the ¢-transform S, is the map taking
each fe &'/? (the space of tempered distributions modulo polynomials) to
the sequence S,f={(S,f)o}o defined by (S,f)o=<f, 0y for Q
dyadic. The inverse ¢-transform T, is the map taking a sequence s= {5, },
to Tys=3 o So¥,. Here and throughout, when Q appears as an index, it
is understood that Q runs over the dyadic cubes in R”".

As in [Fr-J1], the basis for our results concerning the ¢-transform is the
following lemma.

LEmMMA 2.1 [Fr-J1, Lemma 2.17]. Suppose ¢ and  satisfy (2.1)-(2.4). If
fe P |P(R™), then

fO=Y 27" Y ¢+ fQ7R)Y(-—27K) =Y {f, 90> Yol-),
¢

velZ keZ”?
where $ (x)=¢,(—x).

Hence, T, S, equals the identity on ¥'/2.

For aeR, O0<p< + 0, 0<g< + o0, and any ¢ satisfying (2.1)-(2.3),
the Triebel-Lizorkin space F;q is the collection of all fe &'/2(R") such
that

( S 2% lp.f] )q)l/q

veZ

1A W eme =

L"< + co,

where the /-norm is replaced by the sup on v if ¢= + co. This definition
is independent of the choice of ¢; see, e.g., Remark 2.6 below. We note that
the quantity inside the L”-norm defining F;" is a generalized, discrete
Littlewood—Paley expression which corresponds to the usual g-function if
a=0 and g=2. Hence, the well-known equivalence | g(f).»= I/l xe,
0<p< + o [St, Fef-S2] (here & means that the (quasi)-norms are equiv-
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alent) suggests the result of Peetre [P1] that F>=H” for 0<p+ 0,
modulo polynomials (see also [Trl, p. 30; Bui; U2], and Remark 7.8
below).

For xeR, 0<p< + o0, and 0 <g < + oo, we let f;q be the collection of
all complex-valued sequences s= {54}, such that

1/q
sl = H(z (101 Isol o))
Q

< + 00,
L?

where 7,=10| ~"? 1, is the L?-normalized characteristic function of Q.
From our next theorem follows the fundamental fact that the following

diagram is commutative:
aq
fp
7\

Faq Id Faq
P p -

THEOREM 2.2. Suppose aeR, 0<p< + w0, 0<g< + 00, and ¢ and
Y satisfy (2.1)-(2.4). The operators S,: ¥ 512 and T,: {29 > ¥ are
bounded. Furthermore, T,oS, is the zdentzty on F *  In particular,
.f IIFuq xS, f ||fnq, and F"‘” can be identified with a complemented subspace
of 2 xq

More explicitly, S, identifies F“" with the subspace S (F“q) Note that
Pr=S,-T, is a prOJecnon operator from f:" onto this subspace In par-
tlcular Pr is the matrix operator (Pr({s;}p))o=2ps5p{¥p, 9y). Of

course, S (F“") consists exactly of the sequences invariant under Pr;
we  thus have the criterion that {s,},eS, (F“") if and only if

=3 p85p¥p, (PQ> for each Q.
Similarly, since T, =S, is the identity operator, we have

o g>=<z (Sof)oVor g> (5,5, 8) @7)
Q

for fe &% and ge &'/P. Here {s,t) =73 4591, for sequences s and ¢, Note
that the related identity

(S fi1>=) {fr 0o To={f, T 1> (2.8)
Q
1s trivial.

580/93/1-4
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If we choose y = ¢, which we may, then our representation formula
becomes f=3, {f, 9o @y, as if the collection {¢,}, forms an ortho-
normal basis. Similarly, when ¢ =y, (2.7) takes the form (f, g)=
(S,f,S,8>, again as in the orthonormal case. Of course, (2.7) is a
triviality if ¢ = and the ¢,’s are orthonormal.

Now, to prove Theorem 2.2 we need two additional lemmas; the first is
a characterization of f;” analogous to the g¥ characterization of L7 in
classical Littlewood-Paley theory (see, e.g., [St]) and Peetre’s ¢ }* charac-
terization of the F;"—spaces [P2].

For a sequence s= {55}y, 0<r< + o0, and a fixed 1>0, we define the
sequence s* = {(s*)p}o by

1/r
o= T I M+1Q)  1xp-xol)
Pi(P)=L(Q)
(We will write s¥; when the choice of A requires emphasis.) Notice that the
imbedding /" — 4, if r < ¢, implies that
SEassk, 2.9)

with p = Ar/q.
LemMMA 23. Suppose aeR, 0<p< + 0, 0<g< + 0, and 4A>n. Then

~ *
“S“ f;q ~ “Smm(p,q)” f;"'

The proof relies on the Fefferman—Stein vector-valued maximal
inequality and is given in Appendix A.

Remark 24. The following remark is a reformulation of the remarks in
[Fef-S1] regarding the Marcinkiewicz integral; our purpose is to exhibit
the geometric content of Lemma 2.3. Let 2 <R” be an open set with
Whitney decomposition F={Q,}, (see [St, Chapt. 6]). For xeR", let
d6(x) be the distance from x to R"\Q. The Marcinkiewicz integral of
order B is

St y) V)
Tyl +o(x+ y)1™ Y
~ ¥ Y(1+00)" [x—xgl)™.
QeF

Classical results [Cal-Z; Carl; Fef-S1] give

T =

f Jx)y dx<c|@] if 1/min(a, 1)<f< + co.
R’I
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Define a sequence s= {5y}, by so=10Q|"* if Q€ F and s, =0 otherwise.

Then
1/q
( Z XQ)
QeF
Also, however,

L/g\ 9\ /g
Ioaaley= <Z<ZQ< L lPIq/z/(l"'l(P)*l|xp—fo)’1> >)

lgl l/p.

|S”f°‘7—

Ly QeF

Q (P)=1(Q) Lr
PeF
‘l/q
=(ZxQ > 1/(1+1(p)~1|x,,_xg|)».)
Q I(P}’=IF£Q) L

Q

J(Z X te X 1/(1+I(P)'1|x—xp|y)l/q

v (Q)=2"" P)=1Q)
PeF

= (Z 1/(1+1(P)-‘|x—xp|)i)w

PeF

P

= N yll
173

Let r =min(p, ) and p=rAi/q. Using (2.9), we see that s}, <s¥,. Thus by
Lemma 2.3,

p p
”JA/n”LP‘I\C HS “f24<0 ”s:u”fg‘l

<clslfugel@l,

if pu>n, ie, if 4/n>1/min(1, p/q). Setting a=p/q and B=1i/n yields the
classical estimates above.

The next lemma is a version of a classical result about entire functions
of exponential type which goes back to Plancherel and Pélya [PI-P]. The
underlying idea is that a smooth function cannot oscillate too quickly and,
consequently, the supremum and infimum over most sufficiently small
cubes must be comparable. The lemma will also be useful later on to relate
the norms of F3? and f*.

Let ¢ satisfy (2.1)-(2.3). Note that @(x)=¢@(—x) also satisfies
(2.1)-(2.3), so that we may take @ in place of ¢ in the definition of F“q For
fes& /9’ and Q dyadic with [(Q)=2"", we define the sequence

sup(f) = {supo(f)}o by setting

supo(f) = 10" Sug 1@, * f(¥)l,
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and, for yeZ with y >0, the sequence inf,(f) = {inf, (1)} by
info (/)= Q"> max{inf,.5 ¢ * f(»)|: (@) =27"1Q), D= Q}.

LEMMA 2.5. Suppose aeR, O<p< + o0, 0<g< + o, and yeZ is
sufficiently large. Then for fe &'|P,

1f IV e 2= sup(f ) ze = [linf, (£ )] 0.

A proof can be found in Appendix A. A more precise version (at least in
one dimension) of this lemma may be obtained from the interpolation
formula in [Bo, p. 192].

Proof of Theorem 2.2. The boundedness of S,:F27 > {37 follows from
Lemma 2.5, since, if 0 =0,

1S, ol =<1, 0o =101V @, * f(27"k)| < supg(f)-

To prove the boundedness of T,:f%—F, suppose s={sy}, and

v+ 1

(Z)v*f(x)= Z Z sl(ﬁv*wl'

p=v—1 [(J)y=2"#

After a translation and a dilation, the estimate
1@, % W (X S € ] 721424 [ x — x| )Hmintn)

if (J)y=27* A>n, and 0<r< + o0, follows from the fact that @+ _,
@ =1, and @ * ¢, all belong to &. Therefore, if xe Q* < Q < Q**, where
Q* @, and Q** are dyadic with /(Q*)=2"""! [(Q)=2"", and
I(Q**)=2""*!, we have

v+l ir
1B, % fX) <c Q] Y ( 5 |s,|'/(1+2“|x—x,|)i) :
pu=v—1 \j(J)y=2"#

by the r-triangle inequality if r < 1, or by Hoélder’s inequality and the fact
that if r>1 and A>n, 3,y -5-+ (1 +2# |x—x,|) "*<c. Hence for xe Q*,

1§, * [ <c1QI 712 ((s¥)ge + (5})g + (5¥)gev).

Taking r =min(p, q¢) and applying Lemma 2.3, we obtain

1Tyl o= <clis¥lp<c sl .

Zsjll’l
J | 2
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Finally, the fact that T,0S
ma 2.1. |

» 1s the identity on F;” follows from Lem-

Remark 2.6. Suppose ¢' and ¢? each satisfy (2.1)-(2.3). Then it is
possible to find ¢! and 2 so that (2.1)-(2.4) are satisfied for each pair ¢’,
Y, i=1,2. Define F2%(3') and F2%($) as above, using ¢' and ¢ in place
of ¢. Note that the proof of the boundedness of T,:f%—F% above
requires only (2.1)-(2.2). Hence,

”f”p‘;“i(@l) = <c ”S(pzf“f;qS c “f”F;‘"(@Z)'

F(3Y)

DRCRIWT
Q

This shows that the definition of F;" is independent of the choice of ¢
satisfying (2.1)-(2.3) (cf. [P2]).

We also note the following simple fact, which is of considerable use in
applications (e.g., Section 3 in [Fr-J2] and Sections 11, 13 below).

PROPOSITION 2.7. Let ¢>0. Suppose that for each dyadic cube Q,
Eo <= Q is a measurable set with |E,|/|Q| = ¢. Then

9
L

l/q
lsobollz | ( (101 Isol 72,
Q

where 7z, =|E,| -2 Ly

Proof. Since 7z, <& 27y, one direction is trivial. For the other, note
that for all 4>0, yo<e™"(M(yxz,))", where M denotes the Hardy-
Littlewood maximal operator (see Appendix A). Select A such that p/A,
g/A>1. By Theorem A.1, then,
1/A4

f {SQ}Q”f;‘lgeil/A

Alq
(Z (M(1Q] " isQIZEQ)”)"/">
Qo

LplA

—1/4
<ce VY

1/q
(2 (101~ IsleEQ)q)
Q

Lr

3. ALMOST DIAGONAL OPERATORS AND SMOOTH MOLECULES

Our purpose in this section is to obtain a sufficient condition for an
operator 4 on f;" to be bounded; the condition is simple, yet general
enough to include many interesting operators. We then use this condition
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to generalize Theorem 2.2 in two ways. The first involves decompositions
into “smooth molecules” and is an extension of the boundedness of T,.
The second generalizes the fact that S, is bounded.

The commutative diagram preceding Theorem 2.2 in Section 2 can be
extended to the level of operators. For a (quasi-)normed space X, let Z(X)
be the space of bounded linear operators on X with the operator norm. For
¢ and  satisfying (2.1)-(2.4), we define maps S%: & (F;")—»f(f;q) and
Ty L(F%) - L(F) by

S*B=S,0BoT,
and

TEA=T,cAoS,

if Ae L) and Be L(F). As long as g# + oo, any Ae () is
represented by a matrix {aQP}Q p- Namely, if e ef;" is deﬁned by
(e")g=1if Q=P and (e”), =0 otherwise, we set ayp=(Ae”),. Then
(As)g=pagpsp for s={so}oelzs. For feF:, let so={f, py). By
Theorem 2.2, then, f=3, 5,¥, and hence

(T3ANS)=2 (A4S, o Vo=3 (45)o V.
0 )

Similarly, if sef% and Be Z(F2), g< + oo,
(SEB)(5)g=(S,BTy8)o=<BY sp¥p, 9g)
P

=ZSP<B¢P, ¢Q>s

s0 S*B is the operator on f -7 associated with the matrix agp = (B p, 0.
If g= + oo the same representation of S%B holds under weak continuity
assumptions on B, eg, if g,—» g in &'/?, g,, geF*, then Bg,~ Bg in
PP,

PropPoOSITION 3.1. Let aeR, O0<p< + o0, and 0<g< + . The maps
S* and T} are bounded, and T - S% is the identity on & (F“") In particular,
for Be X(F“")

||S$B|| () ~ || Bl LEY):

Proof. All conclusions follow immediately from Theorem 2.2 and the
definitions of S% and T'5. |
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Thus the following diagram is commutative:

L(i)

v N

PFu) —— P(F2).

Let J=n/min(1, p, q). We say that 4, with associated matrix {ayp}o p,
is almost diagonal on { »4 if there exists ¢ >0 such that

Sup |agp/gp(e) < + o, (3.1)
Q.P

where

C T/HQN "+ [I(P)\+ev2+s—n
| (Ga) @)

Remark 32. For «=0 and p, ¢ > 1, the almost diagonality condition
has the following interpretation. Let G = {(x, f): xe R”, t >0} be the group
with multiplication

(X0, to) - (x5 £1) = (2 X0+ Xy, Lo1y).
Then the map U: G — £(L*(R")) defined by

U(xq, to) f =t "f((x — Xo)/to)

is a unitary representation of G. In particular, if we associate with the
dyadic cube Q <R”" the point (x4, (Q))eG, then U(xy, (Q)Y =yy,.
Thus Theorem 2.2 shows that the image of i under the subset
{U(xp, [(Q)): Q is dyadic} of U(G) generates F2 for each aeR,
O<p< 4+, and 0<g< + 0. (See the comments and references in
[Fr-J2, Section 4], and [Fei-G] for further discussion of this.) By analogy
to the Poincaré metric in the upper half-plane, we define

1+p\"”
d((xo’ tO)a (xl’tl))=10g<1_lp)> ’

where

p = p((xg, to), (x4, tl))=<|x1“X0|2+(tl—to)2>1/2,

I, — xo >+ (£, + 10)?
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for (xg, t), (xy, t;)€ G. Then d is invariant under right multiplication:

d((xo, to) - (a, b), (xy, t,) - (a, b)) = d((xq, t,), (xy, t1)).

We have the elementary observations that
1+p\'"?  1+p
I—p) —(1-p)"
14p /(1 +1)"\" [x, — %017\
=—| L+— .
2 thity [t + Lol
Since 0 < p <1, we obtain
1+P ~ma \/71 \/g X =x0l
1-p t max(tl, tO)

For P and Q dyadic cubes, we obtain a “distance” by setting

d(P, Q) =d((xp, [(P)), (xg, Q).

Then for « =0 and p, g = 1, (3.1) reduces to the condition

lagp| <c,e”+D 42, (3.2)

THEOREM 3.3. Suppose aeR, 0<p < + o0, and 0 < g < + . An almost
diagonal operator on {29 is bounded.

Proof. We assume o =0, since this case implies the general case, and
put r =min(p, g). We shall consider the case r> 1 first.

Let 4 be an almost diagonal operator on f2¢ with matrix {ags}g
satisfying (3.2). We write A=A, + A, with

(Aos)Q= Z anSp al‘ld (AIS)Q= Z aQPSp,
HP)2 HQ) HPYy<KQ)

for s= {sQ}Qefg". If (Q)=27", our assumptions and Lemma A.2 with
A=n+eand a=r=1 yield

I(AOS)QI ¢, Z (UQP(S) [sp]
PY=zHQ)

o 3 (19
’ wer=ug) N(P)

<e, Z 2(u~v)(n+e)/zM< Z |s,,x,,|>(x),

nsy (Py=2"#

(n+¢)/2
) 5pl/(1+1(P) " xp—xq] )"
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for x e Q. Hence, since |Q| ~12=20"1"2|p| - V2 if (P)=2"*

l/q
lostin= (2 1dos)o 7o)
) Lr
g\ 1/q

<c, (Z (Z 2“‘”’8/2M( ) |spzp|)>)

veZ \u<yv (P)y=2"# L?

g\ 1/q

<, (Z (M( » |spzp|))) ,

nez HP)y=2"# LP

by Minkowski’s inequality. Since p, g > 1, applying the Fefferman-Stein
vector-valued maximal inequality (Theorem A.1), we find that

4ol < e sl

It is easy to see (sec Remark 5.11) that the dual of % is %7, where
1/p'+1/p=1, and similarly for ¢’. Also, notice that the adjomt of A, AYF,
has the same form as 4,. Hence, by using this duality and the argument
we just gave applied to 4§, we obtain that 4, is also bounded on f 2". This
proves the theorem in the case r>1 and g < + oo.

The case r<1 and g < + o0 is in fact a simple consequence of the case
r>1. We pick an 7<r so close to r so that (3.1) is still satisfied with
r=min(p, q) replaced by 7. This means that p/f>1 and ¢/f>1, and
that the matrix 4= {dgp} = {lags|” (IQl/|P])2~ 72} satisfies (3. 2) for a
different value of e Define 1= {15}, by 1,=[0|">""*|sy|". Then
||t“fo 7= || for- By the 7-triangle inequality, we have

1/7
|(As)Q|<(z |an|'|sp|') .
P

Hence, |IAS|If0q< l|At||;é'q/, Therefore the boundedness of 4 on f % follows

from the boundedness of 4 on { prds

Now, the case g= + o0 and p> 1 follows by duality from the resuit for
g=1 which we have just obtained. Finally, for p<1 and g= + v we
reduce to the case p > 1 as before. ||

Remark 34. Another, perhaps more direct, proof of this theorem,
avoiding the duality and the reduction, can be given by using Remark A.3
instead of Lemma A.2.

Lemma 3.1 and Theorem 3.3 yield that a linear operator B correspond-
ing to an almost diagonal matrix is bounded on F3?. Using this, we can
generalize the estimate |3, so¥ ||F;q <cll{so}o ”f;‘i in Theorem 2.2.
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For o, ¢q, and p as above regarded as fixed, let J=n/min(l, p, q),
N=max([J—-n—-a], —1), and a*=o0—[a]. We say that {my}, is a
family of smooth molecules for ¥ if there exist 6 and M with a* <5 <1,
M > J, such that for each dyadic cube Q,

ijmQ(x)dxzo it |9 <N, (33)

Imo(0)| < 1QI™2 (1+HQ) " |x—xp|) ™M= (34)
07 mo() <1QI ™2 (14 Q)" [x —xo )™M (3.3)

if || < [«], and

10"mo(x)— 0"my(y)|
|QIT2 IO Ix—p|° sup (1+UQ) ! [x—z—xg[) Y
lz)| <y —x
Iy —x| (3.6)

if [yl =[a]. We shall call a function m,, satisfying (3.3)-(3.6), for some
fixed § and M, a smooth (J, M)-molecule.

To be explicit, let us make the following comments. If « <0, then
(3.5)(3.6) are void. If x>0, (3.4) follows from (3.5). If also « > J —n, then
N=—1,and (3.3) is void. If x=0, then N=[J—n]; if also 0 <p<1 and
q=p, then N=[n(1/p—1)], and (3.3) is the usual vanishing moment con-
dition for H”-atoms. In the case «=0 and min(p, g)>1 (e.g, H' and L?
for 1<p< + ), the conditions are merely (3.3), (3.5), and (3.6) with
y=0 for some 6 >0 and M >n. For a >0, (3.6) and the assumption é > a*
show that m, e C* for some B> a.

Clearly, {y}o is a family of molecules for all F29. We should also
remark that the assumptions (3.3)-(3.6) are weaker than in the definition
of “smooth molecule” in [Fr-J1, Fr-J2].

THEOREM 3.5. If f=3,s5omg, where {my}, is a family of smooth
molecules for F;q, then

1 Nem<c i{so}ollm

Proof. By Lemma 2.1, we can write mp=3 5 {mp, 9o >¥o. If A is the
operator on f,"‘," with matrix agp,= (mp, @), and s= {s,},, then

T.//AS'-:ZZ"QPSM//Q:ZSPZ {mp, (PQ>‘//Q=ZSPmP=f-
Qo r P Q P
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Lemma 3.6 below will show that the operator 4 is almost diagonal. Then,
by Theorem 3.3, A is bounded, and by Theorem 2.2, T, is also bounded.
This yields the conclusion. |

LeMMA 3.6. If {my}, is a family of smooth molecules for ¥39, then the

operator A on f;" with matrix agp= {mp, @y is almost diagonal.

The proof is completely elementary, but quite tedious; it is given in
Appendix B.

Since {Yo}o is a family of smooth molecules, Theorem 3.5 is a
generalization of the result in Theorem 2.2 that T,: {3 — ¥’ is bounded.
Similarly, replacing the ¢,’s by more general functions {b,},, Theorem
3.3 also leads to a generalization of the boundedness of S,,: F27 — 1%,

Let J be defined as above, and let (J—a)*=J—oa—[J—a]. In what
follows, we consider a sequence {b,}, of functions such that for some p
and M with (J—a*)<p<!l, and M>J,

[xtbo(xydx=0 it i< [al, (3.7)
o) <IQI ™2 (14 UQ) ! [x—xp|)TmextMMAnta=d  (38)
107bo(x)| <1Q] V27 W (1 +1(Q) " [x —xgl) ™™ (3.9)
if |y <N, and
107bo(x) = 0"ho(y)]
<|QI 1T — p1? sup (14+UQ) T Ix—z—xo|) M
lzl < |y — x| (310)

if |y| = N. (Note the inversion of the roles of N and [a] here as compared
to (3.3)-(3.6).
We can now state the dual analogue of Theorem 3.5.

THEOREM 3.7. If fe€ F;" and {by}, is a family of functions satisfying
(3.7)-(3.10), then

< bod ol < e ILf g

For this we need another elementary lemma, analogous to Lemma 3.6;
the proof is in Appendix B.

Lemma 38. If {b,}, is a family of functions satisfying (3.7)—(3.10) then
the operator A on f 2 with matrix agp= {Y p, by ) is almost diagonal.
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Proof of Theorem 3.71. By Theorem 2.2,
<f’ bQ> ZZSP<IPP5 bQ>,
P

where s={sp}p satisfies ”S”r;‘l<C A1 el Set agp=<¥p, byy; we then
have {f, by =3 pappsp=(As)y, where A is the operator associated with
the matrix {ayp}y p. According to Lemma 3.8, 4 is almost diagonal on
f;", and, by Theorem 3.3, we have the estimate | As|w<c |s]=. This
completes the proof. || ! !

Remark 3.9. Note that since p,€ % and 0¢supp ¢o, {f, @p> is well
defined for fe &'/?. However, under weaker assumptions on by, care
must be taken in interpreting the expression < f, b,>. For a discussion of
this technical point, we refer to Remark B.4 in Appendix B.

Remark 3.10. In Remark 2.6 we saw that F;“ is independent of choice
@ satisfying (2.1)—(2.3). More generally, suppose b satisfies

fxyb(x)dxzo if |yl <[a], (3.11)
Ib(x)'<(1+|xl)vmax(M,M+n+aAJ), (312)
107b(x)| < (14 |x])~™ (3.13)

if |7 <N, and

07b(x) = "b(p)| < Ix = y|” sup  (I+]x—z[)7¥ (3.14)

Jzl < |y - x|
if |yl =N. Let b,(x)=2"b(2"x), for ve Z. Let {x°}, be any sequence of
points with x€ e Q for each dyadic Q. Let
bo(x)=1Q1 "2 b2 (x—x2))=1Q1"? b,(x — x?),

if ((Q)=2"". Since [x®—xo| </n Q). the bys satisfy (3.7)~(3.10) up
to a constant factor. Note that {f,by)> = |Q|'?B, * f(x2), where
B,(x)=b,(—x). Theorem 3.7 yiclds the estimate

( Y Y @ *f(xanQ)q)W

veZ HQ)=2""

<elflg
L?

with ¢ independent of the selection of the points x2e . Setting
supo.5(f) =5UPsco 101" (B, * f(x)| if (Q)=2"", we have

I{supo,s(f)}ollimsc S g2 (3.15)
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(cf. Lemma 2.5). In particular, we have

(L @b )q)”q

veZ

LA Weaais, = < S ] gss (3.16)

L

for any b satisfying (3.11)-(3.14). In other words, replacing ¢ by any
reasonable kernel (one satisfying (3.11)-(3.14)) in the definition of F3?
yields a “norm” dominated by the F2‘-norm.

The converse to (3.15)-(3.16) will, in general, require some non-
degeneracy condition. We state one such result, taking b in &, although
this condition can certainly be weakened. However, the following is suf-
ficient to allow us to take b of compact support, which is sometimes useful.
The method of proof is derived from [P3, Chap. 8], and the references
given there. Let AV ,(f) be the sequence defined for @ dyadic by

AVou(f)=101"'? jQ B, * f()] dy.

PROPOSITION 3.11. Suppose be & satisfies (3.11), and
b =e>0  if I<lE<i
(i) IfoeR, O0<p< +o0 and 0<g< + o0, then

AV s (f Ngoa 1 1 -

(i) IfaeR, 1<p<+wand l<qg< + o0, then
11 e 2 1/ D e

Proof. From (3.15)-(3.16) and the fact that AV, ,(f)<supy ,(f), we
see that the right-hand side of (i) and (ii) dominates the left. For the other
direction, our assumptions guarantee that there exists 7€ such that
@=n+b. For f and b fixed, we let t={tp}o= {4V, ,(f)}o as defined
earlier. We write out the convolution ¢, * f =7, * b, * f, break the integral
up over cubes of sidelength 2" =/(Q), and use the rapid decay of . We
obtain

sup (f)<c (tf o< ci(tk,)o
Q

for L sufficiently large, r = min(p, ¢), and 1> n, using Holder’s inequality
if r>1 and (2.9) if not. Hence, by Lemma 2.3,

|1f||r;ﬂ<c ||Sup(f)||f;‘i<C ||f§'fal|r;q<c ||t||r;q~
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This yields (i). To complete (ii), observe that

Z AVQ,b(f)XQ < M(Bv * f).

H@)y=27v

Inserting this in the definition of |} 2 and using the vector-valued maxi-
mal inequality, Theorem A.1, yields @). 8

4. THE GENERALIZED (-TRANSFORM

Under the assumptions (2.1)}-(2.4), we obtained in Theorem 2.2 the
representation f=3, {f, o)W, with the estimate [[{{f, (pQ>}||,¢q\
c AN ¥, as well as the estimate X5 5ol pa S C fis] £ for any sequence
s= {sQ}Q In this section we consider other possibilities for representing f
and obtaining one or the other of these estimates under less restrictive
conditions on the functions involved. For example, it is sometimes
convenient to be able to represent f as a sum of functions of compact
support, as in the traditional Hardy space atomic decomposition.

We say that {ap}, is a family of smooth atoms for F2 if there exist K
and N with K> [a+1], and N> N (for N as above) such that for each
dyadic cube Q,

supp ap < 30, (4.1)
f Xag(x)dx=0 if |y <H, (42)

and
[0%ap(x) < |QI /2~ if yI<K (4.3)

When emphasis is required, we call a function a, satisfying (4.1)-(4.3) a
(K, N)-smooth atom. Note that a smooth atom is also a smooth molecule.
The following result appears in [Fr-J2, Theorem II]; here we present
another proof, which illustrates that this result can be considered a conse-
quence of Theorem 2.2.

THEOREM 4.1. Let aeR, 0<g< + o0, and 0<p< + 0. For each
fe F there exists a family of smooth atoms {a,}, and a sequence of coef-

fczents s={sg}o such that f=3,s0a, (in #'|P), and llsll,aqSC ||f||qu
Conversely, |20 spagl #2 S € ||s|lfuq Sfor any family of smooth atoms {aQ}Q

Proof. Pick ¢ and ¢ satisfying (2.1-(2.4). By Theorem 2.2, we
can write f=Y,1ioW, where t={t15}o={{f,090}o satisfies
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||t]|,aq<c|lf||,;mq Select Oe& satisfying suppfc {xeR™ |x|<1},
fx’@ (x)dx= 0 if |y|<N, and |0(¢)|=c>0 if §<|§|<2 (see [Fr-J1,
p. 783], for a construction of ). By (2.2), y/0eS, so y=0x%y for

some ne. Setting gi(x)= (g, Hx—y)n(y)dy for keZ", we have
Y=Y, . & and, hence, for veZ and /e Z",

Vo, ()=10ul 7" ¥ &u(2x~1).

keZ"

Note that supp g,S3Qw, | X'gx)dx=0 if [y|<N, and |07g,(x)I <
Car,(1+1k]) ™™ for any M >0. For Q@ =Q,,, set so=C(t}), and

ag(x)=1Q| -z z to, 8x—1(2x—=1)/sg,

teZ?

where r=min(p, ¢) and C will be determined shortly. From the repre-
sentations above of f and y,, we have f=3,spa,. Since
supp g« _,(2'x—1)=3Q,4, (4.1) holds. Clearly (4.2) holds. Letting M be
greater than J=n/min(1, r), the estimate for 0’g, above yields

1@ag(x)| <c Q=" % el (1+UQ) ™! Ixp—x0 ) T¥/C(1¥)g
(P = Q)

<c |Q| -1/27|vl/n/C’

by Hoélder’s inequality if » > 1, or by the imbedding /" — /' if r < 1. Taking
C large enough yields (4.3). Finally, by Lemma 2.3,

1|S||r;q= C ”tr*”f:"<c ||t||f;4<0 ||f||F;q-

The converse follows from Theorem 3.5. ||

Notice that the proof in fact shows that we may take the ay’s in 9.

Although the smooth atomic decomposition in Theorem 4.1 is useful in
applications (see, e.g., Sections 11, 13 below), it suffers from two disadvan-
tages. First, the functions {a,}, are not canonical, in the sense that dif-
ferent ay’s appear in the representations of different distributions. This is
unlike the case of Theorem 2.2, where there is one fixed ¥, for each cube
Q, for all f. Second, the coefficients {s,}, in Theorem 4.1 are not deter-
mined linearly by f, as they are in the case of Theorem 2.2.

We will consider below families of distributions {6¢},, which may be
used to represent distributions in ¥, and families of distributions {t¢},,
which linearly determine coefﬁcxents of the form {f, 1¢) in the representa-
tion of f. In this section, we reserve the subindex notation o, (and 7,)
for the case where there exists a function ¢ (or t) such that
oo(x)=1Q|""? 6(2'x — k) (similarly 7,,) if 0 =Q,,. We say that a family
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62}, of distributions represents ¥*9, if there exists a family {t2}, such
N Q ) y Y
that

(i) for all feF=, we have
f=% (f,1%>0%, (4.4)
with
{<f 12> Yol < e 1 f lges, (4.5)

and
(ii) for any sequence s= {s,},, we have

ZSQ"Q
0

‘ <e [l (4.6)
L

If, instead, {rQ}Q is a sequence of distributions such that there exists a
family {62}, so that (i) and (i) hold, we say that {t%}, norms F*. In
either case, we call the map sending f to {<f, 19>}, the generalized
@-transform, and the map sending {sy}o to X, 5,0¢ the generalized
inverse -transform.

We single out the following result (similarly Theorem 4.4) to see that the
conditions on {6?}, required to obtain (i) and (ii) above are slightly dif-
ferent. Recall the definitions of N and J above. Throughout the remainder
of this section, {x¢}, represents any sequence of points satisfying x¢ € Q
for each dyadic cube Q.

THEOREM 4.2. Let aeR, 0<g< + oo, and O0<p< + 0. Suppose o
satisfies a*=a—[a] <6< 1, and suppose M >J. Let u be a function
satisfying

la¢)2c>0 if 3<IE<2 (4.7)
[xuyax=0 if p<N-1, (48)
u(x) — u(y)] < Jx— p|° . <Slllp~xl (14 |x—z])~maxMM=2 (4.9)

layu(X)ISCy(IHXI)i; if Iyl<le+1],, (4.10)

and

|0"u(x) — u(y)l < |x—yI° sup (1+]x—z])~" (4.11)

lzb <1y —x|
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if lyl=[a+1],. For ueZ, let u,(x)=2""u(2x), and set
a9(x) =10~ u,(2°(x — x9)) (4.12)

for Q= Q.. Then there is a u,<0 with the property that for each p< p,,
there exists a family of functions {12}, such that {c®}, and {19}, satisfy
(4.4)(4.5).

Proof. By (4.7), there exists ¢ satisfying (2.1)-(2.3) such that

Z u(2°¢) ¢(2°¢)=1 if &£#0. (4.13)
velZ
For pe Z, define
nx)=|  oux—y)dy (4.14)
Qoo
and
no(x)=101 " n2’x—k) if Q=0,. (4.15)
Note that
ned, jxvn(x)dx=o (4.16)
and
107n(X)] < €pr, 2401425 |x[) M, (4.17)

for all multi-indices y. Define the operator T, on F";‘" by

T f(x)=Y {f,ng> 0%x)
Q

=3 S| Bpann ) dyug - xOW),

BeZ leZ" Qi

where @4(x) = @4(—x), as usual.
We claim that

WA= T,) f < 2 | g, (4.18)

for u<0, where I is the identity operator. To see this, note that by the
choice of ¢,

flx)= Z Ppip* uﬁ+u*f(x)

BezZ

=Y Y| Gpnr SO upfx— ) dy.

BezZ tezn " QB

580/93/1-5
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Hence, replacing § by v— u and collecting terms, we can write

I-T)f0)=%Y ¥ T [ 6.+

VEZ keZ'I:Qy_ S Ow  Qr-ut

X (u,(x— y)—u,(x —x%-»1)) dy.

Let 5o, = 1Qul| " o, 1@, * f(¥)| dy and

—ué

S o[ aeesw)

vak(x) = C
Ska l:QvA#JQQVk Qv_y it

X (1,(x = y) —u,(x — x%»1)) dy

for C sufficiently large, to be chosen later. By (4.8), each m,, satisfies (3.3).
If [yl <[a] and yeQ, ,,< 0., (4.10) yields
0% (uy(x ~ p) — 1, (x — x@ 1))

='W+ DM == qup |V, 07u(2'x —2'2)|

zeQv_put
<e282Y D) qup (142" [x—z[)~ ™
z€ Qw
<e24 |0yl (1428 |x—xg, ) M. (4.19)

Hence for |y| < [a] and C large enough,

u(l—6)

|0mg,(x¥)| < ¢ 1Quel M (142 |x—xg, 1) ™

Sou

x Y [ 1oy
5Qy— 1S Qwk vt

SIQuel “127 M (142 |x—xg, 1) Y,

since <1 and p < 0. Thus, (3.5) holds. Similarly, (4.9) yields (3.4). Also,
applying the mean value theorem to each pair of closest points, followed by
(4.10)-(4.11), leads to (3.6). Thus, {m,},, is a family of smooth molecules.
Since (I-T,) f=C2*°Y, somg, Theorem 3.5 yields

IA=T)f <2 ll{selolly-

Noting, however, that [s,|<[Q|'*sup,., |®, * f(¥)| =supy(f), Lemma
2.5 yields (4.18).
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Therefore, there exists o <0 such that for p<pg, II-T,1<1,s0 T, is
invertible. Hence for fe k77,

f=T, T =Y (T 1)
Q

Thus (4.4) holds with 1¢=(T;")*no. To obtain (4.5), note that if
_u(x)=2"""(27¥x), thep n,ﬂ_satlsﬁes (3.11), and, up to a constant,
(3.12)—(3.14). For any ge F7, write

(z Y @ lgxi2 Vk)lxgvk)q)”q )

veZ keZ"

]l{(g’ ’7Q> QHf“"—

Replacing v by v — u and noting that for 1 <0,

Z lg * '71'\!4,14(27"+uk)|XQV_,,J‘< Sup |g * (ﬁ—u)v (x)|XQv,,
Qv p k= Qv x€Qy

we obtain

1{<8g o> }olrs <27 l{supg,_ (&)} 1w < 27" [ gllgzs,

by (3.15). Hence, we have
<A 7@ bollpw = 1{K T om0 D o e
<e2™#| T,flf||1r;q<€2'““ 1A W gzas
yielding (4.5). |

COROLLARY 4.3. Suppose u is a function satisfying (4.7),

jxyu(x)dx=0 if 17l <N, (4.8')

and (4.9)-(4.11), and define {69}, by (4.12). Then there exists jy<0 such
that for all u< po, the family {9}, represents F“q

Proof. By Theorem 4.2, only (4.6) requires proof. However, note that
for |yl <[a+1], and Q=0,

|070-Q(x)| — IQ‘ —1/2=1yl/n putn+ 1) |(8vu)(2"+v(x——xQ))|
L e2Hnt D Yol TIZ=m (] 2R |x —x9|))~™

SCZ’”(M’”) |Q| ~1/2—=1yl/n (1 + 2V |x—xQ|)_M,
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which yields (3.5) for ¢€. Similar calculations yield (3.4) and (3.6). Since,
clearly, [ x’09(x)dx =0 if |y| <N, {69}, is, up to a factor of c27+*H "),
a family of smooth molecules. By Theorem 3.5, then,

Y5002 | <27 | {soho . N
0 e
In particular, it is possible to select ue. ¥ with suppu< {x:[x| <1}
satisfying (4.7), (4.8'), and (4.9)-(4.11). Then supp u, < {x: |x| <27*} and,
hence, for 02 as in Corollary 4.3, supp 2= (27#+1)Q, [ x'69(x) dx=0
if [y|<N, and |8769(x)| < c2¢+ 1D Q| 2=/ Thus, for u sufficiently
small, we obtain a linear, canonical version of the smooth atomic decom-
position in Theorem 4.1, except for the fact that the constant in (4.1) is 3.
The following result is dual to Theorem 4.2 and has an analogous proof.

THEOREM 4.4. Let aeR, 0<g< +00 and 0<p< + 0. Suppose p
satisfies (J—a)* < p <1 and suppose M > J. Let u be a function satisfying
(4.7),

J‘xyu(x) dx=0 if |yl<[a—1], (4.20)

u(x) —u(p)| <lx—plf sup (14 |x—z|) - mexeMrnrea=/ o (4.21)

2l <y —xl
|6yu(x)|<cy(1+|xl)*’” if PI<N+1, (4.22)
and

|0u(x) = du(y)| <|x—yl* sup (1+]x—2z[)™" (4.23)

lzl <y —xl

if l7|=N+1. Set
12(x) = Q] 2 u, (2" (x — x2)) (4.24)

Jfor Q= Q. Then there is a 1, <0 with the property that for each p< p,,
there exists a family of functions {69}, such that {6°}, and {19}, satisfy
(4.4) and (4.6).

Proof. As in the proof of Theorem 4.2, (4.7) implies the existence of ¢
satisfying (2.1)-(2.3) such that (4.13) holds. For ue Z, define n by (4.14),
thereby obtaining (4.16)-(4.17). Define the operator 7, on F;" by

T f(x)=Y < f,19n,
)

=3 T [ xS0 0y fx—y) dy.

BeZ 1ez" " Qpi
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Taking the complex conjugate of (4.13) yields

f(x)= Z aﬁ+u*(/’ﬂ+u*f(x)

BeZ

=Y X[ e S0 0paulx—y) .

Bez 1ez""Cn

Hence, replacing B by v— u, for u <0, similarly to the proof of Theorem
4.2, we obtain

I-T)fx)=Y ¥ )

veZ keZ" I:Qv— ;1= Qwk

x|, @ S0) = SO ) g )

vt
Let
S0,=10ul 7 T [ s )=k @) dy,
[:viy,ngvk OQv—pt
and

my, (x)=

LY [ @)

CSka [:QV_”‘IQQV,( Ov_pt
—it, % f(x@ 1)) @ (x — y) dy,

for C a constant to be chosen later. By (2.2), m, satisfies (3.3). If
|YI S [CZ‘\L 1]+ and ye Qv—p,lE ka9

070, (x — )| <€, 27" (14 2 |x —xg, )M,
which easily yields (3.5) and (3.6) with é =1, if C is chosen large enough.

Similarly, (3.4) follows. Therefore {m,}, is a family of smooth molecules.
Since (I-T,)f=C Yy somp, Theorem 3.5 yields

IA=T ) g <cl{so}olpm- (4.25)

By Theorem 2.2, we can write f=3p1plp, where 1= {t,}, satisfies
12 gze < € [Lf W IF we set

agr=10ul ™ T [ Wer@(y) e x a2 dy,
Qv 1S Qu " @r—nl
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then |so| <X pagp |tpl. We will obtain the estimate
agp < C2¥wyp(e), (4.26)

for some ¢>0, with ¢ independent of Q, P, and u. Then (4.25) and
Theorem 3.3 imply that

I~ T i< e Mg Him<e2 Il <2 [ flgm.  (427)

To prove (4.26), fix v, k, and [ with Q, , ,<Q,,, and fix ye Q,_,,. Let
h(x)=u,(x— y)—u,(x —x%-+'). Then
Yo, (p) =y, * &, (x2 )= (p, ). (4.28)

By (4.20), 4 satisfies | x"h(x)dx =0 if |y| < [a]. Also, as in (4.19) above,
(4.21), (4.22), and (4.23), respectively, imply that

1@ "2 A S C2% | Q| 712 (1427 [x = xg, 1),
1Qu |2 10h(x)| < C2¢ | Q| =2~ MM (142" |x — xg, ) ™™,

if |y < N, and

Q| 10h(x) — 07h(y)|

Qo lek|—1/2~Ivl/n—p/n [x—yp|? sup (1+ Ix—-Z—vak')—M

2l <ty —xi

if [y|=N, with C independent of our fixed quantities. Therefore
27410, |'? h/C satisfies the assumptions of Corollary B.3; so

1Qul 2 [<¥ py D < €240 ple),

for some &> 0 and ¢ again independent of our choices. Replacing this and
(4.28) in the definition of a,p easily yields (4.26).

By (4.27), then, there exists o <0 such that for all p<pu,, we have
IT—T,| <1, so that T, is invertible. Therefore, for fe k2,

f=T T, f=T,' Y {f,1%no=Y%<f,19)6%,
o )

if 6 =T,"y,. So we have (4.4).
To obtain (4.6), let s= {5y}, €l Then

ZSQO'Q <c N
0 k¥

p

~1
sz Z Sollo
0 L )

=) ZSQ"Q
¥ 7
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by the boundedness of T, !, However, (4.16)—(4.17) show that, up to a
factor of ¢27#™~" (as in the proof of Corollary 4.3), {n,}, is a family of
smooth molecules. Hence, Theorem 3.5 gives

Yisgo?| <e27HMmm sl
Q

xq
FI’

COROLLARY 4.5. Suppose u is a function satisfying (4.7),
jxv“(x) dx=0 if |yl<[a], (4.20)

(4.21)-(4.23), and
()] < (1 + |x|) MM ) (4.29)

Define {19}, by (4.24). Then there exists iy <0 such that for all p< pq, the
family {t9}, norms F2°.

Proof. By Theorem 4.4, only (4.5) requires proof. Note that

1/q
(Z VARV u“v(xQ"*)levk)")

veZ ke2"

||{<faTQ>}Q”f:"='

Le

Replacing v by v— pu and noting that for p <0,

Y f * i (x2 ) g, . < sup If * &) xg,
k:Qy-pk S Qu xeQy

we obtain

{120 ol <27 [{supg.a(f) o e

However, u satisfies the conditions (3.11)—(3.14). Therefore (3.15) gives

I1{<, TQ>}Q||;;4S02’W ||f||F;"- |

As in the remark following Corollary 4.3, it is possible to obtain u of
compact support satisfying the assumptions of Corollary 4.5. Thus we
obtain a linear, canonical decomposition in which the coefficients are
“locally” determined. For remarks regarding the dilation factor 2* in these
results see [Fr-J2, Section 4].

We have seen that in our decomposition (4.4), we can take one of the
two families, i.e., either {62}, or {12}, to consist of translates and dilates
of a fixed nice function. In doing so, explicit information on the other
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family seems to be lost (we have either 1% = (T, ')* n, or 69=(T,) ' 4,
for n, defined by (4.15)). In Remark 9.17, however, we will obtain certain
specific information regarding the second family. In particular, in the case
a=0, 1<p, ¢g< + 0, the second family can be taken to be a family of
smooth molecules for F .

5. THE CASE p= +

If we replace L? by L® in the definition of F“", we do not obtain a
satisfactory definition of F*¢ (unless ¢= + oo, in Wthh case F*° =RB*>),
Triebel remarks [Tr2, p. 46] that this norm is no longer independent of the
choice of the function ¢. Furthermore, we should certainly have
F2x (F2)* ~ (H')* ~ BMO, but, as pointed out in [P4], this fails for the
naive definition of F*/. A result in [Ch-W-W] states that if the square
function Sf of f (similar to the expression (3, 5 |@, * f1?)/?) is bounded,
then f'is locally square exponentially integrable. However, a BMO function
is, in general, only locally exponentially integrable.

To define F* as a natural extension of the scale of F;" spaces,
0<p< + oo, it becomes clear from [Fef-S2, pp. 148-149; Fr-J1, Section 4;
Ja-T1] that the norm should be localized appropriately. For aeR,
0<g< + o0, and ¢ satisfying (2.1)-(2.3), we define F*/ to be the set of all
fe&'/P such that

1 O t/q
|flgw=sup (ﬁ [ 3 (2”"‘!<pv*f(X)l)"dx> <o (51)
P v

P dyadic —logy {(P)

We will show that this definition is independent of the choice of ¢
satisfying (2.1)-(2.3), and that

(B~ F o (52)

for aeR, 1<g< + 00, and 1/g+ 1/¢'=1. We will also show that there
exists an operator A% such that 4%, ~|f ||Fﬂq for «eR and
0<p,g< +o0. These facts indicate that our deﬁnmon of F¥ is
appropriate. Later we will see that interpolation with F*7 as an endpomt
space behaves as it should. We will also obtain analogues of the results in
Sections 34 for the case p= + 0.

We note that in [Tr2, p. 239], Triebel gives a definition of F* for
1 < g < + oo that yields (5.2), almost by definition, but this definition is not
effectively computable in the way that (5.1) is. Obviously, however, by
(5.2), the two definitions agree.
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We make some elementary remarks regarding the definition (5.1). First,
an equivalent norm is obtained if we take the sup with respect to all cubes
with sides parallel to the axes, since every such cube is contained in the
union of at most 2" dyadic cubes with side lengths at most double the
original. Second, using this, if k>0 we obtain

wp LT @l s S <2 I (53)

P dyadic |P| v= —logy (P)—k

since |2¥P| =2*" | P|. Finally, we note that our definition is “localized” in
the sense that if we took the sum in (5.1) over all ve Z, the result would
be equivalent to [(T,.7 (2" |o, * f1)?)"9|| .=, the naive but incorrect
definition of the F*-norm.

We define £%9, the sequence space corresponding to F*, to be the set of
all sequences s = {5y} odyadgic Such that

1 l/q
[sllg=e = sup (—L Y (g IsQIZQ(X))qu> < +4o0. (54)

P dyadic lP| QcP

For 0 <g< + oo, we can carry out the integration in (5.4) to obtain that

1 1/q
sl = sup (—— Y (gl IsQI)"IQI) ; (5.5)

P dyadic lPl Q<P
i.e., ||sll{= is equivalent to the Carleson norm of the measure
Bl

Z (jQ| /=17 [so ) 10| 5(XQ,I(Q))’
Q

where d,, , is the point mass at (x, f)e R7*".
To prove the analogue of Theorem 2.2 for p= + o0, we first require the
following analogue of Lemma 2.3.

LEmMMA 5.1. Suppose aeR, 0<g< + 0, and A >n. Then
llsg 1l pes = sl .

Proof. One direction is trivial, since |sy| <(s)), for all Q. The other
direction is not very much harder, given Lemma 2.3. Let us fix a dyadic
cube P. Let ry=s, if Q<3P and ryp=0 otherwise, and let t5 =155 —r,.
With r={ry}, and t={15},, we then have (s})}=(r¥),+ (¢})} for
each Q.
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By Lemma 2.3,
B = X (1017 (r)o o)
<qr T 01 (e Folo
— o Il < Il
‘

== T (01" Isl 7o) dx <c lslfy.
lP‘ 3P gc3p *
On the other hand, given P and Q with Q c P, suppose { is dyadic
with /(Q)=1(0)=2"%I(P) and § < P+ jl(P)< 3P for some jeZ"; then
1+I(Q)_l |xg — x5| & 2% |j|. Hence, using (5.5),

[ (1017 (1) o) dx

‘P| PQCP

,Plz Y1l 2 g (LKD) xp—xgl)

QcP KD)=1Q)
1 ~
e Yy I Z K= — ||
jezn |P| Jc P+ ji(P)
fi=2 1(Q)y=2"k(P)

x (101"~ 12 51y

<e |t < c lshfe,
since A > n. This yields the result. |}

THEOREM 5.2. Let aeR and 0<q< +o. Then S, ¥4 1% and
T, 12— ¥ are bounded operators. Also, Ty~ S, is the zdentzty on F“"

Proof. The estimates

1S W es = Nsup(f W ges = Jind,(f ) s (5.6)

are obtained essentially as in Lemma 2.5, except for the occasional use of
(5.3). Similarly, the proof of Theorem 2.2 carries over without significant
change, using Lemma 5.1 instead of Lemma 2.3. ||

COROLLARY 5.3. The definition of ¥*? is independent of the choice of ¢
satisfying (2.1)-(2.3).
Proof. See Remark 2.6. |
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It is worth noting at this point that the following analogue of Proposi-
tion 2.7 is trivial for p= + co.

PROPOSITION 5.4. Let > 0. Suppose that for each dyadic cube Q there is
a set Eq< Q with |Eg|/|Q| >¢. Then

i/q
l{seheli swp (o[ T a1 sl 2o )

P dyadic \P‘ PQcP

Proof. Immediate by (5.5). |

We now consider an operator m®? on sequences which will be useful in
proving (5.2) and which will lead us to the operator A** promised above.
First, for a sequence s = {5} pdyagic, W€ define

1/q
G¥(s)(x) = (Z (1P| 7" |sp] ZP(X))">

and

1/4
Gg'(s)(x)=( S (1P [s] zP(x))q) .

PcQ
We let m¥(s) denote the “;-median” of G¥(s) on @, ie,
m(s)=inf{e: |{xe Q: GF(s)(x) > e}| <|Q|/4}. (5.7)
We also set

m*(s)(x) = sup mg(s) xo(x).

PROPOSITION 5.5. Let aeR and 0<p,g< + 0. Then
Isll g Im=(s)] .
Proof. We observe that
{x:m*(s)(x) > 1} © {5 M( g =) (X) = 5.
Since M is of weak-type (1, 1), we obtain
{x: m*(s)(x)> 1} < [{x: G*(x)>1}]
for t> 0, and, hence,

lm*(s)l e < € | G* () o= € IS ]} e
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for 0 <p < + c0. When p= + o0, we use Chebyshev’s inequality to see that

" 1 , 19l !
l{xeQ: GF(x)> e}l < jQ (GH(x))* dxs—e% Islfs<Z1Ql  (58)
if >4 lIsllyea. Hence, [[m**(s)l| .= < ¢ s]| .
The converse inequalities are deeper. Using a discrete version of the

argument in [Fef-S27], we define the extended integer-valued stopping time
v(x), for xe R", by

1/9
) =int {veZi( T (101 sl 2ole))) " <m s} (59)

)<z~

Also, set
Eo={xeQ:27"M>1(Q)} = {xe 0: GF(s)(x) <m™(s)(x)},
for each Q. By (5.7), |E,|/IQ| >3, and

l/q
(Z (191" Isol ZEQ(x))"> < em™¥(s)(x), (5.10)
Qo

for each xeR". By Proposition 2.7, then, for 0<p< + o0, ||s||,:q<
|lm*(s)||,,. Similarly, (5.10) and Proposition 5.4 yield Ilsllfzgs
c llm*(s)ll o B

Notice that this proposition and its proof provide us with another
equivalent definition of £/ for all 0 <p < + 0.

COROLLARY 5.6. Let a€R and 0<p, g< + . Then s={sg}oel’? if
and only if for each Q there is a subset Ey< Q with |Eyl|/|Q| >3 (or any
other, fixed, number 0 <g < 1) such that

1/9
”(Z (gl -=" IsQIZEQ)">
Q

< + 0. (5.11)
Lr

Moreover, the infimum of this expression over all such collections {Ey}, is
equivalent to ||s| .
P

Proof. For p< + oo this follows at once from Proposition 2.7. If
p= + oo and sef*, the E,’s chosen in the proof of Proposition 5.5 above
yield (5.11). The converse follows from Proposition 54. |

Corollary 5.6 is in a natural way the limiting case r= + oo of the
following.
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COROLLARY 5.7. Let aeR and 0<g< + oo. For each 0 <r < + 0,

sup <|17|J (Z (o] |SQ|ZQ(X))q>'/qu>l/rz||s||,§,. (5.12)

P dyadic PN\ocpr

Proof. Let us first consider the case r > ¢. Then, by Hélder’s inequality,
the right-hand side of (5.12) is dominated by the left. On the other hand,
if P is fixed cube and E,, are the subsets given by Corollary 5.6, then by
Proposition 2.7 we have

|P|J<

r/q
(101" Is,| zg(x))q> dx

Q<P

r/q
|P|j (Z (o= |SQIXEQ(x))> dx.

QcP

Now this is clearly less than

1/q
( Y Q1" sl ZEQ(X))">

Q=P

r
C

’
L®

and by Corollary 5.6 this can be estimated by c ||| 1.

If r < g, then Holder’s inequality shows that the left-hand side of (5.12)
is dominated by the expression on the right. To prove the converse
inequality we can repeat the argument in the proof of Proposition 5.5
involving Chebyshev’s inequality; the only difference is that we need to
replace ¢ by r in (5.8). It follows that |m*?(s)| ,» can be estimated by the
left-hand side of (5.12) and this completes the proof. Alternately, let
H=Y,cp Q17" |sg|¥g,)" By Corollary 5.,

H<cH™ |s]|{5 "
This readily yields the result when sef*, and the general case follows by

using the monotone convergence theorem. ||

Corollary 5.7 is an analogue of the John—Nirenberg lemma (cf. [Joh-N1])
on the sequence space level.
For fe &'/, we define

A =m*(S,, f).

We remark that 4A*¢ is an analogue of the local square function whose
study goes back to Fefferman and Stein [Fef-S27] and Stromberg [Strol].
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COROLLARY 5.8. Let aeR and O<p, g< + 0. Then

1A% 1 o 2 1S ] g

Proof. By Proposition 5.5, Theorem 2.2, and Theorem 5.2,
Im (S, M o2 1S S Mgz 1 f g
We remark that we could use the operator
B*f(x)
© 1/q
{vea:( T @iosin) >l

v—log2 (Q)

<6|Q|},

= sup inf {s:
Q:xe@

for ¢ sufficiently small, in place of A% in Corollary 5.8; B*f is the
supremum of the J-medians of the truncated Littlewood—-Paley function.
However, owing to the quantity y in Lemma 2.5, the proof of the
equivalence || B*f| .~ | f ||F;4 involves a few technicalities, which we omit.

Next we shall consider duality. Let ¢’ denote the conjugate of ¢, so that
1/g+1/g'=1 when 1 <g< + o0; if 0<g<1 it is also convenient to let
q' = + .

THEOREM 5.9. Suppose a€R and 0<gq< + co0. Then (F29)*=f_*7. In
particular, if t={1y},€f 7, then the map s={sp}o—> {8, 1) =4 s0lp
defines a continuous linear functional on %9 with operator norm || (129
equivalent to |t||;-=, and every le (F29)* is of this form for some tef 2%,

Proof. Suppose first that 1<g< + co. Similarly to the proof of
Proposition 5.5, let

E,={xeQ: Gé“"'(t)(x) <m~*(1)(x)},

for each dyadic Q. Then |E,|/|Q| >3, so

‘ZSQ[Q SCJZ |Q|/al/rl ISQl JZQ |Qla/" ItQUZEg
Q o

l/q
<e[ (T 0o isol zoty)

Q
1/q’
(2001 gl 2ag?) s
[¢)

<c sl llm== (D) o < ¢ Dsllpe 1] g,
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where we have used the analogue of (5.10) for ¢, —a, and ¢’, and the con-
clusion of Proposition 5.5. This yields ||7]| gz)e <c [[tll-o0 if 1<g< + 0.
The case 0 <g <1 then follows from the trivial imbedding 27 — %!,

The converse is elementary: Clearly every /e (f*)* is of the form
§— Y 8plp for some t={t,},. Now fix P dyadic and assume first that
1 <g< + 0. Let X be the sequence space of all dyadic cubes Q such that
Q c P, and let u be a measure on X such that the y-measure of the “point”
Q is |Q]/|P]. Then, with (5.5) in mind,

1 ) 1/q’
(ﬁ (101 1) lQI)

QcP

= {|QI" " to}olwixan

1 )
Z So |Q|/n 12 to |Q|.

lPl Qc P

<ty sup 1{so 1Q1*"* "2/IP} ol

Istiqx, auy <1

= sup
Isligex,am < 1

However, by Holder’s inequality,

{5 1QI7"* /1P } ol o

1 lq
~ (T Uselror)

Qgc P

l/q
(], T Uselte) " =Istman <.
I[Pl e ,p

Hence Nl < Nl gzoye if 1<g< + 0. For 0<g<1 we have ¢'= +
and the extremal sequence s in the above has only one non-zero element.
The argument then simply reduces to the following. Given a dyadic cube
R, we set (s%),=|R|*" =" for Q =R and 0 otherwise. Clearly, ||s¥| = 1
and, hence, 1

elpeo <sup <55, £ < el ooy
R

Remark 5.10. We can modify the first half of the proof of Theorem 5.9
as follows. Let 0 <g < + oo and set

l/q
ﬁ(x)=inf{veZ:< Y oogQln |sQI)ZQ(X))")

ey<s2~

/g’
x( ¥ (lQ!a/thmQ(x))"‘) <m““(s)(x)m°“"(z)(x)}.

ngy<2—
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Let
Ey={xe0:27">10)}
= {x€ Q: G*(s)(x) G~ (1)(x) Sm™(s)(x) m **(t)(x)}.
Since we have taken the i-medians, we have IEQ| >101/2 If1<g< + oo,

Holder’s inequality and (5.10) yield

fo| < [ me(s)(x) m=*7 (1)(x) dx;

if 0<g <1 this estimate still holds, since m*'(s)(x) < m*(s)(x).

Remark 5.11. The dual of f;" when p#1 (and p# + o0) is more
elementary to characterize. If 1 <p< + o0 and 0 < g < + o0 we have

(fry*~f . (5.13)
Let us outline a proof of this: we have

lg

<|[Z 10" soto 101" oo
Q
sl Nl

For g>1 this follows by applying Holder’s inequality twice, while for
0<g<1, we use this with g=1 and the imbedding f2— f*'. Conversely,
every le (f"‘")* is of the form I(s)=3, s, 7, for some sequence t= {tQ}
Now, we shall take for granted the result that (L?(/9)*=L* (") if
I<p< + o and 0<g< + o0, where
1/q
(2 1700)
veZ

with the obvious pairing, namely f - [Y,_, f, &, for g={g,},eL?(I?)
(for this fact see, e.g., [Tr2, p. 177]). Note that the map In: f 7 — LP(17)
defined by In(s)= {f.(s)},.,, Where f,(s)=30)—>-+ 10| * s ol is a
linear isometry onto a subspace of L?(/9). By the Hahn—Banach theorcm
there exists 7e (L?(19))* with |7] = /|| such that ToIn=/ In other words,
there exists g = {g,}, e L7 (I7) with || gl v, < |/l such that

Lp(lq)={f= {fv}: ”f”LP(I‘l)E <+ 00}’

L?

Ysolo=[ ¥ £i5)4..
14

veZ
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for all sef;". By taking s,=0 for all but one cube, we see that
to=[0 £/1Q|*"*"? for any dyadic cube Q with /(Q)=2"". Hence,
estimating the average over a cube by the Hardy-Littlewood maximal
operator and using the vector-valued maximal inequality (Theorem A.1),

el < | (Mg}, ezl rany <e gl raey < c .

This completes the proof of (5.13). Notice that we may restate this last step
in the proof by saying that the operator Pr({g,},)={to}o=
{Jo /101" * 2 1(Q) = 2"} pdyaaic is bounded from L7 (I*) to f ;*¢. Since
clearly ProIn=identity, we have, in particular, that f »4 is a retract of
L*(I%)aslongas l<p< 4+ 00, 1 <g< + 0.

It is not difficult to treat the remaining cases. We have

(Fo)y* ~ t8> (5.14)

for 0<p<1 and 0<g< + o, where f=f(a, p)= —a+n(l/p—1). As in
[Fr-J2, Theorem 3.8; Ja3], we have the imbedding 37—~ 1, #' (0<p<1).
Using this and the duality (F4!)* =T _#= yields one direction of (5.14). The
other is similar to the case p=1 and 0 < ¢ < 1 in the proof of Theorem 5.9.

The spaces £27 are not reflexive, but, similar to the situation for /' and
[, finite sequences in {7 norm f%¢ in the following sense:

COROLLARY 5.12. Suppose aeR and 1<q< +o0. If s={sp}oefy,
then |s)| m%sup{lzg Sofgl:t finite with ||t]| ;- < 1}

Proof. Theorem 5.9 shows that ||| e dominates the supremum above.
Except for the restriction that ¢ be finite, the converse follows from the
Hahn-Banach theorem. Approximating s (in f*-norm) by truncation
allows us to assume that ¢ is finite. ||

We can derive the duality (5.2) from the sequence space case in Theorem
59. Let % = {fe &: f =0 in a neighborhood of the origin}. Then it is easy
to see that % is dense in F if 0<p, g< + o (eg., by using Theorem 2.2
or see [Tr2]).

THEOREM 5.13. Suppose o€ R and 0<qg< +cc. Then (Fi9)*x~F 7.
Namely, if ge ¥ 77, the map l,, given by L(f)= ([, g), defined initially
for fe, extends to a continuous linear functional on ¥ with
(TAE HgHF;aq'. Conversely, every le(F)* satisfies =1, for some

geF 7%,

Proof. As we noted in Section 2, we may choose ¥ = ¢ in (2.1}-(2.4).

580/93/1-6
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In this case, if ge F*Y and fe %, Theorem 5.9, Theorem 5.2, and the
identity <f, g>=<S,f, S, &> (ie, (2.7)) imply that

1<y @1 < 1Sg Ml 1S, glizor < If e 18l

This proves that |/ | <c ||g||F;zq'.

Conversely, suppose /e (F*)*. Then I, =1- T, e (f3%)*, so by Theorem
59, there exists t = {tp}p € f-* such that I(s) = Ypspfp for
s= {sQ}Qef?”, and ||t||;;uq'z I I <cflff, since T, is bounded. Now
l,oS,=1-T,oS,=1 by Theorem 5.2. Hence, with fe% and letting
g=Ty(1)=2pto¥p,

Wf)y=1L(S, /)=<S, [, 1) =X/, 8,

by (2.8), with ¢ =, still. Then /=1,, and, by Theorem 5.2,

Il <cltheor<c il

Remark 5.14. Using (5.13) instead of Theorem 5.9 and Theorem 2.2
instead of Theorem 5.2, we could also obtain the result (F,"‘,")* ~F ” *@ for
aeR, 0<g< + o0, and 1 <p< + o0, by the same method as in Theorem
5.13. For 1 <q< + o0, this is well known (see [Tr2]), but for 0<g<1 it
seems to be new (cf. [Tr2, p. 180]). (Alternatively, one could obtain the
result for 0 <g<1 by the methods in [Tr2] by using Theorem A.l to
obtain Proposition 1, p. 50 of [Tr2] for g= + .)

Similarly, (5.14) gives

(Fx)*~F52 (5.15)

for0<p<1and 0<qg< + o0, where f=p(a, p)= —a+n(l/p—1). This is
known (cf. [Tr2, pp. 177-182]). This includes the well-known result that
(HPY*~ B"M"P =1 for 0<p<1 [DRS; Wa].

Corollary 5.12 translates into the following:

COROLLARY 5.15. Suppose a€R and 1<g< +oo. If feF¥, then
I/ g sup{[<f, g>]: g€ % with || gllg = <1}.

Proof. One direction is of course an immediate consequence of
Theorem 5.13. For the other, we fix fe F%¢ and assume again that ¢ =y

in (2.1)-(2.4). Corollary 5.12 provides us with a finite sequence 1= {t5}o
such that ||#]|;-« <1 and

I<Se f, D1 = (1S4 [z
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By Theorem 2.2, ||S¢f||,fqz Al ¥ If we let g=T,(t), then we have
I{f, g>|=1{S, [, t>| by (2.8). Also, g € % since it is a finite sum of func-
tions in %. Hence, (a multiple of) this g satisfies all the requirements. |

We now turn to the analogues for p = + oo of the results in Sections 3-4.
The results on almost diagonality can be extended easily; for l <g< + ©
by duality and then reducing the case 0 <g<1to g>1 as in the proof of
Theorem 3.3. We say that {m}, is a family of smooth molecules (for F*)
if (3.3)-(3.6) hold with N as above and J=n/min(1, ¢q). With this, Theorem
3.5 holds with p= + co. Similarly, the analogues of Theorem 3.7 and
Remark 3.10 can be proved as before. Then all the conclusions of Section
4 can also be extended, virtually verbatim.

6. THE CASE p =0 AND REAL INTERPOLATION

In the previous section we discussed the limiting case p = + oo. Here we
will show that the extension to the other limit value, p =0, is also possible
at least on the sequence space level. These results are closely connected
with real interpolation and, as we shall see in Section 7, with the
John—Nirenberg lemma and atomic decompositions.

The space L°(R", dx) is defined to be the collection of all measurable
functions f such that

Ifllo=1{xeR™" f(x)#0}| < + co.

Peetre and Sparr [PS] studied L° in the context of interpolation. As || f1| .«
is the “height” of a function, || f| 0 is the “width.” If we define the best
approximation functional for a pair of spaces (X,, X} by

E()=E(t,x; X0, X)= inf [x—x,]z 0<i< +oo,

llxsltyy <t

then it is easy to see that
E(t, f; L° L®) = |{xeR™ | f(x)| > t}. (6.1)
We also have the usual definitions of other functionals such as

K(t)=K(t, x; Xo, X\)= inf  (lIxollx+ 2 Ix1Hx,)

x=x0+ X
and

Ko (1) =Ko (1, x; Xo, X)) = inf max(]xollx,, £ 1% x,)-

X =Xx0+ X]
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Obviously K(¢)~ K, (z). It follows from the definitions that
K (t)/t=s if and only if E(s)/s>¢ (6.2)

In other words, K, is the right continuous inverse of E. From
this it follows from the definitions that an inequality of the
form K (2, b; Xy, X|)<cK (1, a;X,, Xy), t>0, is equivalent to
E(cs, b; Xy, X)) < cE(s, a; Xy, X,), s>0. We also recall the definition of the
real interpolation spaces: for 0 <6 <1, and 0 <g< + o, (X,, X,)s, is the
set of all xe X, + X, such that

@ dt 1/q
”x“9,q = (fo (t_gK(t’ N XO’ Xl))q 7)

is finite. If in general we set |-|y»=|-[|% for y>0, then we have the
following well-known fact (cf. [PS] and also [Ja-T2; Ja-R-W]).

LEMMA 6.1. Suppose 0<8<1 and p=8/(1 —6). Then
(L% L®)g% i _gy= L7
Proof. By calculation we have
AN Lov0ra 0= 1K@ EERE ~ N K o ()| SR

=(1+p) [ 57 {1>0: K ()25} s

By (6.2), |{t>0: K (t)/t=s}] = (0, E(s)/s)| = E(s)/s. Thus, by (6.1),

© 1/p
U1 s[5 1 700> 53 ) =1l

We also note that if a function fe L° satisfies fe L” for all sufficiently
small p’s, then || £ ;o=1im, o ./]%,.

We now define a sequence space that corresponds to L°. We let f, be the
collection of all sequences s= {s,}, @ dyadic, such that

U Ql< + .

sg#0

llslly, =

Like L° f, is not a normed vector space, since [ 4sllg, = lislly, for Ae C\{0},
but f, is a “normed Abelian group” (see, e.g., [Be-L, Sections 3.10-3.11]),
since we have the triangle inequality ||s + t||g, < |Islly, + li£lls,- One can also
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check that L° and f, are complete. We note that {, is indeed a continuous
extension of the scale of f s4-spaces since, for xR and 0 <g < + o0,

l/g
<Z (o= ISQ|iQ)q>

Q

sl = } (63)

o
It is interesting to note that the analogues of Propositions 2.7 and 5.5
hold for f,.

LEMMA 6.2. Let ¢ > 0. Suppose that for each dyadic cube Q there is a set
E,c Q such that |Egl|/|Q| > e. Then

U Eol-

s9#0

s, =

Proof. Since M is weak-type (1, 1), we have

U Q| <1{x: Mlry, o 5)(x) > ¢}

sp#0

o U Eof

sQ'—#O

The other direction is trivial. ||

LeMMA 6.3. Suppose a€R and 0 < g < + oo. Then
sl 1, = [lm*(s)] o-

Proof. As in Proposition 5.5, we have
{x:m*(s)(x) >0} < {x: M(x (.61 0))(X) > 5.

By the weak-type (1,1) inequality for M, and (6.3), we obtain
()l o< C sl
For the converse inequality, we could argue as in Proposition 5.5, but
it is simpler to just note that if so+#0, then my(s)#0, and hence
m*i(s)(x)#0 for all xe Q. |

Lemmas 6.2-6.3 are exactly what is needed to carry through the

analogue for f, and f%¢ of the real interpolation argument in [Fr-J2,
Section 3].

THEOREM 6.4. Suppose o€ R and 0 <g< + 0. Then
K(, 510, 120) = K(2, m*(s); L°, L™),

with constants in the equivalence independent of t and s.
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Proof. The direction
K(t, m*(s); L°, L) < CK{(¢, s; Iy, T4 (6.4)

is very easy. We define the “}-medians” mg 5(s) as in (5.7) except with
|Q|/8 in place of |Q|/4, and we set

MT78(S)(X) = Sl;p mg 7 18(8) xo(x).

Then Proposition 5.5 and Lemma 6.3 still hold with m{%(s) in place of
m*(s) = m{7,(s). Also, it is elementary to verify the subadditivity property

mg(so+51) < Co(mife(so) +mifs(sy)).

Letting f, = min(m*/(s), C,m}%(so)) and f; = m*¥(s) — f, readily gives (6.4).
To prove the converse inequality, by (6.2) it suffices to prove that

E(Ct, 5;§,, £29) < CE(t, m*(s); L°, L™)

for some C. By (6.1), then, it is sufficient to show that there exists a
splitting s = s° + s' such that

sl < € 1 {x: m*(s)(x) > t}| (6.5)
and
sl pzs < C. (6.6)

Let Q) = {xe€ Q:m*(s)(x) >t} and Q; = Q\Q'.. Let A4,=
{Q:1Q1>1QI/2} and A;={Q:|Q; | >1Q|/2}. Define s° and s by setting
so=sgif Qe d,, sy, =0if Qe 4;, and s}, =5, —s%. As in Proposition 5.5,
define Ey={xe Q: Gg(s)(x) <m™(s)(x)}. Then |E,|/|Q|>2. Let E,=
Eon Q[ if Qed, and Eg=EynQ; if Qe AS. Then |Ey|/|Q| > 4. By
Lemma 6.2 with E,, in place of E,,

U elsc| U Eyl,

sg#0 sp#0
Qe A, Qe A,

which yields (6.5), since EQ =@, for Qe A,. Also, by Proposition 5.4 and
(5.10),

sy, =

1 1/q
Is ||,W<C(sup 7 [ % qor== |sglzgg)")

PQCP
1/q
<C|sup— m*(s))? <y,
( pplpljr,‘( ( )))

since E,cQ; <P for QP and Qe 4¢. |
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Notice that another way to state the theorem would be to say that
H{x e R™ m™(s)(x)>c,t}|/c, < E(t, s; £y, 129
< [{xe R m™(s)(x) > c,t}|/c,.

for some constants ¢, and c,. This means that where we are used to seeing
the distribution function of f in the L? context, we should expect the
distribution function of m*?(s) for our sequence spaces. For instance, the
theorem has the following immediate corollary.

COROLLARY 6.5. Suppose aeR, 0<g< 4+, and 0<8<1. Let
p=0/(1—0). Then

0 ~
(fo, ffﬁ)é{l/u -0~ f;q'

Proof. This follows from the definitions, Theorem 6.4, Lemma 6.1, and
Proposition 5.5. |

We now use some standard facts from interpolation theory such as
reiteration (see [Be-L, pp. 67-68]), the remarks following (6.2), the fact
that E(t, a; X2, X%)=E(t", a; X,, X,)%, a, >0, and Holmstedt’s formula
(see [Be-L, pp. 52-53]), which show that an equivalence between
K-functionals persists after mutual reiteration. The endpoint results in
Theorem 6.4 and its corollary then have a number of immediate conse-
quences.

COROLLARY 6.6. Suppose aeR, 0<q< +o0, and 0<py<p<p;<
+00. Then

K(1, 5;Fy, £29) ~ K(1, m*4(s); L, L™), (6.7)
K(t, 5%, £%9) ~ K(1, m*9(s); L™, L™), (6.8)
(b, 15005050 =130 if %=1+1—i, (6.9)
P b
and
(Fe. 150, =137 if;—)=1p_00+£. (6.10)

Of course, corresponding results for the F;" spaces follow immediately.

COROLLARY 6.7. Suppose aeR, 0<g< + o0, and O<py<p<p, <
+ 00. Then

K(t, f; 29, B2 > K(1, S, f5 129, F29) x K(1, A%f; L7, L) (6.11)

PO’ Po’ " py
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and

I S
Po Dy

(k1

o, (6.12)

Proof. The first equivalence in (6.11) follows from the {2 — F3 retrac-
tion diagram (Theorems 2.2 and 5.2), while the second follows from
Corollary 6.6. Then (6.12) follows either by (6.10) and retraction, or by
(6.11), the usual results for L”-spaces, and Corollary 5.8. ]

We remark that in [Fr-J2, Section 3], we obtain (6.8) with G*(s) in
place of m*/(s), and (6.11) with G*/(S,, f) in place of 4*’f, both in the case
p1 < +co, by direct arguments analogous to those above. These yield
(6.10) and (6.12) for p, < + co. However, the argument above is easier
than the one in [Fr-J2] and, still, it proves more. We could also prove
(6.8) and (6.10)-(6.12) for p, = + o by direct arguments like those above.
In particular, (6.11)-(6.12) for p, = + oo generalize and simplify the results
in [Jal].

We have not defined any space F, corresponding to f,. If, for example,
we define || f]z, =inf{|lsll;: f=3os0Vo}, the resulting space would not
be independent of the test function Y chosen. This is closely related to the
fact that the analogues of Lemmas 2.3 and 5.1 fail for f,.

We now briefly discuss another possibility for defining a sequence space
corresponding to p=0. Suppose we (temporarily) let « be a function of p
via the relation a(p) =n[(1 — B)/p— 5] for some fixed fe R. Let w; be the
measure on the sequence space {Q: Q is dyadic} with weight w,(Q)=|0]”.
Then it follows easily that

1/p

sl = (3 bsg1? 101°) " = I,
(o]

for 0<p< + 0. Considering (f2#7)? as p — 0, define f} to be the collec-
tion of all sequences s= {s,}, dyadic such that

Isleg=2 1017 =lIsll ey

sg#0

for /° defined analogously to L° above; that is, the /°-“norm” is the
wg-measure of the set of “points” Q such that s(Q)=s, #0. We then have
the following.

PROPOSITION 6.8. Suppose 0 <p,<p<p,< + o0, feR, and a(p) is as
above. Then

1 1 1
(fg’ fpfm)m)é{i/g__,fp(p)p lf 5: 1 +;_E)_1'
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Proof. This follows from Lemma 6.1 applied to /°(w;) and /*(w;) for
p; = + o0, and by reiteration for p, < + 0. |

7. AToMiCc DECOMPOSITIONS

Using the interpolation results in the previous section, we will obtain
“atomic” decompositions of the elements in f o for 0<p<1 and
p<q< +oo. This will yield corresponding results for the F2¢ spaces. In
particular, we recover the traditional atomic decomposition of the Hardy
spaces. We will take a slightly roundabout approach in order to clarify the
connection between real interpolation and atomic decompositions. The
point we wish to make is that we (essentially) get atomic decompositions
as soon as we use a standard, alternative, definition of the real interpola-
tion method and the spaces f, and f*.

Let us first recall this alternative description of the real method. Let
X=(X,, X,) be a pair of (quasi-)Banach spaces. Following [Ja-R-W] we
define the e-functional for 7> 0 by

XMy, i lxly <t
+w otherwise.

e(t,x;/\—’)={

(Then e corresponds to E as the J-functional corresponds to the
K-functional.) We define

l/q
I¥lo.ge = _inf (Z(2""/<“">e(22xv;)?))““’w) .

x=3yezXy veZ

The following proposition is known.

PROPOSITION 7.1. Let 0<0<1 and 0<g< + 0. Then

”x“ 6,9 x ||X|| 6,q:e*
Proof. See Appendix C. |

Combining Corollary 6.5 with Proposition 7.1, and noting p = 6/(1 — ),
yields

Isllfur inf Y 2%e(2F, 5.5 £y, £24 (7.1)

STLSkpez

foraeR, 0<g< + o0, and 0 <p < + co0. Since

inf t7e(t, x; X) = lxllx, Ix11 %,
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(7.1) implies

Isllfw>c inf 2 lsicllgy Dl fr- (72)
$s=XS ez

The converse of (7.2) holds if 0 < p<1 and p< g < + oo. First, by (7.1) we

have

Isll < c inf 2K =92, 50, F20) < Islly, sl fur (7.3)

for xe R and 0 <p, ¢ < + co. (This also follows directly; for p < g trivially
by Holder’s inequality and, in general, by Corollary 5.6.) If 0<p <1 and
p<g< + o, the p-triangle inequality and Minkowski’s inequality with
exponent ¢/p yield

s + 2l oo < lislh foa + Wl o (74)

It follows that we have equivalence in (7.2) if 0<p<1 and p<qg< + 0.
If we normalize by setting A, = ||s; || ,/" 15k lgea, then flsi/As | }/” 18/ A | oo
=1, since [|As|y = [sll;,- By a renaming, then we obtain, for 0< p<1
p<q< + o0, and aeR,

1/p
llsllfnginf{( Yy Mk[‘”) =Y Aesi and (|5l [1selle < 1 for all k}.
keZ keZ
(7.5)

Because of the particular properties of the dyadic cubes, we can develop
(7.5) one step further. We say that a sequence r = {r } p4yadic 15 an atom for
f“q 0<p<l1, p<g< + o0, and aeR, if there exists a dyadic cube @ such
that ro=0 if Q& 0, and |r| =<0 “1r, Note that by (7.3), lirllp < c for
any atom r for 2.

THEOREM 7.2. Suppose aeR, 0<p<1, and p<g< + 0. Then

1/p
||s[|,;qzinf{( Y |Ak|”) :s= Y Ayry and each r, is an atom for f:"}.

keZ keZ

Proof. By (7.5), if sef2, select {y;},., and {s;},., such that
$=Fraz WS 15N Isellig< 1 for all k, and (S 7el?)"? <c lsly.
Let Q, =) {Q: (s4)o#0}. Then [Q,] = |ls;|ls, < + oo. Let {Qy;}; be the
(unique) collection of maximal pairwise disjoint dyadic cubes such that
(sx)g, #0 and 2, =U); Oy Let 1,;=7,(101/|2,1)'"” and let ry; be the
sequence defined by (ry;)o =7:(s)o/ti; if Q= 0y, and (ry;)o =0 otherwise.



A DISCRETE TRANSFORM 89
Then
(17 sl e < e Nl s 19,172 104l ~ P <1 Q) 7
and (r;)o =0 if Q &£ J,,. Thus ry; is an atom for {24, Also,

§= z Yksk_Z tk]rkj’

keZ
with

Z tgl” =2 17el?1Qel 7 2 10kl = X 17l ™

keZ JjezZ keZ

We thus have that |s| e dominates the infimum in the statement of the
theorem.

The converse estimate follows easily from (7.4) and the remark above
that |[rfl <c if r is an atom for SO |

There is a somewhat more direct proof of Theorem 7.2 following the
ideas of Calderdn [Cal2] and Chang and Fefferman [Ch-F2] (cf. also
[Fo-S; Ja-T27). Our approach emphasizes the close connection between
atomic decompositions and real interpolation. Frequently, atomic decom-
positions have been used to obtain interpolation results (see the survey in
[Jon]). The proof above makes the reverse connection explicit by exploit-
ing the f,-spaces to obtain the compact support (cf. [P7, Co, Fef-R-S]).

Remark 7.3. We say that a sequence r= {rQ}Qdyad,c is a p,-atom for
f o, p<pi< + o, if there exists a dyadic cube Q such that r,=0 for
Q ¢ Q and |r| o < |Q|Vri-Yr By Holder’s inequality and (7.3), we have

sthass < sl =7 sl psa < Nl llsl g

for p<p; < + oo. It follows easily that the modification of Theorem 7.3 in
which each r, is a p,-atom for { »% p<p;< + oo, holds also. This could
also be derived from (6.9), using the technique of Theorem 7.2.

Naturally, Theorem 7.2 leads to corresponding result for the F“q-spaces
Let {692} ayaaic b€ a given family of distributions representing F“" (see
Section 4 for definitions). We say that W e &'/2 is a wave-cluster for F"‘"
if ¥=3,_5ro0? (in F'/P), where r={ry}oayaaic i an atom for f;"
associated with the dyadic cube Q. Note that by (4.6) and (7.3),

1P e < lrlless < 1O Il <. (7.6)
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We say A is an atom for F29if A=Y, _5roagy, where r={ry} o dyadic i
an atom for f %4 for the cube Q and the ay’s are smooth atoms for F“" (ie.,
(4.1)-(4.3) hold for some N> N and K> [« + 1], ). Observe that

supp A c3Q_,ijA(x) dx=0 if |y|<N,

and, by Theorem 4.1, ||A] g« <c¢, as in (7.6).
P

THEOREM 7.4. Suppose acR, 0<p<1, and p<g< + o0. Then
@) 1o inf{(Eyez 147 f =207 2 Wy and each ¥ is a
wave-cluster for k29, and

(i) ”f”qu~lnf{(Zkez || WP f =3, , AcA, and each A, is an
atom for "‘"}

Proof. One direction follows trivially from (7.6) and its analogue for
atoms A and the inequality, for 0<p<1 and p<g< + o,

1 + &l fag < 1SN s + 8 o, (7.7)

as in (7.4). The other direction follows readily from the definitions,
Theorem 4.1, and Theorem 7.2. |

Remark 75. Recall that F?~H? if 0<p< +o and F%~BMO.
Note that an atom A=Y, 5 rod, for F) (0 <p<1) satisfies

supp 4 < 30,
(7.8)
Jx’A(x)dx=0 for |yl <[n(l/p—1)],

and

[4llsmo < e llrljm<e Q|
Thus, Theorem 7.4 yields a decomposition of H? (0<p<1) into
“BMO-atoms.” Also, using Remark 7.3 and the corresponding analogue of
Theorem 7.4 for p,-atoms, we obtain the familiar decomposition of H?,

0<p<1, into L”-atoms, 1 <p, < + o0, which by definition satisfy (7.8)
and || Al ., < ¢ |Q]YP1~ P (see [Co, La, Cal2, Wi]).

Remark 7.6. There is no difficulty in obtaining
1A Wl iree

l/p
>cinf{<z Mklp> :f=Y A,A,andeach 4, is an atom for F:"},

keZ keZ
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and similarly for the wave clusters, for all «eR, O0<p< + 0, and
0<g< + o0, since (7.2) holds in general. We do not obtain equivalence
(Theorem 7.4) unless 0 <p <1 and p<g< + oo simply because (7.7) fails.
This indicates why there is a distinct break between the cases p<1 and
p =1 for the traditional H” atomic decomposition, but not for the decom-
positions in Theorems 2.2 and 4.1.

Remark 17. For fe S|P, let fo=Y,c5(S,floW¥o, Where O is
dyadic. By (7.3), Theorem 2.2, and Theorem 5.2,

/ol <c 1O 1 /o] wx
foraeR, 0<p, g< + o0. Taking =0, g=2, and | <p < + o gives

”fQ lr<e |Q|W £l smo-

This is analogous to the John-Nirenberg inequality ([Joh-N1]). Thus we
see that Corollary 5.7 and (7.3) are analogous to the John-Nirenberg
inequality for our sequence spaces.

Remark 7.8. Instead of taking the equivalence between H? and F02
(0<p< + ), and between BMO and F%, for granted and obtaining the
traditional atomic decomposition, as in Remark 7.5, we can take the
standard results for H? for granted and obtain these equivalences as conse-
quences of the results above. First, (2.1)-(2.3) and Plancherel’s theorem
easily imply that F)*~ L. (See Appendix B for a discussion of the iden-
tification.) By Remark 7.3 and as in Remark 7.5, we obtain a decomposi-
tion of F°2 (0<p<1) into, say, L*atoms. This yields the continuous
1mbedd1ng F? > H? 0<p<l.

The converse imbedding follows in a familiar way (see, e.g., [ Torch, pp.
341-342); it suffices to show that an L’-atom a(x) for H?, 0<p<l|,
satisfies |al|pe:<c. Hence we have F®2~H? for 0<p<1 and for p=2.
Then real 1nterpolat10n ((6.12) and [Fef-SZ]) between p=1 and p=2
yields ng ~ L? for 1 <p <2. Duality yields the remaining cases.

8. THE CALDERON PRODUCT AND THE INTERPOLATION PROPERTY

Given a pair X=(X,, X,) of (compatible) Banach spaces, there are
many ways to construct intermediate spaces. For the special case of a pair
of quasi-Banach lattices, there is a particularly simple construction,
motivated by Holder’s inequality, known as the Calderén product (see
[Call]). Although the distribution spaces F°“’ are not necessarily lattices,
the sequence spaces f *¢ are. In this sectlon we will see that Calderon
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product for these sequence spaces is easily computed. Further, it is well
known that, under mild conditions, the Calderén product coincides with
the interpolation spaces obtained by several different interpolation
methods. Using this, we will also obtain certain interpolation results for the
F;“’ spaces immediately via the retract diagrams (Theorems 2.2 and 5.2). In
particular, we will obtain the interpolation property for the f- and F-spaces
in the greatest generality.

Suppose (M, u) is a measure space and X is a quasi-Banach space of
p-measurable functions (identified if equal p-a.c.). Then X is said to be a
quasi-Banach lattice on M if the conditions f€ X and |g(x)| < | f{(x)| u-a.e.
imply that ge X and | g|y<|/f|x. Now suppose X, and X, are quasi-
Banach lattices on M. If 0 < 0 < 1, the Calderén product X )~ °X¢ of X, and
X, is defined to be the set of y-measurable functions ¥ on M such that
there exists ve X, with [[v|ly, <1, we X, with |lw|, <1, and A>0 such
that

lu(x)| < Alo(x)) =% w(x)|®  for p-ae x (8.1)
We set
Jull 3~ = inf{4 > 0: (8.1) holds with flv] v, < 1 and ], <1}.

Although restricted to the case of a lattice, the Calderon product has the
advantage of being defined in the quasi-Banach case, and, frequently, of
being easy to compute. It has the disadvantage that the interpolation
property (ie., the property that a linear transformation T bounded on X,
and X, should be bounded on the space in between) is not clear, in general.
However, we have an elementary substitute; recall that a linear operator T
on a quasi-Banach lattice X is called positive if T(f)>0 whenever f>0.

PROPOSITION 8.1. Let X, and Y, be quasi-Banach lattices, and let T be a
positive linear operator bounded from X, to Y, with operator norm ||T},,
i=0,1. Then T is bounded from the Calderén product X}~ °X¢ to the
Calderén product Y} °Y%, 0 <0< 1, with operator norm ||T| ¢ satisfying

1T <7l ° 175

Proof. This is just Holder’s inequality: the usual proof of this
inequality, replacing the integral by the positive operator T, shows that

TSI 1A S TULD' 8 TUAL.

The rest follows now by the definition of the Calderon product. Namely,
suppose f€ X °X{ and M=(1+¢) | f|x1-050, for an arbitrary &>0.
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Then there exist fye X, and f, € X, such that || fol ,, <1, IIfillx, <1, and
|/1<M [ fol' %1 £11°. Hence,

ITA<ITUo™ " N TS MCT(fD/ITIo) ~° (TUADNTIL Y

and, consequently, Tf'€ ¥~ °¥{ with [ Tf{ ,1-0,0 <] The ° 7% M. Here
we have used the facts that |Tf| < 7(] f|) for any positive operator T and
that ¢ and |g| have the same norm in a quasi-Banach lattice. Letting ¢ — 0
gives the conclusion. ||

As we pointed out above, the F“"-spaces are not Banach lattices in
general, but the sequence spaces f * are. Let M be the sequence space
indexed by the dyadic cubes 0 = R" and let u be counting measure on M.
For sequences s= {s,}, t={tp}, and r={ry}, (8.1) becomes simply
[sol <Alrgl' =% eyl for all Q.

THEOREM 8.2. Suppose wg, e R, 0<py, p1< + 0, 0<qq, g, < + 0,
0<b<1, 1/p=(1-0)po+0/p\, 1/g=(1—-80)/g0+0/q,, and a=(1—0)a,
+ 6. Then

AG 1 — 3 [

qu““ (fpgqo)l ’ (fp:q‘) :
Proof. We shall first prove the theorem assuming that pg, p; < + co.
Let X,=f%® and X,=f%% Suppose seX{ °X{. Given £>0, let
B=(1+5%) ]lsl] X1-0x0 Then there exist sequences r and ¢ such that

Il <1, N2l 5, < <1,'and lsg| <Brgl' ~?ty|° for all Q. Applying Holder’s
inequality with conjugate exponents ¢,/(1 —8)q and ¢,/q0 yields

_ l/q
(T i = sol )
Q
1/q
<B<Z (1917 Irol 7)™~ (1@~ ltg|ig)"")
)
(1 —8)/q0 0/q1
<B(Z00 = Irolz) (T 001 rglio)) " (82
0 0
Applying Holder’s inequality again with conjugate indices py/(1 — @) p and

p1/p0 and letting ¢ — 0 gives

[0 a0 < Wl sy o0 WPl oy @ Ml < Tsl -0 (8.3)

Now suppose sef;", and, to begin with, ¢, ¢, < + co. To prove the
estimate converse to (8.3), we may assume py/q, < p./q,, since the contrary
case follows from this one by interchanging X, with X, and 8 with 1 —6.
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For keZ, let

A=l (% (101 151 2olx))) > 2}
and
Cr={Q dyadic: |0 4,| = 1QI/2 and [Q@ N A,,1] <|QI/2}.
Note that if Q¢ {J,.z Ci, then s, =0. Define sequences r and ¢ by setting
ro={sol/4g)"® and  tp={(|sol/Bo)"",

where

1 ¢ 1
= kv u . - e
101", u ~+5 q[ +2]

U g, (o IJ
*3 q':n+2’

ifQeCy,and ro=1,=0if Q¢ ;.7 Cy, for

and

By=2¢1Q%, v=

I IR

y=1—-pgo/gpo and  6=1—pq,/qp;.

A calculation shows that |so|=|rg]' ~° |15 |° We would like to prove that

Iri<Clsif  and ity <Clsl pr. (84)

Assuming (8.4) for the moment, we have

1sg| = C lIs]lyze (ro/C lIsl] P/PD)‘ 9 (10/C sl p/m)e

Thus (8.4) yields [|s]| yi-0,0 < C |]s|]faq
To prove (8.4), we notice that by Proposition 2.7 we have

Po/90
e <C (ST 1072 Ag gl tona)

keZ QeCy

Po/q0
<cf(($ ra T 200 isglir)

keZ QeCy
On the set 4;, 2 < (T (101" Isg| Fo(x)))"4, and since y <0, we may

replace 2* by this larger quantity. The right-hand side can then be
estimated by C ||s]| fu-
14
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The second estimate in (8.4) is similar. Replace oy, ¢4, po, and y with «,,
g1, p1, and 9, respectively, and o, 4, With x5 4 . Since 6 >0 we can
estimate 27 “* D by (T, (101 %" Isgl Zo(x))¥) "4 on Aj, |, and this leads
to the desired conclusion.

If g,= + o0 and g,< + o, the same arguments with the usual inter-
pretation work; take 4, as above and tQ=A1Q/9, to get (8.4). Similarly if
¢1< + o and gy= + 0. If go=¢, = + o0, selecting r, and ¢, so that

Q17" Irol Fo)™ = (121" Iso| 7o) = (11~ *" |11 %o)"

yields equality in (8.4) and, hence, the result.

This proves the theorem when p, and p, are finite. Let us now indicate
the (minor) changes necessary to remove this restriction.

The idea is simply to use Corollary 5.6. We first consider the case when
only one is infinite, say p, < + o and p; = + oco. Assume for now, in addi-
tion, g, g, < + oo. Corollary 5.6 then provides us with a set E, for each
dyadic cube Q. In (8.2) we replace j, by 7, and estimate the second factor
by its L*-norm. By using Proposition 2.7 and Corollary 5.6 (in the other
direction), we get ||s||f:q< Cllsll xy-ox0 in place of (8.3). To show the con-
verse we let 0 =1 and define r and r as before. We then need to replace the
estimate involving ¢ in (8.4) by

el x, < C.

This inequality follows as before once we notice that by Corollary 5.6 with
Ey=0n4;

k+1>

IItilx1<C|

1/qy
(Z )3 |Q|‘“‘/"“/2"”35"ISQ|"XQnAz+1>

keZ QeCy

L

The case when p,< 4+ 0, go< 4+ ©, and p; =¢,= + oo is elementary.
The first part of the proof is direct; for the second part, replace the defini-
tions of r, and ¢, given there by

rQ=(|SQ|/|Q|0(u1/n+1/2))1/(176) and tQ= |Q|11/n+1/2- (85)

The case when both p, and p, are infinite (and g, and g, finite) is,
in fact, the most complicated. However, it still only requires changes
along similar lines. Suppose reX,=f%" and reX,=f%% According
to Corollary 5.6, applied with 1 replaced by &= %, there exist for each
dyadic cube Q subsets EQ=E}(r) with [|EQ/|Q|>F and
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el = (X (1Q] 59" |rQ|xEo)"° )| 1. There are also sets E corre-
sponding to ¢t with a similar property Notice that E4=E % NE 1Q satisfies
|Ey1/IQ] > 15. In (8.2) we now replace j, by X&, and argue as before to
obtain [$ll4=s < C [Is]] xi-ox1- To prove the converse we must modify the
definition of the sets A4, and Cy. Suppose sef*. Corollary 5.6, again with
¢=1y, then gives us sets E,, satisfying, in particular, |Ey|/|Q|> . For
keZ we let

st~ {x (% (101" Iso| zEQ(x>)q>”"> 3

and define %, analogous to the sets C, above with 4, replaced by .. Note
that, since [E,|/|Q| > 5, we must still have s, =0 if Q¢ ., %. Regard
p/po=p/p;=1 in the definition of 4 and y and in (8.4). In the proof
of (84) we now replace OnA, by Epna, if Qe%; note that
|Eg N 4, |/|1Q] > &5 — 3= 15. Similarly, we replace 0n A5, by Epn /i, .
The estimates of [|r| x, and It x, can now be carried out as before.

The final case is py=p, =+ and ¢, < + o, ¢, = + 0. Now one
direction is immediate from the definitions. For the other we again define
r and 7 by (8.5). Instead of (8.4) we then have |r|x, <C |||} ”““” and

It =1. 1

We can obtain results regarding complex interpolation from Theorem
8.2. Let [ Xy, X, ]s denote the space obtained from X, and X, by the com-
plex interpolation method (cf. [Call; or Be-L, Chap. 4]). Suppose X, and
X, are Banach lattices on a measure space (M, u), and let X =X ;X" for
some Be(0,1). Suppose X has the property that the conditions fe X,
| f.(x)] < |f(x)|, p-a.e. for each neZ™*, and lim, , . f,=0, p-ae., imply
lim, ., . || f.llx=0. Calderén [Call, p. 125] then shows that X %x%=
[ Xy, X, ]s. Hence, we obtain the following.

COROLLARY 8.3. Suppose oy, 0,eR, 1<py,q0< +00, 1<p;,q, <
+o0, a=(1—-0)ag+0a;, 1/p=(1-0)/po+06/p,, and 1/qg=(1—08)/qo+
8/q,. Then

[Foos, faa],~f2 (86)
and
[Foos, Fua ], ~ K. (8.7)

Proof. Since p, g < + oo, the property needed to apply Calderén’s result
to X=1 27 follows easily from the dominated convergence theorem. Hence
Theorem 8.2 yields (8.6). Now (8.7) follows from (8.6) and the retraction
diagram (Theorems 2.2 and 5.2), as usual. |}
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Special cases of (8.7) are [H!,BMOJ},=L? 1/p=1-0, and
[H, L"]g=L" 1/p=1-0+86/p,, p < + oo, which are well known (see,
e.g., the survey in [Jon]). The result for general a’s and ¢’s, at least when
1<p;g; <+ 00, i=0,1, is due to Triebel (cf. [Tr2]). Some of the results
in the extreme cases p,=1 and/or p,= + o, i=0, 1, may be new.

In the case where we let go=¢, = + 00 and/or p,=p, = + oo in the set-
ting of Corollary 8.3, it follows from Theorem 8.2 and a general result of
Shestakov ([Sh], or see [N, p. 140]) that [f2=, 2= ], is the closure of
f2e ~f2< in f2= and that [f2%, 9], is the closure of fx% iz
in f

We could also consider (8.6)-(8.7) for p, g < 1; it turns out that there are
many ways to extend the complex method to the quasi-Banach space case
(e.g., [Riv; Cal-T; J-J; Tr2]). However, we will not pursue this. Instead we
consider two alternate methods of interpolation whose extension to the
quasi-Banach case is straightforward and for which the interpolation
property is immediate.

The first of these methods is due to Gagliardo and is denoted <{A4,, 4, >
in [N] (cf also [O; P6]). In [N] it is proved that for quasi-Banach
lattices satisfying certain conditions (easily checked for the f-spaces),

(Xo, X1 00=(X57°X0)". (8.8)

Here, in general, X° denotes the closure of X, X, in X. This now readily
yields the following result for the f- and F-spaces.

COROLLARY 8.4. Suppose oy, 0,€R, 0<py,go< +00, 0<py, g <
+ o0, a=(1-0)ag+00,, 1/p=(1-06)/po+6/p,, and 1/g=(1—-0)/g,+
0/q,. Then

<f°=0¢10 fazm) ~faq (8.9)

po
and

(Foom Faay o F, (8.10)
Proof. By the trivial fact that finite sequences are dense in f %,
P, q< + o, we have that £27=(f29)°. Hence, (8.9) follows by comblnmg

Theorem 8.2 and (8.8). By the standard retraction argument we then also
get (8.10). |

Corollaries 8.3-8.4 yield the interpolation property for the f- and
F-spaces for nearly all possible values of the indices a, p, and q. However,
there is another method of interpolation which very easily yields the inter-
polation property for all possible values of the indices. This method, due to
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Gagliardo, Peetre [P6], and Gustavsson and Peetre [Gu-P], is known as
the +-method of interpolation and is denoted (A4,, 4,,6) in [N].

Again under appropriate mild conditions, which are satisfied in the case
we are about to discuss, we have

X5 XY ( Xy, X1, 0> (X3 °X9)~ (8.11)

(see [N]). Here, in general, X~ is the Gagliardo closure of X in X, + X;
recall that xe X~ if and only if there exists {x;}~, with x;€ X such that
x;—»xin Xo+X,asi— + o0 and ||x;[|y <A Thc norm on X~ is then the
inﬁmum of all such 4’s.

THEOREM 8.5. Suppose oy, a,€R, 0<py, go< + 00, 0<py, g, < + 0,

a=(1-8)yxo+0a,, 1/p=(1-0)po+6/p,, and 1/q=(1-0)/q,+0/q;.
Then

(Foom, fua gy~ (8.12)
and
(Fom, Fua gy x F. (8.13)

Proof. Theorem 8.2 and (8.11) will give (8.12) as soon as we have
verified that

[0 = (f2)~ (8.14)

Trivially £27 = (£27)~, so we need to prove the converse. Suppose se(fa)~.
By deﬁnmon thls means that there exists a sequence {s;}:>, such that
s; H ,aqsl and s, > s in f sod0 f M4t as i— + co. In other words, there are

sequences {s°} , and {s * o such that
s—5;=52+5!
and

“S{”f’ﬂj - 0, j= 09 1,

as i— +oo. Since |(s{)g|<|Q|¥"* 12~ 1r Ilsfllfjv,, we have (si)g—0,
Jj=0, 1, and, using the identity above, (s;)o = 59 as i » + oo for each cube
Q. This implies that

1/q 1/
(Z (10| =" |sQizQ)q) <lim inf (z (o] - l(s.»)glzg)q)
1) e o

(when po=p;= + o we should modify this slightly and only sum
over cubes Q< P for an arbitrary fixed cube P). This yields
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81 je <liminf,_  ||s; ||,;q<,1, by Fatou’s lemma, and completes the proof
2 «
of (8.14). Using the retract diagrams again we also obtain (8.13). ||

Notice, in particular, that BMO = F% can be obtained by interpolating
between F°' and F°, for instance. This answers a question recorded in
[P8]. Similarly, the theorem tells us how to interpolate between K2 and
F°° and this yields the analogous results for BMOA and the Bloch-space,
giving at least a partial solution to a problem by Peetre [P9, p. 237].

9. THE ALGEBRA OF ALMOST DIAGONAL OPERATORS

In this section we further discuss the class of almost diagonal matrices
(introduced in Section 3). We prove (Theorem 9.1) that this class is closed
under composition and often under taking inverses. The class of all
operators on the distribution space level, which correspond to almost
diagonal matrices, is then also an algebra under composition. We consider
various characterizations of this algebra and of the families of distributions
naturally associated with it. These distribution families generalize families
of smooth molecules; however, in the case o =0 the two notions coincide
(Theorem 9.15). We will see that our algebra contains fairly general
families of Calderon-Zygmund and Fourier multiplier operators (Exam-
ples 9.18 and 9.19). We have again put some of the proofs in an appendix,
Appendix D.

For fixed «, p, and g, the class of almost diagonal operators of f ;7 can
be made into a normed space. Given an almost diagonal operator 4 with
matrix {app}g p, we define

1A4l.= SQUp |aQP|/wQP(5)

and
| Allag= inf | 4],

Since || 4]|, is a nondecreasing function of ¢, it easily follows that || 4|4 is
a norm. We denote the class of almost diagonal operators on f »¢ equipped
with this norm by ad or ad;’.

THEOREM 9.1. Let aeR and 0<p, g< + 0.

(i) If A, Bead}’, then A-Bead)’.
(i) There exists 6=05(e) >0 such that if Acad}? and ||[I1-A|, <4,
then A is invertible and A~' e ad.

Proof. See Appendix D. ||
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In Theorems 3.5 and 3.7 we obtained certain basic estimates under
relatively restrictive conditions. We now consider the most general families
of functions for which these estimates hold (see Theorem 9.9). The fact that
ad? is an algebra (Theorem 9.1(i)) is the crucial property used in analyzing
these families.

For each dyadic cube P, let e” be the sequence defined by (e”),=1 if
P = and =0 otherwise. Each operator 4 € ad;? corresponds to a family of
sequences { Ae”}, obtained by perturbing the standard unit basis {¢”}, by
A. That is, if A is represented by the matrix {agp}g p, then Ae” is the
sequence with (4e”),=ayp. Theorem 9.1 implies that the collection of all
such families,

U= {{4e"},: 4e” = {ayp}, for some 4 cad}’},

is stable under ad;’. Notice also that since e’ is an element of f ;7 and an
almost diagonal operator is bounded, each sequence Ae” also belongs
to 4.
14
Let us now fix ¢ and y satisfying (2.1)-(2.4). The image of the collection
U under the inverse @-transform T, consists of families {mp}, of elements
mp="T,Ae" =¥ pappoeF*. By Theorems 9.1, 2.2, and 5.2 this collec-

tion is precisely

M=M(p)={{mp}p: {<mp, 00} }o.pead?}.

We shall say that {mp},eM is an Ad-family (or Ad;%-family). By
Lemma 3.6, any family of smooth molecules is an Ad-family.
The definition of Ad-family is independent of the choice of ¢.

PROPOSITION 9.2. Suppose oV, ¢V and ¢, Y each satisfy
(2.1)~(2.4). Then M(o") = M(o®).
Proof. Suppose {mp}pe M(¢®). By Theorems 2.2 and 5.2,

mp=2r{mp, §05e2)> 'p(Rz)-

Hence,
(Mp, 9@ =Y (mp, 0D Y R, 09,
R

This corresponds to the composition of two operators with matrices
{<mp, 0>} p and {YP, 09D }o p, respectively. By assumption,
{{mp, 9>} peadi, and {YP, 0>} p belongs to all ad>-spaces.
Theorem 9.1(i) implies that the composition is also in ad%? which means

P
that {m,},e M(¢'"). By symmetry, this completes the proof. ||
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In fact, there are many other equivalent characterizations as we shall see
next. Some of the ideas in the discussion below can be traced to Peetre’s
book [P3, Chap. 8] and the references given there.

Given families {65}, and {#y},, let {{op|ny>}o, » be the matrix with
entries

Coplngy=sup (o}, 1001,

ve Py

where 6 ,(-)=0p(- —y) and P, is the cube centered at the origin with twice
the sidelength of P. We say that {6}, is a uniform Ad%-family if the
matrix {{0,|9o)}o pead}’. Lemma 3.6 implies that a family of smooth
molecules is a uniform Ad-family, and it is easy to see that this new notion
is less restrictive in general.

We are interested in finding conditions on families {¢,}, which enable
us to characterize Ad-families {mp}, in terms of the matrix
{<oglmp)}o p. Recall that J=n/min(1, p, q).

THEOREM 9.3. Let aecR and O <p, g< + o0, and let {0} p be a uniform
Adb4-family with f= —oa+J—n. If {m,}p is an Ad%~family, then

{<0Q|mp>}Q,P:{5up ]<mP,0'}é>l}Q,Pead;q- 9.1)

veQo

Proof. According to Proposition 9.2 we may assume that the function ¢
in the definition of M(¢p) is such that ¢ =y. Now, by Theorems 2.2 and
5.2, we have the representation ¢, =3 z{0}, @r) @ and, consequently,

{mp, Y =z <0'é’ Pr)<Mp, Y.
R

This implies, with the notation above, that

<0Q|mP><Z <UQ|(PR>|<mPa Prl.

Notice that {{og|@,)}p r€ad}’; using the definition of wyp(e), it is
readily seen that this is equivalent to our assumption that the transpose
{{orlood}lorcadl, with B=—a+J—n Thus {{ay|mpd}op
corresponds to and operator dominated by the composition of two

operators in ad}?, and, by Theorem 9.1(i), this operator is in ad’? as well.

A resuit in the opposite direction, sufficient for our purposes, is the
following,



102 FRAZIER AND JAWERTH

THEOREM 9.4. Suppose aeR, 0<p, q< + o0, and let o be a function
satisfying

6(&)eC™,  |6(E)=c>0  if i< (9.2)

Set ap(-)=|P| 2 6(2"- —k) if P=P,. Suppose {0} p is a uniform Ad5-
Samily with = —a+J—n. If (9.1) holds, then {mp}, is an AdX-family.

Proof. Our assumptions on ¢ guarantee that there is function @
satisfying (2.1)~(2.3) such that ¢ = $ * 0. Hence, 9o =, * g, if (Q)=2""
and

e, 00> =[ mps 03> 5.V =T [ (mp 03> G.0) .

We define {apps} o » to be the matrix with entries a,, =0 if /(Q) # /(P) and
aQP = supyer'/,k 2= I ¢v(y)l = SupyeQQ,_k I (»b(y)l if P= Pvl and Q = ka'
Clearly this matrix corresponds to an operator in ad,?, since @ is rapidly
decreasing. The identity above shows that

[{mp, (PQ>| <Z {orlmp) Agr-
R

Once again we thus obtain an estimate involving the composition of
two operators in ad)? and, applying Theorem 9.1(i), we get the desired
conclusion. |

Assume for a moment that (9.2) holds and that op(:)=
|P| 2 6(2"- —k)if P=P,. Then under a certain condition, namely that
{05} p is a uniform Ad%-family, we have that (9.1) is equivalent to {m,},
being an Ad}*-family. In fact, this condition on {6 .}, is sharp. To see this,
note that {¢,}, is an Ad;’family. Hence, given the equivalence, (9.1)
holds with {m,} » replaced by {¢,} . This gives {{a,|@,>}o rcadl, or,
equivalently, {<opl@p)}o pead?

Remark 9.5. There are also analogues of Theorems 9.3 and 9.4 with the
single function ¢ replaced by a finite family {¢’}X ,. Instead of (9.2) we
then require that

¢'eC” | J{6'#0} > {3<1¢1 <2}
Suppose each {67}, is a uniform Ad}*family with f= —a+J—n. Then
{mp}pis an Ad}*family if and only if

{<oplmp)}o peadyy, i=1,.,K



A DISCRETE TRANSFORM 103

The only modification of the proof required in this case is to note that
we can find {¢’ }X |, with each ¢’ satisfying (2.1)-(2.3) such that
p=2:¢"x0"

Remark 9.6. Similarly, {m,}, is a uniform Ad}*family if and only if

{sup sup |{(m},ay,)|}cad)’
vePy ze Qo

for a (or, equivalently, any) fixed uniform Adgq-family {6p}p,
= —a+J—n, derived from a single function o satisfying (9.1). This can
be proved in virtually the same way as Theorems 9.3 and 9.4.

ExaMPLE 9.7. Consider for a moment the one-dimensional case. Let
a{x) be the sawtooth

X, 0<x<l,
o(x)=<2—x, I1<x<2, o(—x)= —a(x),
0, 2<x,

and define o, in the usual way. Then {o,}, is a family of smooth
molecules for F;" for —1<a<1,1<p, ¢< + 00, and thus also a uniform
Ad3?-family for these values of the parameters. Furthermore, |4(¢)| >0 on
1< <2. Combining Theorems 9.3 and 9.4 we see {mp}, is an Ad}’-
family if and only if (9.1) holds.

ExampLE 9.8. Also in R, let o(x) be the step function

-1, 0<x<]l,
o(x)= 1, 1<x<2,
0, otherwise.

Then {o,}, is a family of smooth molecules for F% for
—1<pB<0,1<p, g< 400, and |6(¢)] >0 on $< || <2 By Theorems 9.3
and 9.4, {mp}, is an Ad}*-family, 0<a <1, 1<p,¢< + o0, if and only if
{sup,cg, | {mp,a})|} o pead;’. Written out, this becomes a fairly explicit
condition on {mp}p. Given a dyadic interval Q, we let 0+ and 0~ be its
right and left halves, respectively. The condition is that

Q1

< Cwgple), Y€ Qq,

J mp(x+y)dx—f mp(x+y) dx
o+ Q-

for some £>0 and with C independent of y (and Q, P, of course).
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Examples 9.7 and 9.8 also have analogues in higher dimensions. For
instance, let ¢'(x), i=1, .., n, be defined by

) —1, 0<x,<1
x)= 0L <
a'(x) { 1, 1<xi<2,0\x1""’xn\2’

o'(x) = 0 otherwise. By using Remark 9.5 we easily see that these
functions can be used to characterize Ad;-families when 0 <a<1 and
1<p,g< +00.

Several of the results we have previously stated for families of smooth
molecules have obvious generalizations to Ad;%-families. For example,
Theorems 3.5 and 3.7 can be generalized as follows.

THEOREM 9.9. Suppose o€ R, and 0 <p, g < + .
() If f=Xpsomg, where {my}, is an Ad%'-family, then

IS lee<ell{so}ole

(ii) IffeF;q and {by}, is an AdY-family, where = —o+J—n,
then

IH{<f bod Yo llps < Il f g

Proof. For (i), see the proof of Theorem 3.5. For (ii), note that the con-
dition {<{¥ 5, by} o, r€ad}? is the same as our assumption on {b,}, and
follow the proof of Theorem 3.7. |

Let us now consider operators between Fz"-spaces. Once again, we fix ¢
and ¥ satisfying (2.1)-(2.4). If T is a continuous linear operator from % to
&', we say that T is almost diagonal on F;" if the corresponding matrix
{{TYp, @p>}op is in ad}?. We denote the class of such almost diagonal
operators by Ad}?. Note that if S and T have associated matrices
A={{SYp, 0p>}or and B={{TYp, 0y>}0 pr, then by Lemma2.1,
SYp=2r {S¥p, 9r> ¥ & Hence,

(TSYp, (PQ> =Z {SYp, @rI{TYg, ‘PQ) = (BA)QP;

ie., TS has associated matrix BA4. Theorem 9.1 thus tells us that Ad;? is an
algebra as well.

It is immediate by the definitions that an operator T is in Ad}? if and
only if T maps the family {y,}, into an Ad}-family. In fact, such
operators map general Ad;?-families into Ad;?-families.
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PROPOSITION 9.10.  Suppose aeR, 0<p,q< + o0, and let TeAd)?. If
{mp} p is an AdS-family, then {Tmp} p is also an Ad3-family. Furthermore,
if {mp}p is a uniform Ad3'-family, then {sup, p, |<T(m}), o)1} p€adyh.

Proof. Since mp=>3 g {mp, g ¥ g, We have
(Tmp, (PQ>=Z<T‘/’R,(PQ><’"P’¢R>
R

and this again corresponds to the composition of two operators in ad;*.
Hence, {Tmp}p is an Ad}%-family. Similarly, to show the last part of the
theorem, we use that

sup | (T(m3}), (PQ>| gz |<Tl//R’(pQ>I<mPl¢R>~ |

ye Py

In the other direction we have the next result.
PROPOSITION 9.11.  Suppose a € R, 0< p, g < + o0, and let 1 be a function
satisfying
(&eC=, i) <e>0  if 3<IEI<L2
Set tp(-)=|P| 12" —k) if P=P,. Suppose {tp}p is a uniform
Ad}? — family. If

{Sup 1<{T(13), ¢Q>|}Q,Pead;q’

ye Py

then Te Ad;q.

Proof. As in the proof of Theorem 9.4 we have Y =¢ xt with
satisfying (2.1)-(2.3). Also as in that proof, this leads to the identity

(TYr, 00> = [ (T2, 00> T dy =T | (T(c}), 00> Duly) dy,
1 " Pu

{(P)=27* and the estimate

[{TYp, 0o <Z sup [{T(tx), o>l bre

R Y€Rp

with bop=0 if (Q)#I(P) and by,=sup,.q,, , |W(»)| if P=P, and
Q= Q,.. Applying Thereom 9.1(i) concludes the proof. ]

Suppose that a family {t,}, of functions has the property that
Wp=2 rarptr With {ayp}e. p€ad}?. Then a linear operator T belongs to
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Ady? if {Ttp}p is an Ad}i-family. This fact is a simple consequence of
Theorem 9.1(i)), since

{TYp, ¢Q> 22 arpl Ty, (PQ>'
R

Similarly, suppose we consider the collection of all smooth atoms for
F;q. We will say that a linear operator T maps families of smooth atoms
(for F;") to Ad-families if, whenever {a,}, is a family of smooth atoms,
there exist constants C and ¢>0, independent of {a,}p, such that
[{Tap, pg7| < Cwrgple). Simi.larly, we say that T maps smooth atoms to
smooth  molecules (for F}?) if there exists o>a*=a—[a],
M > J=n/min(l, p, q), and a constant C such that {Ta,/C},, is a family of
smooth (4, M)-molecules whenever {a,}, is a family of smooth atoms for
F2 (with 8, M, and C independent of {a,},).

We now have the analogue of the characterization of Ad}? in Proposi-
tions 9.10-9.11) with the family {z,}, replaced by the collection of all
smooth atoms.

ProprosITION 9.12.  Suppose aeR, and O0<p,g< +o0. Then T maps
JSamilies of smooth atoms to Ad}-families if and only if TeAd;*. In par-
ticular, if T maps smooth atoms to smooth molecules, then T € Ad’.

Proof. We first claim that for each dyadic cube P there exists a family
{ag} g of smooth atoms and a sequence {zp}x such that Y, =3 trpag,
where |1zp| < Cwgple) for some C and ¢>0 independent of P and R. To
prove this, we see from the representation of Wy, in the proof of
Theorem 4.1, that for any L >0, we can write

l//Qvlz Z C(1+,k|)fLanvk+,7

kez"

where agy,, ., =2"*(1+|k|)" gi(2’x—1)/C is a smooth atom if C is suf-
ficiently large, depending on L. Changing notation yields the claim.

The claim and the argument in the paragraph following the proof
of Proposition 9.11 yield the “only if” part of the first statement we
are proving. The second statement follows immediately from the first
by Lemma 3.6. Similarly, since smooth atoms are smooth molecules,
Proposition 9.10 (or, rather, its proof, to obtain the required uniformity in
é and J) yields the remaining “if” statement. [

We can characterize Ad;?-families by representations like those for the
¥ p’s in the proof of the last proposition.
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PROPOSITION 9.13.  Suppose a e R, and 0 < p, g < + c0. Then {mp}p is an
Ad%-family if and only if there exists a family of smooth atoms {aj}p
for each P, and a matrix {tgp}o peady?, such that mp=Y g trpak. In
particular, any family of smooth molecules can be represented this way.

Proof. We apply Lemma 2.1, and the result for the family {,}» in the
proof of Proposition 9.12, to write

mpzz {mp, (PQ> '/’Q
Q

=ZZ (Mp, o) ;RQ&%a
R Q

where @4 is a smooth atom corresponding to the cube R, for each Q, and
|Tro| < Cwgple), for some C and > 0. Let

tRP=Z|<mPa ¢Q>||;RQ|
Qo

and

a,’;=z {mp, §0Q> iRQa%/tRP'
Q

Then each af, is a smooth atom (corresponding to R), since each 3% is and
since the sum is dominated by a convex combination. Now {m,},€ Ad}’,
so Proposition 9.1(i) shows that {tys}0 p€ad}?, completing the proof of
the “only if” statement.

Noting that {a%}; is an Ad}?-family for each P (with uniform C
and ¢), Proposition 9.1(i) yields the “if” part, since (mp, o) =
Yk trelag, PPN |

The identity mp=3Yr tgpay in the last proposition must be properly
interpreted to avoid problems with polynomials. This comes from the fact
that the representation mp=3, {mp, o> ¥, converges in &'/P.
However, if, say, ge %, the expression Y ; tzp{ak, g)> is absolutely con-
vergent and coincides with (mp, g>.

In the special case =0, we can characterize Ad;’-families and the
algebra Ad}? in terms of smooth atoms and molecules. This is a conse-
quence of the following technical lemma, whose analogue for o # 0 is false.

LeMMA 9.14. Suppose 0<p,q< +o, ¢>0, and 0<J, §<¢/2. Let
{gp}p be a family of smooth (8, J + &)-molecules ( for ng), let Q be a fixed
dyadic cube, and let {ayp} p be a sequence satisfying |ayp| < Cow py(e) for all
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P. Define mp =73 payp gp. Then there exists C (depending only on the fixed
parameters) such that mQ/C is a smooth (3, J + &)-molecule.

Proof. See Appendix D. |

We can now characterize Adg"-families as follows.

THEOREM 9.15.  Suppose 0 <p, < + 0. Then {mp}p is an Ad,’-family
if and only if {mp}p is a family of smooth molecules ( for ng )-

Proof. One direction follows from Lemma 3.6. The other is a conse-
quence of Proposition 9.13, Lemma 9.14, and the fact that smooth atoms
are smooth molecules. ||

Similarly, we can characterize the algebra Ad)’. We say that T maps

smooth molecules to smooth molecules (for ¥39) if, whenever {mgy}, is a

family of smoth (8, M)-molecules (5 >0, M > J), there exist §>0, M >J,
and a constant C, depending on é and N, such that {Tm,/C}, is a family
of smooth (&, # )-molecules (for F).

THEOREM 9.16. Suppose 0 <p, q < + . The following are equivalent:
(i) TeAd)y
(ii} T maps smooth atoms to smooth molecules;
(iii) T maps smooth molecules to smooth molecules.
Proof. The equivalence of (i) and (ii) follows from Proposition 9.12 and
Theorem 9.15. Also, that (i) implies (iii) is a consequence of Theorem 9.15

and the fact that an operator in Ad,? preserves Ad;’-families, i.c., Proposi-
tion 9.10. Finally, (iit) trivially gives (ii).

Remark 9.17. In Section 4 we considered decompositions of the form
f=20 </, 12> 6%, in which one of the families {2}, or {a?}, could be
chosen in a certain convenient, explicit way. We can now discuss the extent
to which we can also control the other family.

Suppose a € R, and 0 < p, ¢ < + 0. Then we have the following:

(i) In Theorem 4.2, there exists o <0 such that if u<y,, then
{12}, is an Ad%*-family, where = —oa+J—n.

(ii) In Theorem 4.4, there exists uy,<O0 such that if u<py,, then
{a@}, is an Ad}*-family.

We will show (ii) first. From the proof of Theorem 4.4, we sce that
(I—T)Yp=CXrsrmg, where {mpg}, is a family of smooth molecules,
and

[spl=15(¥p)| =|arpl < 2" gp(e)
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for some ¢, p >0 (see (4.26)). Hence, by Lemma 3.6 and Theorem 9.1(i),

[KU=T) ¥ p, 9021 < 2w p(E),

for some &> 0. By Theorem 9.1(ii), there exists yo such that 7, ' e Ad>? for
w< po. By (4.15)(4.17), {ny}o is a family of smooth molecules and hence
an Ad;’-family (Lemma 3.6). Since 6¢= T;‘r’Q, Proposition 9.10 implies
that {69}, is an Ad%’-family.

We now show (i), which is similar. By the proof of Theorem 4.2, we have
(I—T)Yp=C2"Y gspmg, where {mg}, is a family of smooth
molecules, and

sa=SaWr)=IRI72 [ 1w dpldy i HR)=2""

It is easy to check that |sz| < Cwgp(e) for some ¢>0. So by the argument
above, T, le Ad}’. Since the adjoint of an operator corresponds to the con-
jugate transpose of the corresponding matrix, we have (T, ')*e Adﬁq. Since
1@=(T,")* no, the result follows as in the previous case. This completes
the proofs of (i) and (ii).

By Theorem 9.9, (i) and (ii) above imply (4.5) and (4.6), respectively.
Thus we have obtained stronger conclusions regarding the families {69},
and {t°},. Using our characterizations of Ad}’-families, ¢.g., Proposi-
tion 9.13, we obtain more explicit information on these families. In par-
ticular, by Theorem 9.15, {12}, in (i) is a family of smooth molecules
when =0, and similarly for {69}, in (ii) when «=0.

The algebra Ad;¢ contains many classes of operators usually encountered
in harmonic analysis. An example is the class of Calderén-Zygmund kernel
operators; we recall the standard notation and discuss some known results
about this class next.

ExaMpPLE 9.18. Suppose 7:% — %' is a continuous linear operator.
The Schwartz kernel theorem guarantees the existence of a kernel
Ke ¥ (R"x R") such that (TP, ¥>=K(¥YR P) for all &, Pe¥. Kis a
Calderon-Zygmund kernel if it is given by a continuous function X on
{(x,y)eR"x R": x # y} satisfying

(1) 1K) <Clx—yl™7,
(i) [K(x,y) — K(x', 9| + |K(y,x) — K(y,x)] < Clx — x|
|x—y| ="+ provided 2 |x—x'| < |x—yl,

for some 0<e<1, and

T, ¥y =[| Ko p) ®(y) P(x) dx dy

R" x R?
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whenever @, ¥ e 2 and supp @ nsupp ¥ = . We write Te CZK(e) if T’s
kernel satisfies these conditions for a fixed ¢ or just Te CZK if the
particular value of ¢ is not important.

A continuous linear operator T : 9 — &' satisfies the weak boundedness
property (WBP) if

IKT®, ¥H| < CO([ @l o+ VP oo )| Fll o+ £ [VE | 1)

for all @, ¥e 2 with supports having diameter at most ¢ > 0.

The fundamental result about operators Te CZK is the result by David
and Journé ([DI]). This reslt states that an operator Te CZK is bounded
on L?if and only T1 e BMO, T*1 e BMO, and T € WBP. The proof of this
can be reduced to the case when T satisfies 71 = T*1 =0 (cf. [DJ]).

In [Fr-H-J-W] we showed that if Te CZK(e) ~ WBP and T1=0, then
T maps smooth atoms to smooth molecules for F;" whenever 0 <a<eg<1,
1< p, g< +co. In paticular, by Proposition 9.12, we have Te Ad;?. Under
the additional assumption 7*1 =0, we also proved that 7 maps smooth
atoms into smooth molecules for Fg"_(l <p,g< +o0), and, hence,
Te AdY. In particular, we have that T is bounded on NxL? ie., the
(reduced) David-Journé result. The approach in [Fr-H-J-W] has been
extended to cover the full range xe R, 0<p, ¢ < + oo in [FTW; Torr]; the
main difference is that stronger regularity and cancellation conditions are
assumed in the case of more general indices.

For another example, let us consider Fourier multiplier operators. For
meL™, let T, be the associated Fourier multiplier operator, ie.,
(Tp)" (&)= m(&) ¢(&) for, say, ¢ € %. We will say that T, is bounded
on F“" if | T, f||Fuq<c ”f”Faq for fe %. Of course, if 0<p, g< +0, ¥
is dense in F“q s0 T can be extended to a bounded operator on (all of) F“"
In the cases p= + o0 or g = + o0, so that % is not dense, this conventlon
is a convenient abuse of terminology. We also introduce the notation

R,={xeR": 2" '<x<2’*!}
forveZ.

ExampPLE 9.19. Let aeR, O<p,g<+o0, and J=n/min(L p,q).
Suppose that the function m satisfies

sup ¥ 2”'“2*”’] |0'm(&)| dE < + . (9.3)
vyl [/+1] v
Then T,, is almost diagonal and hence extends to a bounded operator on
F29. More precisely, if ¢=[J+1]—J, then

[T, p, (PQ>| ScmwQP(e)- (9.4)
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To show this we fix @ and P with /{(Q)=2"" and /(P)=2"* and put
j=v—pand agp=<T,¥p, 0,). We have

Agp= (2m)=" <mlp1’s ¢Q>,

s0 by (2.2), agp=0if | j| > 1. If | j| <1, then I(P)= (Q), so the required
estimate is merely

A=sup (1+1(Q) 'xp—x,| ) T agel < +o0.
PO

Now {myip, ¢ =2"W+""2h(x,— x,), where
h(x)=h,(x) = (2r)" (mf, $,)" (x)=(2n)" 2"(m(2"-) §(27-) §(-)) ¥ (2°x).
Letting y,(x) =§(2/x) ¢(x) and replacing 2"x by x, we have

A<esup (1+[x D1 m(27) 4(+))™ (x)].

v, X

Since (1 + x|y crs01 x|, we obtain

A<csup Y [(@(m(2") 1)) (%)

v»X lyl<[J+1]

<esp[ ¥ 2 @mR)| &,

v TRy <+l

by the Riemann-Lebesgue lemma and the chain rule, since y;€ % and
supp ;< R,. Changing variables shows that 4 is dominated by the expres-
sion in (9.3), so (9.4) holds.

Of course, there are more general classes of bounded multiplier operators
than those satisfying the L!'-Mihlin condition (9.3). For example, the
familiar Hormander (Fourier) multiplier theorem states that L”-bounded-
ness (1 <p < + o) holds under a weaker assumption, only involving an L’
condition on [n/2+ 1] derivatives. We can obtain this result, and
generalizations of it, by a variation of our argument above. We do this in
the next section (Corollary 10.7 and Remark 10.9) by studying more
precise criteria for boundedness of matrices on pos

10. ScHUR’S LEMMA AND FURTHER RESULTS ON OPERATORS
We turn now to a more careful study of conditions for the boundedness

of matrices on the f 7 spaces. We saw in Section 9 that the class of almost
diagonal operators contains many familiar examples and has an interesting

580/93/1-8
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structure. However, our methods can be modified to give much sharper
boundedness criteria than almost diagonality. It fact, we will find necessary
and sufficient conditions for a positive matrix to be bounded on all the
spaces 24, 1<p, g< + oo (for each fixed «). As an application we obtain
a Fourier multiplier theorem for F;q which generalizes the well-known
Hormander theorem for L? and its Hardy space analogue (compare Exam-
ple 9.19 and Remark 10.9 and note that (10.21) is weaker than (9.3), e.g.,
by the Sobolev imbedding theorem). Returning to our discussion of
bounded positive matrix operators, we note several characterizations,
closely related to the classical Schur’s lemma and to some work of Rubio
de Francia. We conclude the section with some associated results about
extrapolation of operators on the F;q spaces, which also follow along the
lines of Rubio de Francia’s work.

Let us start with the simplest situation, namely with ¢ = p < 1. Since 4
is a weighted /”-space, we have that an operator A is bounded from f 7 to
another p-normed space X, 0<p <1, if and only if 4 is bounded on the
standard basis vectors {e”},, ie.,

| 4e” | < C el

(Recall that a space X is p-normed if ||-|| % satisfies the triangle inequality.)
If X is a space of sequences {s,},, then 4 is represented by the matrix
{agr}o.r={(4e")} o p In terms of this matrix the above characterization
becomes

sup | P12 =P [ {goph |l x < + 0. (10.1)
P

In the particular case X ={2 this says that

sup ) (|agel(1QI/|P[)~*" 12+ 1P)P < + co. (10.2)
P g

Dually, suppose p=g= + 0. A linear operator A4 with matrix {a,p}y p
is bounded on {** if and only if

sup 3 lage 1(1QI/IP]) " * < + 0. (10.3)
Qg »p

When 1 <p=g< + o0 there is no complete characterization. Schur’s
lemma (e.g., see [Ga]) is a substitute for matrices with nonnegative entries.
With our notations this lemma states (cf. [Ja5, p.396]) that if 4 is a
positive operator with matrix {ays}¢ » (i€, apr=0), then 4 is bounded
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on f;”, aeR, 1<p< +o0, if and only if there exists a positive sequence
{uy}o such that

Yoagp(|QUIP) =12y < Cu gy
-

and

Y. agp(|QI/IP[)=*"~ 125 P yb < Cuf.
[¢)

(The general statement of Schur’s lemma is that Tf =jK(x, v f(y)du(y),
K(x, y) =0, is bounded on L”(du), 1 <p < + o0, if and only if there exists
a positive function u such that [K(x,y)u(y)” du(y)<cu”(x) and
| K(x, y) u(x)? dp(x) < cu”(y).)

The cases g #p are more complicated. We will obtain certain general
boundedness criteria in Theorems 10.5 and 10.11-10.13 for positive
operators; of course, more generally, an operator with matrix {agp}, p is
bounded if the operator with matrix {|agpl|} p is bounded.

When p<1 and ¢g= + o0 and, dually, when p= + o0, g=1, we have
complete, rather explicit characterizations. Given a matrix 4 = {ayp}, p,
we let afp=dpy, A*={akp}p p, and |A| = {|agpl }o r.

PrOPOSITION 10.1. Let A be a positive operator with matrix {agp} o p.

(1) If p<1, then A is bounded on f;“’ if and only if

Sup T, { Y aQP|P|“/"+‘/2} < +00. (10.4)
po | Pol PePy ol
(ii) A is bounded on t* if and only if
1
sup { Y aQP|Q|‘“/"+”2} < 4 . (10.5)
Qo | Qol o< Qo Pl

Proof. To prove (i) we note that A4 is bounded on f »* if and only if it
is bounded for an arbitrary atom (cf Theorem 7.2). In fact, since A4 is
positive, we only need to consider atoms of the particular form
r={|P|"""'2/| P4|"?} p p, for an arbitrary dyadic cube P,. Written out,
this is exactly (i).

Now (ii) follows from (i) by a duality argument. Suppose first (10.5)
holds. By Remark 5.10 and Proposition 5.5, we have that [{s, )| <
clisllyee ||t||,§ . Then, by a constructive argument, similar to (but even
easier than) the second part of the proof of Theorem 5.9, we see that

2l & sup{|{s, > : sis finite and [slpmee <1} (10.6)

By (10.6), {a%,},. » is bounded on f[**, and the results follows.
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For the other direction of (ii), let ¥ ¢* denote the closure of finite sequen-
ces in £2°. Then (F;**)* ~f*., by (10.6) and the fact that (F[**)* must
be a sequence space. By the Hahn-Banach theorem, we obtain the
analogue of (10.6) with f * and f [ * interchanged. Now the conclusion
follows as before. ||

Suppose ¢ < + 0. As in the case g = + oo, an operator A is bounded on
f2, 0<p<1, p<g, if and only if it is bounded on atoms (for {27).
However, when ¢ is finite, the resulting condition is, unfortunately, not
very explicit.

Let b denote the class of matrices 4 such that | 4] is bounded on { 2" for
all 1<p, g< +00. Proposition 10.1 gives the following explicit charac-
terization of the class b.

CorOLLARY 10.2. A matrix {agp}y p belongs to b if and only if
{lagpl } g, p satisfies the conditions (10.2)-(10.5) with =0 and p = 1.

Proof. This follows from Proposition 10.1 by interpolation (in fact,
only Proposition 8.1 and Theorem 8.2 are used). ||

Clearly, b is closed under composition and, by definition, under taking
“adjoints,” i.e., Aeb implies 4*eb. We equip the algebra b with the
obvious norm, namely the maximum of the quantities, with «a=0 and
p=1, that are assumed to be finite in (10.2)-(10.5). Similarly to
Theorem 9.1(ii), there exists ¢ >0 with the property that if |4 — 1|, <e,
then 4! exists and belongs to b. In particular, the class b has all the essen-
tial properties we used about ad>? in Section 9. Hence, there are analogues
for b of the results in the previous section (up through Proposition 9.11)
describing the basic features of the algebra ad;*.

The class b is clearly larger than the class of almost diagonal operators
on fg", 1<p,g< + o0, since almost diagonal operators are bounded
(Theorem 3.3). Our next theorem makes the comparison between these two
classes easier and shows that the class b is considerably larger.

THEOREM 10.3. If the matrix A= {ayp} o p satisfies
1/s
B,=sup (Z (lage|/(wgp(e)))* wop(e)| PI/1Q| )1/2> <40 (107)
Q P
and

172
B:ssup(z(|an|/(wQP(s)))spr(s)(lQ:/lP!)lﬂ) <+, (108)
£ Q

Sor some >0 and s> 1, then {app}o p€b. In particular, A is a bounded
operator on 1% for all 1 <p, g< + 0.
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Proof. 1t is easy to see that

sup Y, wp(e)(| PI/IQ1) < + 0.

By Holder’s inequality, B, is an (essentially) increasing function of s (ie.,
B,<c, B, if r<s). Hence, the analogous condition with s=1 is also
satisfied, and this is exactly the condition (10.3). Similarly, (10.8) implies
the condition (10.2) with p = 1. By the symmetry of our assumptions, it is
thus enough to show that

1

| Pol

{ Z |aQPHP|1/2}
Q

Pc Py

<e. (10.9)

1

To prove this, we put the cubes Q in the two disjoint families
C={0:Q0<c20P,} and D={Q:Q & 20P,}. For the cubes in C the
required estimate is immediate. We have just seen that (10.7) implies (10.3).
Hence,

1

I
[ Pol
1

{ Z |aQP”P|1/2}
Pc Py geclf

o[, sup( T lagrl 1P 1ol d

20P @ Pc Py

scsup< » anP|(|P|/|Q|)“2)<cBS.

o Pc Py

For the family D we get, by using the imbedding f$' — {9,
y 1 1

1
= { la ||P|”2}
[ P P::ZPO er QeDll§9=
Al
< la ||P|“2}
| Pyl PCZPO er gen |1
1
= Y Y lagelIPI?IQIY2
| Pol

Pc Py QeD

By Holder’s inequality this is dominated by

B —— ¥ (Z 1Pl o (EJ(IQl/lPI)‘”)W
| Py er ‘

PCPy \QeD

By an elementary calculation, summarized in the lemma below, and using
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that there are | Py|/| P| cubes P of the same sidelength /(P) contained in
Py, we have

1< cB*
| Pol

This shows that 1 and II are finite and gives the desired conclusion
(109). 1

LemMa 104. For Pc P, fixed and D= {Q : Q & 20P,} we have

Y. wop(e)| QI/I P)2 < e (UP)/I(Po))*>.
QeD
Proof. Let 27 7=I(P) and 2 " =I[(P,), and define D,={QeD:

[(Q)=27"}, veZ By some elementary calculations we obtain that
Yoen, Wor(e)(|QI/IP)V* is bounded by ¢,2°* 7" if y<p,, and by
¢ 28— +P/2) if y > po. Here, to obtain the second estimate, we consider
p<v and py<v<p, separately. Using these estimates and summing the
obvious geometric series yield the desired conclusion. ||

As we noticed in the proof of the theorem, the quantity B, in (10.7) is
an (essentially) increasing function of s. If we let s — + o0 in (10.7), then
in the limit we get our almost diagonality condition (3.1).

Suppose that Q= {Q,,}, » is a positive matrix satisfying

1/s
sup )y |P|< > QQIJ(IQI/IPI)‘”) <+o0, (10.10)

Py |P0‘PCP0 Q & 20P

for some fixed s > 1. We note that the proof of the theorem shows that the
matrix 4= {apyp}y p corresponds to a bounded operator on £ if, for
each cube P,

1/s
sup( Y (lanl/QQp)sQQ,,(|Q|/|P|)1/2> <C,  (10.11)

PSPy \Q ¢ 20P
for some constant C (independent of P,), and
A is bounded on 1%~ (10.12)

(Note by (10.3) that (10.12) is equivalent to supy Y, lage|(| PI/1Q)"?
<C)

Similar results can-also be proved for operators on the spaces £%,
1<g<+o00. We shall give one example, and to keep notations fairly
simple, we restrict ourselves to the case of 192



A DISCRETE TRANSFORM 117

THEOREM 10.5. Suppose Q= {Q,p} ¢ p is a positive matrix satisfying

1

YOIPI Y Qu(IQlIP) < 400, (10.13)

Po lPOlPEPo Q Z 20P)
If the matrix A= {agp} o p is bounded on 1$* and satisfies
12
C*=sup <Z (lagr|/R0p)* 20101/ P|)1/2> <+, (10.14)
P Q

then A is bounded on T$*.

Proof. The proof parallels that of Theorem 10.3. Using the decomposi-
tion of f9? into 2-atoms (cf. Remark 7.3), it is enough to show that

1{(4r)o}olim<c (10.15)

for an arbitrary 2-atom r = {rp},cp,. Recall that r={r,},_p is a
2-atom if

1{re}ecr ||r§2< | Pyl 2

To prove (10.15), we again divide the cubes Q into the two disjoint families
C={Q:Q0c20P,} and D={Q:Q & 20P,}. Using first Holder’s
inequality and then that A4 is bounded on 9, we have

|| {(AV)Q}QeCHI?Z

420,,0 (Z< Y lagersl ;zQ(x)>2>”2 dx

Q \Pchy
e |Pol? 1{(Ar)gholim<e | Pol " I{rp}plim<e
By the imbedding 9" — 92,
1{(Ar)o}oeplli2 <H{(Ar)o}gcplli

< Z z |aQP|er||Q|1/2'

PcPy QeD

Applying Cauchy-Schwarz twice, this can be estimated by

1/2
c* Y [rp|1P|”2< 5 QQP(|Q|/|P|)”2)

Pc Py QeD

1/2
<C* Il{rp}piI;gZ( >y QQP(|Q|/|P|)1/2> -

Pc Py QeD
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Since || {rp} PI[p2< |Pol "2, our assumption (10.13) implies that the last
expression is finite. The proof is complete. |

We may also use the atomic decomposition to prove results for p, g < 1.
However, as we have already seen in the proof of Theorem 3.3, a simpler
argument can often be used to reduce to the case p, ¢ > 1. Consider, for
example, the following general version of Theorem 10.3. We temporarily set

sonfe)= (14 —tFe=Xel N7 COUQN (HP)YT O
owt)=(1+mitmran) o) ()|

ie, @gp(e) is indeendent of o, ¢, and p; when a=0 and p, 4> 1, wyp(e)
coincides with @gp(e) (cf. (3.1)).

COROLLARY 10.6. Suppose 0<p,q< +o0 and r=min(l, p, q). If the
matrix A= {agp}, p satisfies

Slép > (agel (IPI/1Q1)2) (@or(e)IPI/IQN?) ° < + 00 (10.16)
and

sup Y. (lage| (1QI/IPD)Y"~"2) (@op(e)(I1PI/1Q1)?) 7% < + 00,  (10.17)
L)

for some ¢,5>0, then A is a bounded operator on f 2".

Proof. We pick ¢ so that d =r/r — 1, in particular, 0 <r<r <1, We then
let A = {&QP}Q,P be dCfined by

dop=lage|" (1QI/IP)'2 7.

We have p/t, g/t>1, and the boundedness of 4 on f0¢" will imply the
boundedness of 4 on f , as in the proof of Theorem 3 3 But (10.7) and
(10.8) for 4= {dpp}o, r are exactly our assumptions (10.16) and (10.17),
respectively, with s = r/t. So Therorem 10.3 yields the required boundedness
of A. |

We remark that when studying the boundedness of matrices on {29,
we usually pick «a=0 to simplify notation. This causes no real loss of
generality, since a matrix 4 = {ayp}, p is bounded on f;" if and only if

={(QI/IP)~ " agp}o r (10.18)

is bounded on .

Let us now consider Fourier multipliers again.
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CoroLLARY 10.7. Let aeR, 0<p, g< + 00, and r=min(l, p, q). Sup-
pose that T, is a Fourier multiplier operator with multiplier m, which
satisfies

sup [I(1+1x])* (m(2"-) #(-)¥ (x)ll < + 0 (10.19)

for some 6>0. Then T,, is a bounded operator on F;“'.

Proof. 1t is sufficient to show that the operator on fzq with matrix
{app}op={{T,¥p, @o)}p ris bounded (cf. Proposition 3.1). Since T,, is
a Fourier multiplier operator, ay,=0 unless 3 </(Q)//(P)<2. By making
the reduction (10.18) we may take o = 0. Hence, we only need to prove that
the conditions (10.16) and (10.17) are satisfied. In fact, for a Fourier
multiplier operator these are equivalent, and, furthermore, they are both
equivalent to (10.19). This is a consequence of the general fact (cf. Proposi-
tion 10.14) that the retract diagram in Theorem 2.2, and its analogue for
Besov spaces, also holds with certain more general measures w(x)dx
replacing dx. In Appendix E we sketch a direct proof in this particular case.
Modulo the proof of the following lemma, the proof is thus complete. J

LEMMA 10.8. Let 6,e>0, and let {app}o p={{Tu¥p, ©o>}o r Then
sup )" (lagp! (IPI/IQN2) (@gpeX|PI/IQN?)~°
g pP

<csup (14 [x1)° (m(2"-) ¢(-))" (x)7,

v

where § = 6(n + ¢)/r.
Proof. See Appendix E. |

Notice that if we formally set =0 in (10.19), then we obtain the
condition

sup [[(m(2"-) @) (x)ll < + co. (10.20)

In fact, when p=g <1, this condition is equivalent (see Corollary 10.7
and Appendix E) to (10.2) with «=0 for the matrix with entries
agp=<{T,,Yp, py>. Thus (10.20) is necessary and sufficient for a multiplier
operator to be bounded on Fg”, O<p=r<1. When p=g=1 this is a
result of Taibleson (cf. [Tai] and also [Tay, p.264]), and appears to be
folklore for p=¢g < 1.

Remark 109. By Holder’s inequality, Corollary 10.7 easily implies the
following general Fourier multiplier result of the Hérmander—Mihlin type,
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which, in the case of general «, p, and ¢, is due to Triebel (cf [Tr2]).
Recall that L;~F%* is the usual Bessel potential space, with norm

L1 2= 1 P+ 1E17Y2 ] 2.

Suppose xeR, 0<p, g< + 00, J=n/min(l, p, q), and T,, is a Fourier
multiplier operator with multiplier m, which satisfies

sup [|m(2€) ¢(&)l 2_,,, < + 0, (10.21)

for some ¢>0. Then T, is a bounded operator on F:".

As remarked in the Introduction, special cases of this are the results of
Hoérmander [Hor1] for L?, 1 < p < + oo, Fefferman-Stein [Fef-S2] for H?,
and Calderon-Torchinsky [Cal-T] for H?, 0<p< 1.

It is well known (see, e.g., [Ba-S, p. 21]) that Hérmander’s theorem fails
if we only assume (10.21) with ¢=0, when p=1 and ¢=2, ie, »/2
derivatives. To get an idea how close we are to a sharp result with our
rather simple approach, we record the following consequences of
Theorem 10.5 and our remarks concerning (10.10)-(10.12).

COROLLARY 10.10. Suppose @&(t),t=0, is a nondecreasing function

satisfying @(0) =1, @(2t)< c®d(t), t =0, and that T, is a Fourier multiplier
operator (on R") with multiplier m such that

sup [|@(|x)"> (m(2”-) ¢(-))” ()]l .2 < + 0. (10.22)

@ I

o 1 V2 dt
dx — < 4 o0, 10.23
‘L [J{XER"2|X'>I} ¢(|X|) :| t ( )

then T,, is a bounded operator on F;", aeR, 1<p, g< + .

@ If

w 1 dt
%< oo, 10.24
L '[xelR":lx|>t} ds(|-x|) ~ t > ( )

then T,, is a bounded operator on ¥**, a e R.
Proof. We define the matrix 2= {Q,,} by

Qop=1/P(|xp—xol/max(I(P), /(Q)))  if I<UPYAQ)<L2,
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and 0, otherwise. By discretizing, it follows that (10.23) and (10.24) are
equivalent to (10.10) with s’ =2, and (10.13), respectively. The analogue of
Lemma 10.8 is also true (cf. Remark E.1}):

sup (Z (1aor /2gr) Qor(1QVI PV
P Q

< Csup I2(Ix)"72 (m(27-) ¢(-)) ()12,

with {agp}p p={{Tn¥r, 9>} o »- To prove (i) it remains only to verify
(10.12). For this, first note [1/®(| x|) dx < + oo by our assumptions. Hence,
by applying Cauchy-Schwarz and using (10.22), (10.20) follows. By
Taibleson’s theorem noted above, T, is bounded on F¢', and thus by
duality on F°®. Passing back to the matrix 4 (cf. Proposition 3.1), we
obtain (10.12). This completes the proof of (i). To complete (ii), our defini-
tion of a multiplier operator includes the assumption meL*. So T, is
bounded on L? and {ay,} p is thus bounded on f%°. 1

For example, in (i) we may take

@(x)=(1+1x])" (1 +log™ |x})***

for any fixed £ >0, and in (ii)

D(x)=(1+|x])" (1 +log* [x])**"

Roughly speaking, to obtain a version of Hormander’s theorem on
H'~ F9 with our approach, we thus need n/2 “full” derivatives and a little
more than one “logarithmic derivative.” It would be interesting to see if our
methods could be applied to obtain the results of Baernstein and Sawyer
[Ba-S].

We return to our study of positive operators bounded on f -7 when g #p.
The next two theorems are (essentially) special cases of results due
to Maurey [Mau] and, especially, Rubio de Francia [RdF2] (cf. also
[GC-RdF]).

Let w be a nonnegative function. We define the weighted sequence space
f29(w), 0 <p < + o0, by requiring

1/q
Iy = H(Z (191" Iso] zg)q)
0

< + 0.
LP(w dx)

THEOREM 10.11. Let aeR, and O<g<p< +0o0, and set r=(p/q),
B=n/2. For a positive operator A the following are equivalent:

(i) A is bounded on t jud
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(il) For each positive sequence t = {ty},€i5™ there exists a positive
sequence ©= {145}, €t?® such that

tQ<TQ,
[l o < C )] g

and

2 UQI 12 (As)g) 1o S C YL (1Q1 7" 2 55) 14
0 2

for all nonnegative sequences s= {sy},.

(iii) For each positive ve L™ there exists a positive function we L" such
that

v(x) < w(x) ae.,
Iwl - < C ol -,
and
I Asll 0y < C llsl gy
JSor all nonnegative sequences s= {5,},.
The constants C are independent of t and v, respectively.
THEOREM 10.12. Let o€ R, and 0 <p < g < + o0, and set r = (q/p)' /(q/p),
B=n(g/q' —3%). For a positive operator A the following are equivalent:

(i) A is bounded on f;‘".
(i) For each positive sequence t={t,} Qef B there exists a positive
sequence 1= {15} o€ t?* such that
lo<Tp,
Il g < C fifl 3o,

and

Z (lQI—a/n+l/2 (AS)Q)q ‘Cél < Cz (lQlﬁa/n+1/2 sQ)q _L,él
Q [

for all nonnegative sequences s= {s,} .
(iii) For each positive function ve L’ there exists a positive function
we L" such that

v(x) < w(x) ae.,

Il < C lloll 1,
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and

“AS”f;q(W*I) <C|sll 12900

Sor all nonnegative sequences s= {sy},.
The constants C are independent of t and v, respectively.

The proofs of Theorems 10.11 and 10.12 are in Appendix E; ultimately
they depend on the Hahn-Banach theorem.

There are also versions of these theorems with the boundedness of 4 on
f2¢ being equivalent to boundedness on some other, weighted, f>%-space.
The “diagonal” case we have stated here is of particular interest since we
can use Schur’s lemma to get one step further.

THEOREM 10.13. Let aeR and 1<g<p< 4+, and set r=(p/q),
B=n/2. For a positive operator A with matrix {agp}o p the following are
equivalent:

(i) A is bounded on f;".

(it) For each positive sequence t={t15},€ f2= there exist positive
sequences 1= {1y} ,et? and u={ugy}, such that

o<1y,

lela= < C g,

Z aQP(|Q|/|PI )wa/'H 2 (TQ/TP)l/q u'},' < Cqu’,
S

and

Y agp(|QI/IP)) "= 2 (1o/15)"9 ufy < Cul.
Q

Proof. This is just Schur’s lemma combined with Theorem 10.11. We
use counting measure in Schur’s lemma and replace s, in Theorem 10.11(ii)
by §p=|P| "2 ¢}f4s,. |

There is a similar theorem when p < g; we then just replace (t,/75) by
(tp/tp), use the value of B in Theorem 10.12, and replace the exponent
—a/n—iby —a/n+i

One of the applications of characterizations like those in
Theorems 10.11-10.12 is to prove extrapolation theorems, see [RdF2]. We
shall only consider one theorem of this kind, not directly relying on
the previous theorems. Let w be a nonnegative function satisfying the
“doubling condition” w(2Q)< cw(Q), Q dyadic, where, for a measurable
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set E, w(E)=[gw(x)dx. We define the weighted Triebel-Lizorkin space
F2i(w), aeR, 0<p < 400, and 0 < ¢ < + 0, by requiring

1/q
1S W gsagy = H(Z (2% lo, *fl)")
o]

< + 0.
LP(wdx)

ProposITION 10.14. Suppose 0eR,0<p< 4+00,0<g< + 00, ¢ and Y
satisfy (2.1)-(2.4) and that w is doubling. The operators S, F;q(w) - f;"(w)
and T, :f;"(w)eF;"(w) are bounded. Furthermore, T, oS is the identity

on F;"(w). ’

Proof. The proof follows the same lines as that of Theorem 2.2 and is
outlined in Appendix E. ||

Let us recall the definition of Muckenhoupt’s 4 -classes (cf. [GC-RdF]).
Let 1<p< +oc0. We say that a nonnegative function w belongs to 4,
wed,, if

1 Pt

L —_ —1(p—1) )
|Q|fgw(")dx<|Q|JQw(") x| <c

uniformly for all cubes Q (not necessarily dyadic). When p =1, this should
be interpreted as

1
— | w(x) dx < cess. inf w(x).
|Q|jg (x) s inf ()

The classes A4, are increasing in p, i.e.,
A< Ay, if pe<p;.
We also set

Ao=U 4,.

pr>1

We recall the following fact about A4 ,-weights.

LEMMA 10.15. Let 1 <p < + 0. The following are equivalent:
(i) wed,;
(ii) there is a constant ¢ such that given any function he L'(dx),

I 2\l L1avy = 1, there are weights w,, woe A, with w = wl=Pw,, h<w,w,, and
wiwall Lyaxy S €
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Proof. This is a simple consequence of Rubio de Francia’s [RdF1]
proof of Peter Jones’ factorization of 4 ,-weights; see also Corollary 6.1 and
Lemma 6.5 in [JaS]. |

It is well known that F9%(w)a L”(w) as long as we A, (this is essentially
just the fact that the square function is bounded on L?(w) when we 4,).
The next theorem thus generalizes Rubio de Francia’s theorem about
extrapolation of weighted L”-spaces (cf. [GC-RdF]).

THEOREM 10.16.  Suppose that T:¥2%(w) - F%(w) is a bounded linear
operator whenever we A, ,, for some fixed 0 < p,< + 00, 0 < gy < + 00, and

O0<A<py. Then T:ng°(w)—>F2“°(w) is bounded whenever we A,,, for
each A <p < + 0.

Proof. The proof follows a standard procedure (see [RdF1; GC-RdF;
Ja5]). For a distribution s, we set

/40
S(h)(x) = (z oy * h(x)|“°)

(with a ¢ satisfying (2.1)-(2.3) as usual). Let us first assume p > p,. For
we A,, and f fixed, there is a function ge L (w dx), || g Loy waxy =1
such that

Plpo
IS wsyds= (10700 gt wio) )

Since || g7 w|| 114, =1, Lemma 10.15 yields 4,-weights w, and w, such
that w=w} ""*w,, g?P'w<w,w, and | w;w, | 1un<c. As a conse-
quence, gw<w, %y, and, since w,,w,eA,, we have that
w) 7*w, e 4,,,. By hypothesis, then,

[ 15T 1mgw dx < [ 1S(T) 7wt
<c [ ISP wimiw,dx
By Holder’s inequality this is dominated by

polp
c (f | S(F)? W}_"/’Iwzdx> (Wi ws || p1gaxy) PP

<e(J1ste wdx)m',

which is what we had to prove.
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If we instead assume that p,>p, then, given S(f)e L?(wdx) with
weA,,, there exists ge L7~ 7 (wdx), | gll .rm-»ewax)= 1, such that

p/po
157wy ax=([1SG000™ (gt winy )

(Take g = (Sf/ISf || Lowy)?°~7.) Lemma 10.15 implies that there are weights
wy, w, € A; such that w = w] "*w, gP?= Py < ww, and
Iwiw, | Ligary S €. Now wi 7w, <g 'w and w; »*w,eA4,,,, so we can
use the boundedness for 4, ;-weights and Holder’s inequality as before. ||

THeOREM 10.17. Suppose T, is a Fourier multiplier operator which is
bounded on F 0""(w) whenever we A, ,, for some fixed 0 <p,, g5 < + 00 and
0<A<p,. Then T, : F%(w) — F%(w) is bounded whenever we A,,;, for all
A<p, g< + 0.

Proof. The simple observation we need about multiplier operators is
that if T, is bounded on Fg""(w) then it is also bounded on the “diagonal”
space F°”°(w) (This follows, for the weighted case, by the usual argument
(see [Tr2]) combined with the fact that convolution with ¢, is uniformly
bounded on FO"(w), cf. [Ja6].) Suppose now that we want to verify that
T, is bounded on F°"(w) Since T is bounded on FO""(W) W€ Ay,
Theorem 10.16 implies the boundedness on Foq"(w) weA 44> and the

observation then shows that T, is bounded on F o(w), we A,,. Applying
Theorem 10.16 again yields that 7T, is bounded on Foq(w), we A,,;. This
completes the proof. |

pli-

Notice that the proofs of Theorems 10.16 and 10.17 use virtually nothing
about our particular Littelewood-Paley function (3, |¢, * f(x)|¢)"%, and
similar theorems can be proved for more general Littlewood-Paley func-
tions, such as those related to the Nagel-Stein-Wainger results [NSW],
(cf. [Ja5, Theorem 7.3, p. 407]).

CoroLLARY 10.18. Suppose T,, is a Fourier multiplier operator which is
bounded on Fgg"(w) whenever we A ,, for some fixed 0 <pg, go < + . Then

T,,: F%(w) - F%(w) is bounded whenever we A, for all 0 <p, g < + 0.

Proof. Let weA,. Then, by definition, there exists A such that
wed,;. By assumptlon T, is bounded on F °"°(v), ved, ,cA,. By
Theorem 10.17, T,, is bounded on F%(w). 1

Theorem 10.17 and Corollary 10.18 should be compared to the classical
example by Stein-Zygmund [St-Z] of a multiplier operator bounded on
F% which is not bounded on F)* if p 2.
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11. TRACE RESULTS

The pointwise restriction, or trace, operator Trf(x")=f(x’,0),
x'eR""!, is originally defined for fe#(R") or feS(R") (see
[Tr 2, p. 237]). If Tr extends to a continuous map from X into Y for some
function or distribution spaces X and Y, we say the trace of X exists in Y.
If this extension is onto we write Tr X = Y. We have the following results
for the F*¢-spaces.

THEOREM 11.1. LefaeR, 0<p< + 00, and 0 <g< + 0.

(a) Ifa>(n—1)(1/p—1), +1/p, then Tt F2(R")=F2~ "»?/(R"~").
(b) IfO<p<1, TrF,»YR")=L"(R"""), while if 1 <p+ oo,

Tr Fll)/p,q(Rn) does not exist in y'/g”(R"—l)_

(¢) If a<l/p, TrF24(R") does not exist in &'|P(R"™') or in
LP+ L™(R* 1)

(d) IfO<p<landlip<a<(n—-1)l/p—1)+1/p, Tr F;‘j"(IR”) exists
in L? + L*(R" "), but not in &¥'/P(R"~1).

(&) If 0<p<l and a=(n-1)1/p—1)+1/p, TrFZ"(R") exists in
L?+ L*(R"" ') and in L'|P(R" ).

Here (a) is known [Ja3] and indicates the essential peculiarity that
Tr F;" does not depend on q. Also, (d) is known [Ja4; P5] and (c) is
essentially known [Tr1] as well. Perhaps (b) and (¢) are new.

Proof. This is easy from the standpoint of the smooth atomic decom-
position in Theorem 4.1 if we apply Proposition 2.7. We will show directly
that Tr F2¢ is independent of g. Given this, we have Tr F2?=Tr F%, and
all conclusions follow from the results in [Fr-J1, Section 5], since
B =F>. (We point out here that the statement in the introduction of
{Fr-J1] has max(l, p) incorrectly in place of min(l, p); the statement in
Section 5 is correct, however.)

Suppose 0 < g <r< + . Then trivially Tr F;” = Tr F;’ and so we need
to prove the converse inclusion. We denote a general point x in R” by
x=(x,x,), xeR"! and x,eR. Let 4={Q<R":Q is a dyadic cube
and 0N {xeR":x,=0}#F}.

Now, if fe F‘"(R ), then by Theorem 4.1, f=3%, sp,a,, where each ay
is a smooth atom (for F;’) associated with @ and the sequence
§={50}0dyaaic satisfies |s] R £ - We claim that there is an
fe F“q (R") with Tr f="Tr f. T6 see this, ' we define the sequence § by setting
So= sQ if Q€ 4 and 5, =0 otherwise. Note that for each Q € 4 there exists
a function d,(x) satisfying a,(x’, 0)=ay(x’, 0) such that &, is, up to a

580/93/1-9
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constant, a smooth atom for Q for F;q. For ¢ =2 min(1, p), we can just take
dy=agp; in general, we can take dy(x’, x,)=g(x,)ap(x’,0), where
ge L (R), g(0)=1, | t*g(r)dr=0 for all k<N (defined above), supp g
(—1(Q), I(Q)), and |d’g(1)/dt’| < ¢;)(Q)~ for all te R and j = 0. We now let
f= 3. 080dpy. We clearly have Tr f= Tr f. For Q€ A, we let Ey,={xeQ:
(Q)/2<|x,I <I(Q)}. Obviously, |E,|/|Q| =3, so by Proposition 2.7,

l/q
( S (101" Is,| iEQ)")

QeAd

131 20 = ’

Le

However, for Qe A, the E,’s are disjoint so the ¢ and 1/q in this last
expression cancel and can be replaced by r and 1/r. In particular, §ef*
and fe F;"(R"). This verifies our claim and shows that Tr FZ’ cTr F;" and,
consequently, the trace is independent of ¢q. [

The case p = + oo is essentially the same, except that we need to be more
careful about the meaning of the trace operator, since % is not dense in
k.

We first note that the trivial imbeddings of £** and F2¢ into {2 and F¥,
respectively, for 0 < g <r < + o0, also hold for p= + o0. For r < + o0 this
follows from the definitions (5.1) and (5.4) combined with the imbedding
of [ into /” and Holder’s inequality. Recall the definition ||s] e =
supy, |Q| ="~ '2 |54 |. If r= + a0, then, the result for the f-spaces is trivial
by (5.5) and implies the result for the F-spaces.

For o >0, Fi_‘o"" is a homogeneous version of C* and it is well known
that each equivalence class in F%* has a continuous representative. Hence
the trace operator is defined on F*<=F** by pointwise restriction for
0<g<+o and a>0. For a <0, we shall say that Tr F*¢ does not exist
if the restriction operator does not have a continuous extension from %, to
the closure of % in F*, With this understanding, we have the p= + o
analogue of Theorem 11.1.

THEOREM 11.2. Let aeR, and 0 <g< + c0.
(a) If a>0, then Tr F*(R")=F**(R"~').
(b) If a<0, Tr F*(R") does not exist in &' |P(R"1).

Proof. As in Theorem 11.1, we only need to show that Tr F*/ is inde-
pendent of ¢, since then the results follow from the corresponding results
for F5* =B in [Fr-J1]. Let fe 5 and write f=35 5040, Where each
a, is a smooth atom and set**. Define 4, 3, 7, and E, exactly as in the
proof of Theorem 11.1. By Proposition 5.4,

1 1/q
5] ges = sup< f > (IQI‘“/”ISQIiEQ(x))"dx> -

P dyadic |P| PQeA,QcP
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The term inside the supremum is O unless PeA. If Ped, then
ZQCP.QEA XEQ= Xp- HCHCC,

13 2o < € sup (1O~ 2 150 1) =€ 15 v
Q

Thus by the p= + o version of Theorem 3.5, e F*4. Since Tr f=Tr f, we
have Tr F** < Tr F*¢. The converse inclusion is trivial by the aforemen-
tioned imbedding, and the resuit follows. |

Part (a) of Theorem 11.2 for g > 1 has been proved by Marshall [Mar].

12. INHOMOGENEOUS TRIEBEL~LIZORKIN SPACES

Until now we have considered only the homogeneous spaces F;". The
usual Sobolev speces, however, are included within the scale of the
inhomogeneous spaces F}?(R"). More generally, we have L/ sz‘f for
l<p<+o and a>0 [Tr2, p.87], where L’ is the usual Bessel potential
space. (We have F)> ~ L7 for 1 < p < + 0, as for F’.) The inhomogeneous
spaces have the advantage of being invariant under diffeomorphisms [Tr2,
p. 174] and hence are sometimes more appropriate for local problems. All
of our methods and results so far easily adapt to the inhomogeneous case,
except for a few notational inconveniences. Hence, the purpose of this
section is only to set notation and summarize the corresponding results for
the inhomogeneous case, pointing out occasionally where differences arise.

Select a function @ e ¥ (R") satisfying

supp < (EeR": €] <2, (12.1)
and

1B =e>0 i &<t (122)

Let ¢ satisfy (2.1)-(2.3) and define {¢,},., as usual. For aeR,
0<p<+oo, and 0<g< +oo, F}? is the coliection of all fe &'(R") such
that

S Ngze= 11D * f 1l 1o+ <+, (123)

LrP

o l/q
( > (2" 1e, *f\)")

y=1

Note that ||-||F:q is a (quasi-)norm on &' (rather than &'/2), since

&(0) #0. In (12.3) the lower frequencies of f have been combined in one
term; naturally there are many equivalent ways to do this. For example, if
we set @,(x)=2""®(2*x) for ke Z, we have the following easy fact.
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LEMMA 12.1. For each ke Z, we have

(T e *fl)")w

v=k+1

(@i *f e+

=) f ey
P

for fe &', with constants depending on k, o, p, and q.

Proof. Suppose for example that k£ <0. Suppose we wish to prove that
|® *f |l .- is dominated by the left side (LS) of the asserted equivalence.
We can find n,€ %, v=Kk, .., 1, such that

1
(p*f=<¢k*r,k+ z (Pv*nv>*f;

v=k+1

by (2.3) and (12.2). Then

H¢k*f”Ll"\icp<H¢k*’7k*fHL"+ )y H@v*m*fﬂu)

v=k+1

1
<c(1@eslit ¥ losslu)<Ls)
v=k+1

Here, if 1<p< +0o0, we have used Minkowski’s inequality, and, if
0 <p <1, a standard result for functions of exponential type, which follows
from the Plancherel-Polya theorem [PI-P], or see, e.g., [Fr-J1, (2.11}].
The converse estimates hold for similar reasons, e.g., writing @, * /=
@ x f+ n, and so on. The case k >0 follows in the same way. |

Our inhomogeneous sequence spaces >/ will be indexed by the set of
dyadic cubes Q with Q)< 1. For s={5,},0)<1» 2€R, 0<p< 40, and
0<g< + o0, we set

(% deris,l w)”q

Hery<1

”S”f;q=} ,'< + 0.

L
The relation between f ;7 and f o is trivial. To be explicit, define V: {77 — f o
by setting (Vs)o =59 if /(@) <1, and (Vs), =0 otherwise. Obviously V' is
an isometric imbedding of £ in [/ Virtually any result for 3¢ has an
immediate analogue for ¢ obtained by applying the homogeneous results
to Vs. If W:f% 1% is defined by setting (Ws)y = s, for (Q)< 1, then W
is continuous and We V' is the identity on f?. So 77 is a retract of I o

Next we want to show that the relation between f3¢ and F;? is as one
expects. Given ¢ and @ as above, we can select y satisfying (2.1)(2.3) and
Ye & satisfying the same conditions as @ in (12.1)-(12.2), such that

BE) P&+ Y QY2 e =1 forall &,
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where, as usual, @(x) = &(—x), and similarly for @,. For O = Qy (so that
I(Q)=1), set ®,(x)=P(x —k), and similarly for ¥,. As in Lemma 2.1, we
then have the identity

f= Y (S >t Y Y (fioodve  (124)

Hey=1 v=1 KQ)=2""

for fe¥" (with convergence in ') We define the ¢-transform

S, Fy—f2% by setting (S, f)o=<{fiopy if (Q)<1 and (S,f)p=
{fs Poy f H(Q) = 1. We define the inverse o-transform T,: 17— F3% by

T,s= Z so¥o+ Z SoV¥o-
Hoy=1 g)<1

We now have the following analogue of Theorem 2.2.

THEOREM 12.2. Suppose aeR, 0<p< +o0, and 0<g< +o0. The
operators S, ¥ ;¥ —>17¢ and T, .f,>F," are bounded. Furthermore,
TyoS, is the identity on ¥37. In particular, | f | Fo 1S, /1l > and ¥} can

be identified with a complemented subspace of £3,

Proof. Lemma 2.3 with {77 in place of f 5! follows immediately from the
homogeneous result. Define sup,(f) and ~ian,y( f)asin Section 2if [(Q) <1,
and similarly for /(Q)=1, except with @ in place of @,. Lemma A.4 only
requires exponential type and hence applies to &  f. Using Lemma 12.1,
the proof of Lemma A.5 goes through, and hence Lemma 2.5 follows. This
yields the boundedness of S,,. Dropping terms like ¢ _; and ¢, for I(J) > 1,
and replacing ¢, and ¥, for /(J) =1 with @ and ¥, respectively, the proof
of the boundedness of T, in Section2 goes through as well. By (12.4),
T, - S, is the identity on F3?. ||

The analogues of Remark 2.6 and Proposition 2.7 are now clear.

We can formally define S3: Z(F,%) » £(f;%) and T§: £(f;7) » L(F2)
as in Section 3, obtaining the retract diagram at the operator level and the
equivalence

1S3 BI 2 1Bl e

Here a linear operator B on F}?, 0<g< +o0, is associated with the
operator on f3 with matrix {agp} o <1 qp<:i defined by agp=
(BYp, @y for (Q)<1 and /(P)< 1, and similarly in the other cases,
except with ¢, replaced by ¥, if /(P)=1 and ¢, replaced by &, if
[(Q) = 1. We define almost diagonality by the condition

sup lagel/wgple) < + 00,
Q)< 1 HPY< 1

580/93/1-10
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for wyp(e) as before. The analogue of Theorem 3.3 for f}¢ now holds. We
define a family {m,} of smooth molecules for F3’ as above if /(Q)< 1. If
[(Q)=1, we assume (3.5) (3.6) and

Imo()I <112 (1+HQ) " Ix—xol) ™",

which differs from (3.4) only if « <0. We do not assume that m, has any
vanishing moments if /(Q)=1. With a similar modification of the condi-
tions (3.7)-(3.10), we obtain that {{mp, b,)} is almost diagonal as in
Lemma 3.8. This follows simply because the vanishing moment conditions
for m, (and the additional decay in the case «<0) are only used in
Lemma 3.8 when we take A=m, and apply Lemma B.1, ie, when
I(P)<l(Q). In the inhomogeneous case, this never happens if /(P)=1
(similarly for b, if /(Q)=1). Hence, we obtain the inhomogeneous
analogue of Theorem 3.5. Similar modifications work in Theorem 3.7. For
Remark 3.10 (and similarly for Proposition 3.11) we start with & as above
and a function B satisfying (3.13)(3.14) and |B(x)| <(1+|x|)~™. We
define By(x)=B(x —x,) for /(Q)=1, and b, as before for [(Q)<1, to
obtain

||§*f||u+‘

<c | f g
LP .

(f (2" 5, *fl)")l/q

For the analogue of the smooth atomic decomposition in Theorem 4.1
we obtain

hQ)y=1 HE)<1

with the a,’s as before and each A, satisfying
supp Ap <30 (12.6)
and
[074p(x)I <1 if |yI<K (12.7)

Similarly, we obtain inhomogeneous versions of Theorem4.2 and
Corollary 4.3 (resp. Theorem 4.4 and Corollary 4.5) if we begin with func-
tions u as above and U satisfying (4.9) (resp. (4.21)), except only with
decay of order M, (4.10)-(4.11) (resp., (4.22)-(4.23)), and

|0 2e>0  if [E<3

in place of (4.7). We define ¢< (resp., t¢) as before for /(Q) < 1, while for
/(Q)=1 we use U in place of u.
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For ae R, and 0 < g < + 00, we let F*? be the set of all fe .’ such that

o 1/q
les=t@efliet swp ([ T @lposiolyds)

{(py<t |P| Py= —logal(P)
< 4+ 0. (12.8)

We get an equivalent norm if we delete the || @ = f ||« term, but take the
supremum over /(P)<1 and replace ¢, by @. This follows from the fact
that

1/q
1047 liex sup ([ 104517

(Py=1

which is a consequence of a local Plancherel-Poélya estimate, as in (2.11)
of [Fr-J1].

We define 27 simply by restricting the supremum in (54) to /(P)<1.
With V:£f% {2 and W:{* —{* formally defined as before, it follows
easily again that V is an isometry and Wo IV is the identity on f27, so f%¢
is a retract of £*%. Now the results of Section 5 carry over, restricting defini-
tions, sums, and sups to /(P)<1 and /(Q)<1 whenever appropriate.
In particular, since F)°~h*, 0<p<1 (cf [Tr, p.50]), we have
F2x (F%)* ~ bmo, where h? and bmo are the local Hardy and BMO
spaces (cf. [Go]).

The interpolation results in Section 6 easily yield their inhomogeneous
counterparts. For s={sp}/0)<1 We set [slg=1U,,.0Q| as above.
Defining V:f, —»f, and W:{,— f, as before, the fact that f 27 is a retract
of 57 extends to f, and f, also. This allows us to derive real interpolation
results, including characterizations of K-functionals, for f o from the results
for f;". Then the fact that F;? is a retract of 37 (by Theorem 12.2) gives
corresponding results for the F}7 spaces.

In analogy with our definition in Section 7, we say that r = {ry},0,<, i
an atom for f}?, 0<p<1, p<q< +o0, if r satisfies the definition of an
atom for f  for some Q with /(Q) < 1. Then Theorem 7.2, with f ;7 replaced
by 77, holds. However, the statement of Theorem 7.4 requires further
modification in the inhomogeneous case. The reason for this is that in
(12.5) the ay’s may have vanishing moments, but the 4,’s may not. Hence,
the two types of terms should not be combined. Instead we write
=244+ 3, v:h, with As satisfying (12.6)-(12.7) and the h’s being
atoms for F,?. We obtain

I/p 1/p
(S 1)+ (i)

in place of (ii) in Theorem 7.4, with a corresponding result for (i).
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Theorem 8.2 yields its own inhomogeneous version by considering
Vset* for sef*. This yields all of the interpolation results in Section 8,

J 4 4
with f77 in place of f;", which alternatively can be obtained by retraction

of the f 7 results. Retraction again gives the results for F3’.

In Section 9, all of the results about sequences carry over immediately.
With the same type of modifications regarding @ and ¥ as above, the
results on the distribution space level up through Proposition 9.13 have
analogues. Lemma 9.14 and its consequences Theorems 9.15-9.16, which
are restricted to a =0, do not have immediate counterparts. This is due to
the fact that in Lemma 9.14, the vanishing moment condition is lost in the
summation. Remark 9.17 and Examples 9.18-9.19 do have appropriate
analogues.

The inhomogeneous versions of all of the results in Section 10 follow
immediately, with the exception of the Fourier multiplier results. In fact,
these only require minor modifications. E.g, in Corollary 10.7, the
supremum is taken only over v>0, and for v=0, we replace ¢ by & (cf.
[Tr2, p. 72], for a similar formulation).

The trace results in Section 11 carry over to the F,? spaces, as well, by
the same reduction to the diagonal case and then using the results for
F?=B} in [Fr-J1].

13. POINTWISE MULTIPLIERS

In this section we shall consider pointwise multipliers on the
inhomogeneous spaces F,?. Our main result, Theorem 13.3, gives sufficient
conditions for the characteristic function of a domain Q< R” to be a
pointwise multiplier on F3? for appropriate values of the indices. In
Theorem 13.7 we also study a geometric condition characterizing the sets §2
for which a certain restriction phenomenon does not depend on g in %,

For our purposes it suffices to consider locally bounded functions b(x)
as pointwise multipliers. In general, if X is a quasi-Banach space con-
tinuously imbedded in &'(R"), we define pointwise multipliers on X in the
following way, e.g., as in [Tr2, p. 140]. Let y e #(R") satisfy j(£)=1 for
|€| <1 and let y,(x)=2""y(2"x) for v=0, 1, 2, .... Then for be &, the func-
tion b, =b x y, is smooth. We say that b(x) is a pointwise multiplier for X,
and write be MX if, for all fe X, the sequence b, f converges in & as
v— oo to an element ge X, and there exists ¢ >0, independent of £, such
that | glly<c | f | x. If Y is a quasi-Banach space of locally bounded func-
tions on R", we write YSMJX if be MX for each be Y and there exists
c¢>0 such that |[lim,_ . b, flix<c|blly | fllxforall be Y and fe X. It is
easy to see that if X is a Banach space, then MX = MX*, but if X is quasi-
Banach we only have MX € ML.X*
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In case & is dense in X in the quasi-norm on X, eg, X=F? for
0<p, g< + 0, it is sufficient to show that |bf ||y <c | f |y for all fe &,
and extend the action of b to all of X by linearity, to prove that be MX.
However, in the general case we require the interpretation above.

To start, we would like to make two observations about pointwise multi-
pliers on the F;? spaces. The first is well known [Tr2, p. 143], but is
particularly simple from our point of view.

Remark 13.1. For >0, let C*=Ff* (= Agz= B%) denote the usual
Hélder or Lipschitz spaces. We have C# = MF;? if either

0<p,g<+w0 and B>a>J—n, (13.1)
or
l<p,g<+w and p>lai. (13.2)

To see this, we consider (13.1) first. By (12.5), we can write each fe F}*
as f=3,0)<1 5049, Where each a, satisfies

supp a, < 30, (13.3)
and

|07ag(x) < @I~ 2= if |yl <[a+1],, (134)

and the sequence s= {54} 0, <, satisfies

sl <e 11 f s (13.5)

If we set my = bagy, then supp m, < 3Q, and since /(Q) < 1, it is easy to see
that (3.4)}-(3.6) hold for 6 =min(1, §— [«])> a*. Since (3.3) is void for
a>J—n, my is a smooth molecule for Q. Thus by the inhomogeneous
version of Theorem 3.5,

||b’|1~‘;‘7= Z SoMg

=<1

Y4 ”s”r”“’<C “f“p"‘i-
¥ » »

Then (13.2) follows from (13.1) by duality and interpolation (the
inhomogeneous analogues of Remark 5.14 and Theorem 8.5).

Triebel states [Tr2, p. 143] that if p <4 and § <max(x, J—n—a), then
there exists g € C# which is not a pointwise multiplier for F9. This indicates
that (3.4)-(3.6) are reasonably sharp conditions, since, for example if
J—n—a<wa and p<q, we cannot take 0 <d <a* in (3.6) and still obtain
Theorem 3.5 in the homogeneous case, else our argument would apply for
some f <a, contradicting Triebel’s remark.
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Remark 132. For g=2 and 1<p< + o0, F)?  L”, so it is clear that
MF)?=L®. This can be regarded as a limiting case of the result from
Lemma 13.1 that for 1<p, ¢g< + o, C”CMFO" for all [3>0 For
1<p,g<+c and aeR, duality and 1nterpolat10n ([F;% F,> "=
F$?=L? show that MFYcML’=L%. From the frace problem
in Section 11, one might expect that MF;? is “independent of g,” ie.,
that MF°" = L= for al ¢. However, it is easy to see that if the complex
exponentlals were pointwise multipliers on f % (or even if they just mapped
FY into F*), then this would imply that F°"c L?~F?, 1<g< + . Of
course, this is only possible if g <2. Hence by duahty, 1f 1<p,g< 4+
and ¢ #2 we have L~ ¢ MF,’. This answers a point that arose in [AF].
(To verify the statement about the complex exponentials, let ¢ satisfy
(2.1)-(2.3) and ¢(1, 0, ..., 0) = 1. Then |sup, |@, *f ||, < | f | RO If we let
O(x)=e"p(x), then O(0)=1 and | [|~lim,_ | *6,l.,<
sup, | f+ e, r=sup, [(e" ™) * o, <l f]gx)

We now turn to the main problem we wish to consider. Let £ be an
open subset of R” (not necessarily bounded or connected). We ask for
conditions yielding y = y, € MF}? for appropriate «, p, and ¢.

Fix Q. We consider a quantitative condition on Q. For xe R", let §(x)
be the distance from x to Q°=R"\Q. For s>0 and Q a cube in R", not
necessarily dyadic, let

1 1/s
p.0, D)= l(Q)(,QIJM SO ) -

We let D, be the set of domains 2 < R” such that

I2l,= sup  p(Q, Q)< + 0. (13.6)

Q dyadic, (@) < 1

We shall make several remarks about the condition Qe D,. First, the
condition is monotonic; that is, by Holder’s inequality D, = D, for s>t
To get a better understanding of the class D,, we make an elementary
computation in the special case 2 =R" = {xeR":x,>0}. Suppose Q is
dyadic with /(Q)=2"*, and 0 <s < 1. Then

1 1/s
pu. =27 (2 fg x |de)

)

It follows that R" €D, for 0 <s<1. This is typical for an £ with a nice
boundary.
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Now suppose 2= P° for a dyadic cube P with /[(P)<1 (where E°
denotes the interior of the set E). Let ,(x) be the distance from x to the
ith face of P, i=1, ..., 2n. Then obviously 6,(x) *<d(x) <27, 64{x)~"*
for each s> 0. Hence, if 0 <s< 1, the previous calculation and a dilation
argument show that {,d8(x) *dx=c,/(P)" *. For an arbitrary Q this
implies that {, 6(x) *dx<c,/(Q)" * whenever Q is a cube with Q< Q
and 0 <s< 1. As a consequence

sup{pS(Q, -Q) Q°r\6£2=g}<cm< + oo,

so we only need check (13.6) for Q such that 0ndQ# &, if 0<s< 1.
For that matter, it suffices to check (13.6) only for all sufficiently small
dyadic cubes intersecting Q2. To see this, suppose k€ Z, k>0, and

A, =sup{p,(Q, 2): Qisdyadic, (Q) <2 *} < + 0.

If O is dyadic with /(Q)=2"""", and {Q,}” | are the dyadic subcubes of
0 with (Q,)=2"%, then

o
[ smax=3 [ s ax<2410)r
[eXa¥ ] j=1 [2/1a¥?]
This shows that 4, , <24, and ||Q|,<2%4, < + 0. Finally, it is clear
that there exists ¢,, such that for any cube, not necessarily dyadic,
ps(Q, Q) <, 121,

For our next theorem we also need a slight modification of the Whitney
decomposition. For an open set Q = R”, let %, be the set of dyadic cubes
in the Whitney decomposition of €. The basic properties of this decom-
position (see [St, pp. 167-169]) that we require are:

U 0=, (13.8)
QeH
Qin@=g if Q,#0,,0,,0:6%, (13.9)
diam Q <dist(Q, 2°) <4 diam Q if Qe%, (13.10)
i<UQNQ)<4  if Q,,0,e% and 0,00, #O, (13.11)

and

if x € £, then there exist at most ¢, cubes Q € %, such that xe 1.1Q.  (13.12)

Since the dyadic cubes in our decomposition of F37 satisfy /(Q)< 1, we
subdivide the cubes in %, of sidelength greater than 1. Let

F={QeFKUQ>1}, FH=F\F,
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and
% = {Q dyadic : [(Q) =1 and there exists J € # such that Q = J}.

The collection we shall use is F =4 0U%. It is easy to see then that
(13.8)-(13.9) and (13.11)-(13.12), with %, replaced by £, still hold. In
place of (13.10) we have in general only diam Q < dist(Q, Q°) if Qe #. Let

%= {Pdyadic: (P)<1and (3P)°ndQ # ).

Note that if Pe¥, then dist(P, Q) <diam P, and hence P¢ % and no
dyadic cube containing P belongs to #. For Pe ¥, let

N(3P)={Qegr:Q‘ mz_P;e@}.

If QeN(3P), then diam Q <dist(Q, Q)< 3 diam P. This implies that
I(Q) < 2I(P), since we must have /(Q) = 2*/( P) for some k € Z. In particular,
it follows that

J{Q:QeN3BP)} <P if Pe%. (13.13)

(The precise number 7 will not be important though.)

We also note that dist(Q, Q°)<4 diam @ if Q e N(3P) for some Pe®.
(For Qe & such that (@) <1, this follows by (13.10), If /(Q)=1, then
dist(Q, 2°)< 3 diam P<3 \/; =3 diam Q, since /(P)<1 for all Pe%.).
Hence, for all Pe ¥, Q € N(3P), and xe Q, we have

Jn Q) < dist(x, 2°)<5./n Q). (13.14)

We construct a partition of unity of 2 corresponding to % in a standard
way. Fix a function ye@ satisfying 0<y(x)<1 for all x, and
suppy< [—0.1, 1.1]" For P dyadic, let y*(P)(x)=17((x —xp)/l(P)). For
Pe#F, let

v(P)(x)=v:(x)/ T Q).

QeF

It is clear that 3", _ ;- y(P)(x}=1 for xe 2, 0<y(P}(x)<1 for all x and P,
y(P)e 2 for all P, and supp y(P)< 1.1P. It also follows (as in [St, p. 174])
that

[0%y(P)(x)| < cgl(P)~ 1A for all B and all Pe %. (13.15)

Finally, by (13.11) for # (and since &< 1), we have

Y yQ)Nx)=1 for xe3PnQ and Pe®¥. (13.16)

QeN@BP)
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THEOREM 13.3. Let Q be a domain in R", and let y=y,. Suppose
O<p<+ow, 0<g< +0, and Qe D, for some s>0. Then ye MF}? if
either

O<p<l1 and J—n<a<s/p, (13.17)
or

l<p<+w and J—n<a<s/p. (13.18)

Proof. First assume g= +o0. By (12.5), we can write f=3 ,5pap,
where

sl <c | S Tgzes (13.19)

for s={$p} payadic, and each a, satisfies supp a, <3P, and
|0%ap(x)| < | P72 if |y < [a+ 1], (13.20)
(Since we are in the range o« >J—n, we have N= —1 and the moment

condition (4.2) may be taken to be void.)
Let # = {Pdyadic: (P)<1 and (3P)°c R} and & = { P dyadic: (P)< 1
and (3P)°<= Q°}. Let

=Y spap+ Y. Spap+ Y, Spap=fi+fi+fs.

Pec¥ Pe® Peé&

Then xf3=0 and yf; =/, hence | xfslgr = folgw<c sl <cllf g
So we only need to consider f,, and thus ‘we assume s p=0 if P¢g.

Given Pe¥, by (13.16) we can write

xap(x)=Y  9(@)x)ap(x).

Qe N(3P)

By Leibniz’s rule, (13.15), (13.20), and the fact that /(Q)<2/(P) for
Qe N(3P), we have

|0°(y(@)(x) ap(x))]
< Y ¢ Q) PIPITIP)TILSCIQIT 2 HQ) TV,

pro=§
if |Bi<[a+1],. Hence, if, for Pe¥ and Q € N(3P), we define

—-1/2
bo(P)(x) =~ (%) 2(0)(x) ap(x)
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then by(P) is a smooth atom corresponding to Q. We have

= Z spxap=C Z Sp Z (|Q|/IP|)1/2bQ(P)'

Pe¥ Pe¥ QeN(@3P)

Define t, =0 and hy(x)=0if Q¢ #, and if Qe F set

to= Y (QIIPD" sl

Pe¥€:Qe N(3P)

and

1
ho==— 3%  (IQUIP)"*s5pbo(P)(x).

tQ Pe%:Qe N@3P)

Then yf=%,.4 toho- Each hjy is a smooth atom corresponding to Q,
since estimates for 0’h, are dominated by those for a convex combination
of the smooth atoms b,(P) for Q. By the inhomogeneous version of
Theorem 3.5, we have ||xf || g== < ¢ |/#] . Hence, by (13.19), the conclusion
follows if ’ ’

2] goe < €[5l gzo- (13.21)

If we define the matrix 4 = {ayp}, » by

agr=1(1Ql/IP|)"? if Pe¥ and Qe N(3P),

and ay, = 0 otherwise, then ¢ = A(s). We thus see that (13.21) is equivalent
to the fact that 4 is bounded on f;*. To prove this we consider the cases
0<p<1 and p>1, separately.

Suppose O0<p<1. For Qe# and P, fixed, we set €=%, p, 0=
{Pe¥: Pc P, and Qe N(3P)}. Using Proposition 10.1, we see that 4 is
bounded on f}* if and only if

< 4+ 0.

L4
fI’

4 1l4,p, 0 =sup

Py IP0|1/P

{ Y IQI“ZIPI“/"}Qeg.

Pe%

Notice now that there are at most a fixed number of dyadic cubes P of a
given sidelength in %, (for Q fixed), since such a cube must satisfy
{(Q)<2/(P) and, by (13.13), Q@ = 7P. Hence, as long as « >0, the sum in
(13.22) is (essentially) geometric and can be estimated by ¢ |Q]"* | P,|*".
Inserting this in (13.22), we find that

1
172
”A”a,p,oo sC sli}op |P0|1/p_a/n ” {|Q| }Q;@Q;ég ”f:w'
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If 6, # &, then, by (13.13), Q 7P, " 2, and, by (13.14), 10| ~ d(x) for
x € Q. This and the fact that the cubes Q in # are pairwise disjoint shows
that

1
1/2 4 o7 ~ap
I{1Ql }Q%Q#@”’;xgcj;mmn o(x)* *

This yields
1Al 5 p 0 < [1€2]73, < 400,

and completes the proof when 0 <p<1.
Let us now consider 1 < p < + co. By (10.3), the matrix A4 is bounded on
f21 = if and only if

1Al 2. =sup Y (IPI/IQN)*" < +o0.

Q P:QeN(@3P)

For a fixed Q, we have I(Q) <2/(P) if Q € N(3P). So, there are at most a
fixed number of cubes P of any given sidelength such that Qe N(3P).
Hence, the series sums and [A|, , ., <+ o exactly when o <O
Therefore, if 2eD,, A is bounded on f{°* with ag=s, by the first part
of the proof, and on f%® for any a,<0. By interpolation (again only
Proposition 8.1 and Theorem 8.2 are needed), 4 is bounded on f;* with
1/p=(1—0) and a=(1—0) s+ 0x,. Taking a, <0 sufficiently close to 0,
we obtain boundedness of A for an arbitrary o <s/p. This proves the
theorem in the case g = + co.

In the general case, note that our assumptions (13. 17) (13.18) guarantee
that we are always in the case where no vanishing moments are required
for smooth molecules for F3?. Hence, writing xf=3t5h, as before (where
sp=0 for P¢¥, as before also), each h, is a smooth atom for F? for Q
and, similar to the case g = + oo, it suffices to prove

£l gza < € lisll goa- (13.22)

By (13.9), the cubes in & are pairwise disjoint; therefore,

el gze = M2 g (13.23)

By the case g = + o0, ||t||,;ao <c sl e The trivial imbedding ;¢ — f>* now
yields (13.22), completing the proof. |}
Assume for a moment that |0Q|=0. Then y,;, =0 in &’ and hence the

operator f— y,q f is zero on F%. If @ is the domain complementary to €,
ie, Q= (2°° then XgeMF“q if and only if yse MF;% This indicates
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that the D, condition can be symmetrized. We define a class D, for s>0
consisting of all domains such that

sup  min{p,(Q, Q),p,(Q, 2)} < +o0.

Q dyadic, (Q)< 1

(The function é in p,(Q, @) is the distance to ©.) Then Theorem 13.3 and
the following two corollaries hold with D_ in place of D,. To see this,
partition the set ¥ from the proof into two sets %, and %, so that
Suer@g ps(Q’ Q) <+, and Suerfﬁ ps(Qa g) < +o00.

We can use duality and interpolation in a standard way to extend the
range of indices in (13.17)-(13.18).

CoROLLARY 134. Suppose 1<p,q< + o0, and Qe D, for some 5>0.
Let y=yxqo. Then yeMF;? if either p<+o0 and s(1/p—1)<a<0 or
p=+o0 and —s<a<0.

Proof. These cases follow from Theorem 13.3 and duality (MX =MX*
if Xc&%'(R") and X is a Banach space), via Theorem 5.13 and
Remark 5.14. |

COROLLARY 13.5. Suppose 1 <p< +o0, O0<qg< 4+ 00, and QeD, for
some 5>0. Then y = yoe MF}? if

s(t/p—D)+n(ljg—1) <a<s/p.

Proof. For g>1, only the case o =0 remains, which follows by inter-
polation, e.g, Corollary 8.3. For 0<g<1, we apply the interpolation
property, justified by, say, Theorem 8.5. Now let ¢ > 0 be sufficiently small,
and set go=1+¢, po=p+e, and ay=s(1/po—1)+¢& Let p,=1 and let
0=0(c)=¢/p(p+e—1),s0that 1/p=(1—8)/py+8/p,. Let q, satisfy 1/q=
(1—6)/q0+8/q, (hence g, <1) and set a; =n(1/q, — 1)+ & Then y is boun-
ded on F;** and F;!¥* by Corollary 13.5 and Theorem 13.3, respectively.

Hence y is bounded on F}? for
1 1 1-6
—1>+n<-————-—9>+s.
+e g l+e¢

Taking & > 0 sufficiently small (and hence 6(¢) small) yields the result. ||

cx=(1—6)cx0+0cx1=(1—0)s(
P

Earlier we noted that 2=R" €D, for 0<s< 1. A similar computation
show that whenever ®:R”"~'- R! is Lipschitz if order 1 (ie.,
|@(x)—DP(y)| <M |x—y| for all x, ye R"™!), then

Q={(xy, ., x,) R x,>P(xy, .., X, )}



A DISCRETE TRANSFORM 143

belongs to D, for 0 <s< 1. Since the D, condition is essentially local, it is
also true that Qe D, for O<s<1 if Q@ is a bounded Lipschitz domain.
Hence we have the following.

COROLLARY 13.6. Suppose Q = R” is a bounded Lipschitz domain, and
0<qg< +o0. Then x =o€ MF}? if either

O<p<l1 and J—n<a<l/p,
or
I<p<oo and (M/p—1)+J—n<a<l1/p.

Proof. Take s close enough to 1 and apply Theorem 13.3 and
Corollary 13.5. |}

These results agree with those in Triebel [Tr2, p. 158], for the case
Q2 =R", and overlap with results independently obtained by Strichartz
[Stri] for potentials of Hardy spaces.

Finally, we note that there are non-Lipschitz domains which belong to
D, for 0 <s <1, and hence for which x, e MF}? (for the indices allowed in
Corollary 13.6). One example is

={(x,y)eR*: y>|x]°},

for0<e< 1.

Note the independence of g in (13.23) for the sequence ¢ in the proof
of Theorem 13.3. This is a trivial conseqence of the disjointness of the
Whitney cubes. Recall also that in this proof, the function f; consists of the
terms corresponding to the boundary in the decomposition of f. For a
“reasonable” domain there will be an analogous independence of ¢ for £/,

A {|Fm 2~ fi ¥ for all g. Our next theorem gives a precise charac-
terlzatlon ‘of the domains for which this happens. This characterization
describes exactly under what geometrical conditions on the domain the
technique used in the trace problem (Theorem 11.1) can be applied.

Recall that

% = {Q dyadic: (Q) <1 and (30)° N dQ # & ).

For a sequence s= {5y },0)<1, let §={35},0,<: be defined by 5,=1s, if
Q€% and §,=0 if not. For aeR and 0 <p, ¢ < + o0, set

IK “f“‘i(ag) ”s“f“q

We say e NST (not so terrible) if there exists peZ, u>0, with the
property that for any dyadic cube Q with /(Q) < 1 satisfying O n 0 # (&,
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there exists a dyadic cube P< @ with /(P)=2"#/(Q) such that
P°noQ=.

THEOREM 13.7. Suppose 0 <p < + o and a.e R. Then the following are
equivalent:

(i) QeNST;
(ii) for all q,§ with 0<gq, §< + o0, |s| o) X ||Snf;‘7(ag);
(ii1) there exist q and § with 0 < g < §< + oo such that

“S“(;q(ag)< c sl 29 (0a)
Here the constants in (ii) and (iii) are independent of s.

Proof. First suppose Qe NST, and let u be the number given by the
definition. Note that for any Qe ¥, we can select a dyadic cube E,<Q
such that [(E,)=2"""%/(Q), and (3E,)° N 02 = . To see this, first select
PcQ, P dyadic, with /(P)=2"%I(Q), such that P°ndQ=; this is
possible by assumption if PndQ # ¢, and trivial otherwise. Then let E,
be any dyadic cube satisfying /(E,)=/(P)/4 and E, < P°.

We define u + 2 pairwise disjoint families of dyadic cubes as follows. Let

A;={Qe®:1(Q)=2"""D*"Tforsome ke Z k>0},

for i=0,1,.., u+ 1. The main observation is that for each i, the cubes
belonging to {E,: Q € 4,} have pairwise disjoint interiors. To see this, sup-
pose to the contrary that for some i, Q,, @, 4;, Q; #0,, {Q,)<KQ»),
say, and E, N E}, # (. Since the cubes are dyadic, and Q7 n Q3 # J, we
must have )(Q,)<I(@,). But then by definition of 4,, we must have
Q) <27 ¥*IHQ,)=UE,). Then since Q7 N EY), # & and the cubes are
dyadic, it follows that Q, < E,,. But (3E,,)°ndQ =, contradicting
Q,€%.

For i=0, 1, .., u+1, define §;= {(5))o }yo)<1 BY (§:)p =3 if Q€ 4;, and
(5.)o=0 otherwise. Since |Ey|=2"**7"|Q|, Proposition2.7 and the
disjointness of the E,’s for Qe A, yield, for any g and § satisfying
0<g,§< +w,

P

(g 101 16del 2e)*) |

1/¢
- H (z (101~ |G zEQ)‘?)
[e]

A |5ill .
L i fp
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Hence

Il pex  max |5l max 15l gox |[§] e
4 Osisu+l 4 o<isp+1 4 4
Therefore (i) implies (ii). Obviously (ii) implies (iii).

Now suppose (iii) holds, and suppose (i) fails, ie., 2 ¢ NST. Then for
arbitrarily large p, there exists Q dyadic with /(Q)<1, and 0 naQ # &,
such that for all dyadic cubes P<=Q with /(P)=2""/(Q), we have
P°ndQ # . Define a sequence s= {sp},p <1 by setting sp=|P|"2+*" if
P< Q and [(P) =2 *I(Q), and s, =0 otherwise. Then

1/q
fsll 29(00) = “( Z X‘fv)

P=Q
HP)=27H(Q)

=(u+1)" 101"

Ly

Making the same observation for § contradicts (iii) if u is sufficiently large.
Hence (iii) implies (i). ||

We remark that the D, and NST conditions are not strictly comparable.
Indeed, there exists Qe D, for all 0 <s<1, such that Q¢ NST. On the
other hand, if Qe NST with =1, then Qe D, for 0 <s< —log,(1—-2""),
but not necessarily for s > —log,(1 —2~"). For the first assertion, we may
construct an example as follows. Let n(k) grow sufficiently rapidly as
k » + 0. For each dyadic Q< [0, 17", with /[(Q)=2"%, let P(Q) be any
subcube of Q with sidelength 2~ "%, Then let Q=) {P(Q)°: Q is dyadic,
Q< [0, 1]"}. We omit the details of the verification. For the second asser-
tion, the case which gives the largest D, “norm” is particularly easy to
determine because of the assumption that z=1. An explicit calculation,
which we omit, gives the result.

14. CONCLUSION

We conclude with a brief description of some directions that further
research along the lines of this paper either has been taken or could be
taken.

As we have mentioned in the introduction, there are a variety of
approaches to nonorthogonal decompositions that have been studied, as in
[DGM] and the references given there. In [DGM] the relation of these
approaches to mathematical physics and the theory of coherent states
is stressed. Also, the ¢-transform and the wavelet decomposition
([Le-M; Co-M] as discussed in Section 1) are being studied for possible
computational applications in engineering and applied mathematics.

More abstract generalizations have been considered by Feichtinger and
Grochenig; see, e.g., [Fei-G]. Their approach stresses the underlying group
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structure (in our case, the group of translations and dilations on R”, see
Remark 3.2). From this perspective, they consider other group structures,
leading to a unified perspective on various types of decompositions. Their
techniques in some ways resemble ours in Section 4; in particular, a
Neumann series is summed to invert an operator, to obtain the decomposi-
tion. This method has been used previously, e.g., in [Co-R; DIS].
Another direction has been considered in [HITW]. They consider a
definition of FZ" that avoids dependence on an underlying translation
structure. Namely, it is seen in [HJTW] that an equivalent definition of
FZ" can be obtained under appropriate restrictions by replacing the
convolution operators ¢, * f with kernel operators of the form

T.f(x)= | K ) f(3) db,

where {T,},., is an “e-family of operators” (cf. [CJ]), ic. the kernels K,
satisfy natural size and smoothness assumptions. This approach may allow
adaptation of our results to cases where there is a natural dilation struc-
ture, but no translation structure.

The geometrical aspects of the fzq-spaces may be useful for studying
potential theory and capacities. The results in [Ja-P-W] are examples of
this. There it is shown that the positive cone in F;" is independent of ¢, for
a <0 (this result is due to David Adams for most values of p and g; cf.
[Ja-P-W] for a precise statement and references); this fact is directly
related to the close connection between potentials and fractional maximal
operators.

Possible settings which may allow full or partial adaptation of our
results include homogenous groups, spaces of homogeneous type (in the
sense of Coifman and Weiss [Co-W1]), and the polydisk. We have noted
previously [Fr-J1, Section 8] that Folland and Stein [Fo-S, p.47] have
constructed a resolution of the d-function on homogeneous groups, which
yields a version of the Calderon reproducing formula. Calderon’s formula
was, of course, the starting point of our work here. For spaces of
homogeneous type, one special case of particular interest is that of
Lipschitz domains in R". For this setting, and others, the generalized
@-transform from Section 4 may be a useful tool.

APPENDIX A:ProOFS OF LEMMAS 2.3 AND 2.5

To prove Lemma 2.3 we need the Fefferman—Stein vector-valued maxi-
mal inequality. Let M be the Hardy-Littlewood maximal operator,

My () =sup Q1" | 170l

xeQ
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where the sup is taken over all cubes (not necessarily dyadic) with sides
parallel to the axes.

THeOREM A.l (Fefferman and Stein [Fef-S1]). Suppose 1 <p < + o0 and

1 <g< + . Then
0 1/q
(Z w)
i=1

\

The sequence s* can be majorized by M; this is essentially just a special
case of the standard fact that the convolution with a radial, decreasing
L'-function can be majorized (pointwise) by M.

SCpy
v

( | 9y
i=1

L

LEMMA A.2. Suppose O0<a<r<+w, and A>nrja. Fix p,veZ with
u<v. For each dyadic cube Q with (Q)=2"" and each x€ Q,

1r
< ) |spl’/(1+l(P)“1xp—xQ|)*>

(P)y=2"F

1/a
<C<M( z |SP|aXP>(x)> )
KP)y=2-+

where ¢ depends only on n and A —nr/a.

Proof. We may assume x,=0. Let 4,= {Pdyadic:/(P)=2"* and
[xp|/(P)<1} and, for k=1,2,3, .., let A,={Pdyadic:/(P)=2"* and
251 < |xp|/I(P)<2*}. Then

Y Ispl/(1+1xp|/I(P)Y

Pe Ag

Scszl Z |splr
Pe Ay

ria rla
<62*k1< Z |SP|a> <C27k12nur/a (J‘ Z |SP|HXP>

Pe Ay Pe Ay

r/a
g 2 K= (M< Z |SP|HXP) (x)> .

Pe Ay
Summing over k£ and taking the rth roots yields the result. ||

Remark A.3. With the same restrictions on a, r, and A, we have a more
general estimate. For each dyadic cube Q with /(Q)=2"" and each xeQ,

580/93/1-11
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, \xQ—xP| >1>1/r
(1 —2e=Xel
(,“,Ez,, sz / ( * max((P), (0))

1/a
<6‘2(”4v)+"/a<M( Z ’SPIGXP>(X)> >

H{P)y=2"H

where ¢ depends only on #n and i—nr/a; here (u—v), =max(u—v,0).
To prove this when u>v, replace 4, in the above by B,= {P dyadic:
I(P)=2"* and |xp|/27*<1} and A, by B, = {P dyadic: [(P)=2"* and
25 < xp|27r g 25}

Proof of Lemma 23. Let r=min(p,q) and ¢=—14+4i/n>0. Let
a=r/(1+¢/2). Then O<a<r, and A>nr/fa. Hence, by Lemma A.3 with

p=v,

a\ 1/a
) (sr)QzQ<c<M< » lsmzp)),

Hey=2"v pPy=2-"v

a\ q/a\ a/q
(2 (5 msaz)))
veZ {P)=2-v

Since p/a, g/a> 1, the Fefferman—Stein inequality (Theorem A.1) allows us
to remove M in the last expression, to obtain |s* || e Sc ||s||,;q. The other
direction is trivial since |so| < (s¥), for all Q. [

for all veZ. Hence,

1/a

sl <c .
4 175

To prove Lemma 2.5 we need two additional lemmas; the first is an
adaptation of Peetre’s mean-value theorem estimate for ¢ F* [P2].

LEMMA A4, Suppose fe &' and supp f(E) = {&: |&| <2}. Let ye Z, with
y=0. For Q dyadic, let ag=sup, o | f(y)| and by, =max {inf, 5| f(y)l:

(0)=2""KQ), < Q}. Let a={ay}y and b={by,}o. If 0<r< +oo,
(Q)=1 and v is sufficiently large, then

(a¥)o= (b})g

with constants independent of f and Q.

Proof. We may assume Q= Q. First, suppose fe &% and supp fe
{& :|£] <3}. By the mean-value theorem,

ap<bp,+c277sup |VF(»),

yeP
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if [(P)=1. Let dp=sup, . » |V/(y)| and d= {d,},. Then
(@a¥)o<c(bF)p+277(d}),.

Let ge &% sg.tisfy 8(&)=11if || <3 and supp g(¢) < {&: ¢ <n}. Writing
f=f+xg=(f-8)" and proceeding as in the proof of Lemma 2.1 in
[Fr-J1], we obtain

fx)= ) flygx—k)= 3 fl(x,)gx—x,).

keZ" (N)=1

Hence,

dp<sup Y | f(x,)] [Ve(y—x))|

YeP y(N=1
Ssup Y [ S ()] [Ve(y—x)l(1+ [x,—xp )M
yeP (=1

x (L4 [xp)/(1+ |x 1)

Since ge &, we have sup,.»|Vg(y—x,)| <cpll +|x,—xp[)~* for any
M e Z. Therefore, taking L sufficiently large,

r\ Yr
(d,*)QscL( ) ( y If(xJ)I/(1+IxJ|)“’(1+Ixj—xpl)L>>

(PY=1 N(J)=1

<clal)y

by Minkowski’s inequality if > 1, or by the r-triangle inequality followed
by Minkowski’s inequality if r<1. Since fe ¥, we have (a¥), < + 0.
Thus, taking y sufficiently large above yields (a*), < c(b)¥),.

More generally, let fe & with supp f< {¢:|¢|<2}. Then f is slowly
increasing and infinitely differentiable (e.g., [H6r2, p. 21]). We now apply
a standard regularization argument (see, e.g., [Tr2, p.22]). Let ge &
satisfy supp (&)< {&: €| <1}, g(£)=0, and g(0)=1. Then | g(x)| <1 for
all x, by Fourier inversion. For 0 <d < 1, let f5(x)=/(x) g(éx). Then supp
s {€:1E1<3), f5€ %, | fsI<If], and f5—f as 60, uniformly on
compact sets. Applying our result to f;, noting that sup, ., | f5(y)l <
sup,cp | f(»)l for all P, and letting & — 0, we obtain (a*), <c(b}),.

The converse estimate is trivial. ||

The next lemma is very simple; let us recall that inf, (f)=

101" max{inf, .5 1§, * f(»)| : (Q)=27"1Q), = 0}.
LEMMA A5, For fe&'/P, aeR,0<p< + 0, and 0<g< + 0,

|| inf'y(f)”l';q < cy.n,p,q II f “qu
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Proof. Let t={1,}, be defined by
=1 inf |§,_, * f( )l if I(J)y=2""
yedJ

Then for 0 <r < + o0,
infy (f) Fo<Co,2 Y (4,
J=Q

1) =2"(Q)

for Q dyadic and 4 as in the definition of s*. Picking r=min(p, ¢) and
applying Lemma 2.3,

i, () s < €270 1 o0 < €247 | ] o

(z (2"“|¢v_,«*fl)">l/q

veZ

Ar—
SCZ”( /r—a)

L?

<2 | fllgs. 1

Proof of Lemma 2.5. The estimate | f | g < ¢ [[Sup(f)ll;= follows from
the definitions. Applying Lemma A4 to each of the functions @, * f(27x)
leads to the inequality

(sup(f)})g < c(inf,(f)*)g
if r=min(p, ¢q) and /(Q)=2"". Then Lemma 2.3 gives
Isup(/)lise< ¢ llint, (£l s

Finally, Lemma A.5 completes the proof. |

APPENDIX B: PROOFS OF LEMMAS 3.6 AND 3.8
We need the following two technical lemmas.

LEmMMA B.1. Suppose R>n, 0<0<1, jkeZ, jzk, LeZ, L>=0,
S>L+n+0, and x, e R". Suppose g, he L'(R") satisfy

|07g(x)] <272 PD(1+27 x)=% i IyI<L, (B.1)

|07g(x) — g (y)| 272+ L+ D {x—y|® sup  (1+427)z—x|)"%  (B2)

Izt < |y — x|

lf|)’| =1L,
[h(x)] < 2K"2(1 4 2% |x — x, |)~max®®), (B.3)
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and
J‘xyh(x)dx=0 if |y<L. (B.4)
Then
lg * h(x)| <2~k NLHOTmD() 4 27 |x —x,|)~ & (B.5)

where c is independent of k, j, x, and x,.

Proof. Using translations and dilations, we may assume x, =0 and
j=0. Let A={y:|y—x|<3}, B={y:|y—x|>3 and |y| <x|/2}, and
C={y:|y—x|>3 and |y|>|x|/2}. Then

genol<f|(s)= T ir—xrt) x| dy

BlsL

=+l

For ye A4, (B.2) implies that

gy)— Y ﬁﬁg(X)(y—x)”/ﬁll<CIx—y|“9 sup (1+]z—x|)~F

Bl<L lz21 <3
Selx—pP 0 (14 1x]) 7R,

since 1+ |z — x| = (1 + |x|) if |z| £ 3. Using this and (B.3), we see that

[ <@+ )R [ =yt (125 x -y S dy

A A

SC27k(L+0+"/2)(1 + |X|)_R,

since S>L+n+6.

For yEB’ |X|/2<‘y—x|<3|x|/2, SO 2k|x——y|>},2k(1+|x|), since
| y— x| = 3. Therefore,

1 lx—yl”*']
<c —_—+ A S
L L [(1+IyI)R |5,2<L(1+IXI)R
X2kn/22—kS(1 + |x|)7max(R, S) dy

27— 4 |x[)~R

i " ]
x| | L+ 1y~ dy+ =5 ‘
U( lyl)~"dy (1+|xI)SLty|<|x1/2} Y

Le27HSTI(T 4 |x]) K,

as needed, since S>L+n+6.
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For ye C, 1+ |yl > 31 + |x]), so

i |x—y|'ﬂ'] )
<c —_— — T | 2k 4 2R | x — Sd
J. fc[<1+|y|>'* L TrapR ) L )y
OOrL+I7~—1

<C2k,,/2(1 + |x|)7RJ‘ mdrscsz(.s-nﬂ)(l + |x|)_R’
3

yielding (B.5). i

The case in which no vanishing moments on # are assumed (formaily
L= —1) is very simple.

LemMA B.2. Suppose R>n, j, keZ, j<k, and x,eR". Suppose g,
he L'(R") satisfy

lg(a)l 272 (1 +27 |x]) =, (B.6)
and
[h(x)] < 2K92(1 4 2% |x —x, ) R (B.7)
Then
|g* h(x)| <2~ * 21+ 2/ |x—x,|)~ R (B.8)

Proof. Again we may assume x, =0 and j=0. Let 4, B, and C be as
in the proof of Lemma B.1. For ye AU C, 1+ |y| = (1 + |x]), so

)

o) hlx =) dy<e(d +1x)F2R [ (142% 1x—y)) R dy

w

<2 R2(] + |x]) =R,

For ye B, 2% |x — y| > 12%(1 4 |x|), so
L lg(»)] 1h(x — )| dy < 2= HR="2(1 +lx|)‘RfR (1+1yh)~*ay,

yielding (B.8), since R>n. |

By choosing all numbers and the functions g, # properly, Lemmas B.1
and B.2 yield the following corollary, which includes both Lemmas 3.6
and 3.8.

COoROLLARY B3. Let M>J, (J—a)*<p<1, and a* <5< 1. Suppose
that {mgy}, is a family of smooth molecules satisfying (3.3)~(3.6), and that
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{bo}o is a family of functions satisfying (3.7)—(3.10). Then there exist ¢, and
a constant C, independent of P and Q, such that

|[<{mp, bp)| < Coyple) if e<e.

Proof. Possibly reducing J, p, or M, we may assume that § —a* =
(M—J)2=p—(J—a)*>0.

If (Q)=2""<2"#=I(P), and a =0, we apply Lemma B.1 with R= M,
0=0,k=v,j=p, L={a], S=M+n+a—J, x,=xy, g(x)=mp(xp—x),
and h=b,. We obtain

[Cmp, bod| =g % hixp) <20 M= H9+02(1 420 |, —xo )Y,

yielding the desired estimate, since M>J+¢ and [a]+d+n/2>
e/2+a+n/2 if e>0 is small enough. Similarly, when o« <0, Lemma B.2
gives

[<mp, oD <27 M2 (1424 |xp— xp]) ™,

which again is satisfactory since n/2 2 n/2 + a +¢/2 if 0 <e < — 20, say.

If(P)=2"#<2""=I(Q), and N>0, we apply Lemma B.1 with R= M,
O0=p, k=p, j=v, L=N, S=M—a, x,=xp, g(x)=by(xy—x), and
h=mp. We obtain

[<mp, bo )| <|g*h(xp) <2™HTINTLTmIL 42 |xp—x0]) M,

which is as required because N+ p +n/2 2 ¢/2+J—a—n/2, again if ¢ >0 is
small enough. Similarly, when N= —1, Lemma B.2 gives

[{mp, bod| <272 (142" |xp—xp|) ™,

as desired, since N= —1 implies n+ o >J, so that n/2> —a+n/2+¢/2 +
J—nife<2(n+a—J).

Remark B4. As we pointed out in Section 3, some care is sometimes
necessary when interpreting expressions like { f, b, ) for fe &#'/#. For this,
we briefly recall Peetre’s discussion on pp. 52-56 of [P3].

For fe#'/# and ¢ and ¥ satisfying (2.1)-(24), ¥, ¢, * Y, *f
converges in %', where as usual @,(x)=¢,(—x). Using standard estimates
(see e.g., [P3, p. 54; TR2, pp. 17-18]), if fe F*%, aeR, 0<p< + o0, and
0<g< + o0, we have

18%@, * s % £ 1l 1o < IO, o N1y % S ) o
L2 G % f |1,
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Hence, if || >a—n/p (or if |fl=a—n/p and ¢ < 1),

1

Y 10%0, %, = fllie<c | f g
It follows that there exists a sequence of polynomials { P, }%_, with degree
<L for all N, where L= [a—n/p], such that

g= hm ( Z @, * Y, *f+PN>

exists in &', By (2.4), if f, is any representative of the equivalence class
f+ 2, then supp(g —f,) = {0}, so g is another representative of this class.

Now suppose, for i=1, 2, that ¢', ¢', {Py}x_,, and g’ are as in the
previous paragraph. Since g' and g? represent the same equivalence class,
g' —g? is a polynomial. For i=1,2, denote @’ * ' xf by f.. If |B|> L,
and ne ¥, then

(g —g*)nd

~ lim < S fl4P— Y fop2, 1)Iﬂlaﬂn>.
N— oo v=—N v=—N
However, by (2.1)-(24), supp(S% (/1 —f2)") < {£11¢/<27¥*1). Let
e satisfy #(€)=1 for |£]<2 and #(£)=0 for |£]>4, and set
1o(x)=2"y(2"x) for ve Z. Then

Z(flf)XN*Z(fl ~f7)
“N+2

Z (X~N*fi_fo*fba

v=—N

by (2.2). Hence,

_N+2
g —gml=| Jim (T 0 unsi-gwnrin)]

v=~N
—N+2
< Tim 3l wllo (05l + 1% 3 N =) inll i =0,
N— o v=—N

for |B| > L, by the estimates above. Hence, deg(g' —g?) < L.

Thus, we see that for fe F;", the representative g above is well defined
modulo #,, the set of polynomials of degree <L =[a—n/p]. In other
words, by identifying the equivalence class f+ £ for fe F:‘," with its
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“canonical” representative g above, the elements of F;" can be regarded as
equivalence classes of tempered distributions modulo #,. (Note that for
a<n/p, the above discussion shows that if fe F;q, then >, , @, * ¥, *f
converges in &’ and represents fin %'/2. This is useful when considering
equivalences of F;" with other spaces; for example, the identification of
F® with H?, 0<p< +c0, is obtained by identifying feF)> with its
canonical representative 3, ., @, * {/, * . Note that in a certain sense, this
representative is chosen to be minimal at infinity.)

Note that if b, satisfies (3.7)-(3.8) for some M > J, then | x,b,(x) dx =0
for |y| < L. In this case, for fe F;q let {Py}%_, be any sequence of polyno-
mials of degree <L such that }*° ., &, %, « f+ P, converges in &%’ as
N> + 0. We define

fiboy= lim (T GoedieS+Pabo)

= Z <¢v*l//v *.f; bQ>a

velZ

whenever this last sum converges absolutely. In the case we are considering
in Theorem 3.7 and Lemma 3.8, we have @, *y,*f=3,p _2-5p¥p.
Hence,

Y K@ ¥, 2 £ bpdI <Y Ispl IK¥p, bo) ],

velZ P

and our argument in the proof of Lemma 3.8 guarantees absolute con-
vergence.

APPENDIX C: Proor oF ProrosiTioN 7.1
We break up the proof of Proposition 7.1 into two (known) lemmas. For

a pair of “quasi-normed Abelian groups” (X,, X;) and the E-functional
E(t, x; X), defined in Section 6, we set

/q
leﬂ,q;E=< Z (2v6/(1—0)E(2v’ x: )?))“9)"> )

veZ

We have

LemMa C.1. Let 0<60<1 and O0<qg<+o0. Then (Xo, X,)p,=
(XO’XI)B,q;E'
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Proof. This is an immediate consequence of the facts that K(¢)~ K (¢)
and that K (t)/t and E(s)/s are inverse (cf. (6.2)); making the change of
variables ¢t — E(s)/s we find

OO dr\'
bl (77Kt x Yo, X0

© ei—6 | gy ds\"
=Cﬁtl (‘[0 (S = )E(S, X5 XO,XI))q( - )_E-) .

This proves the lemma modulo the discretization, which is trivial since E
is nonincreasing. |

For more details we refer to [Be-L, Theorem 7.1.7; Ja-R-W, Section 2].

The second lemma requires a straightforward (known) modification of
the so-called Fundamental Lemma (see [Be-L]); we need it for the E- and
e-functionals instead of the standard K and J.

Lemma C2. Let 0<O<1 and O<g< +oo. Then

”x“&q;E ~ ”x“l?,q;e'

Proof. We give the proof in the normed case, with the usual modifica-
tions (in particular, the use of Lemma 3.10.2 in [Be-L1]) required for the
adaptation to the quasi-normed case.

Suppose first that x=3,_, x, with ¢(2", x,; X)< + oo for each veZ.
Then |x,[ly,<2" and e(2",x,; X)=|x,|y, Therefore, for each ueZz,
X421 o x,llx, < 2% and hence

E<2“,va;)7)< > x,
v v=u

o0

< Z ”xv”Xo: Z e(zv, XV;Y).
Xo v=yu

v=p

Consequently, using Minkowski’s inequality,

© _\(—8)q\ Vg
nxne,q;Es( ) (z QU= 00/ = (2, xv;X)) )

HEZ Nv=p

<C ”xl|0,q;e'

For the converse inequality, we have, for each ve Z, elements x,, and
X1,y such that x=xo, +x,,, IIx,,lx, <2 and |xo, || x, < cE(2", x; X). Let
uvle,v_xl,v—l =x0,v— 1 _x(),v' Then ”uv ”X] <2v+ 2V7l <2V+1s 50

e(2"* u,; X)=liu, o < Uxo,w— 1 iy + X0, XO<CE(2"*1, x; X),
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since E is nonincreasing. If || x|, . < + o0, then E(2’, x; X) is finite for all
v and lim, , . E(2", x; X)=0. This readily implies that x=3% u,. Letting
x,=u,_, we get the desired result. [

Of course, Proposition 7.1 immediately follows by combining these two
lemmas.

APPENDIX D. Proors oF THEOREM 9.1 AND LEMMA 9.14

We first consider the proof of Theorem 9.1. For this, we need the
following fact.

Lemma D.1. Suppose I(S)<UT), re Z, and M >n. For xeR", let

_ L7 Sk 2 I
gsrmAX)= ) <1+max(l(R),l(T))>

KR)=2-"
_ -M
x<1+__Bz_zL_9 _
max(/(R), I(S))
Then with [(R)=2"",

P 1(S)\"
ssnt)<ens (1 i) ™ (1w

Proof. We first note the following simple estimate. Suppose
27"=lR)<I(U). Then for all xeR",

lxe— x|\ ¥ (U)\"
> <1+ ,(U)> <cM,n<m>. (D.1)

(R)y=2""

This and the trivial fact (14 |xz—x,|/max({(R), (T)))"™<1 yield the
desired estimate in the case |x —x,| <100 \/}-’I max(/(R), /(T)). Suppose
now that |x — x| > 100 \/n max(/(R), (T)). We let

A,={R:I(R)=2"and |xg—x7| <} |x—x7|},
and
A={R:I(R)=2""and |xg— x7| = §|x—x7|}.

Note that for Re 4, we have |x —xz| >3 |x—x|. Write

gs.1. m(X)= z + Z =1+11.

ReA, ReAS
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We easily get the desired estimate for II from (D.1), since
_ -M __ —-M
1+ |xg —X7| Sc(l-&- |x —x7| )
max(/(R), (T)) max(/(R), [(T))
for Re AS. For Re A, we have
14 |x — xpg| M
max(/(R), I(S))

Ix— x4 ~M rmax(I(R), [(S))\"
max(/(R), l(T))> (max(l(R), l(T))) ’

<c<1+

since I((S)<UT), M>n, and |x — x| = cmax(/(R), (T)). However, using
(D.1) again, we have

lxp—xrl \ M (max(l(R),l(T))"
,(REZ_,<1+max(1(R),1(T))> < b I(R) )

Putting these estimates together, we obtain the result. |

The previous result is used to establish a technical estimate which we
present next. It is convenient to introduce some notation. Let
J=n/min(1, p, q). We set

[ (U2 ((P)\ ot 72+d—n
< (i) (1) }

WQP(ﬂ7 V1, V2) = Z wQR(ﬂ’ 71) @ gp(B, 72).

and

THEOREM D.2. Suppose B,y.,7y,>0, y,#7y., and y,+7,>28. Then

there exists a constant ¢=c, g, ,, Such that

WQP(ﬂ’ P15 72) € chP(ﬁ’ min(y;, 72))-

Proof. Let y=min(y,, y,). We first consider the case /(P)</(Q). We
may assume that « =0 since the terms /(R)* cancel in the sum defining
Wop leaving (1(Q)/I(P))*. We write

WQP(B’ Y1,Y2) = Z + Z + Z

HR<IP)<I(Q) HPYSHRISUIQ) HPYSUQ)<IR)
=14+ II+1IL
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IfI(R)=2"",/(P)=2"", and [(Q)=279, then

o |xQ—xR|>—J—ﬂ(l(R) (+y)/2+J—n
= 14 o=zl IR)
=1L (5 @)

r=p+1 NR)=2""

x(l N |xR_xP|>vJ~ﬁ(@)(n+vz)/2

I(P) I(P)
oo}

= 29n+ 312+ T —m)3 pln+12)/2 Z zfr(m+72)/2+J)gP,Q‘J+B)r(xP).
r=p+1

By using Lemma D.1, this can be estimated by

Ix —x | -J=-f
29+ 312+ J =)y —p(n—y2)/2 (1 +#> Y 2rtrazasom

10)
|xP_xQ| ~J—B @ (n+y)2+J—n
<C<” 1Q) ) (KQ)) ’

which is the required estimate. II can also be estimated by this quantity.
The proof of this is essentially the same, starting from the identity

q
H=211(("+w1)/2)+1—n)z—p((n+v2)/2+lfn) Z 2~r(v1—72)/2gP’Q,J+ﬂ,r(xP)’

r=p
and using Lemma D.1. Finally,

g—1
I =2 90+ 7120 —plln+y3)/2+J —n) Z 2r((?1+vz)/2+J)gP’QJ+BJ(xP).

r= —0o0

Here, using Lemma D.1 again,

Ix — X0l —J—8
8rou+pxp)<c (1 +=£_ 0!

I(R)
|xP—xQ|>“J_ﬁ L2
SC(” 10) <I(R)> ‘

Inserting this in the sum, we readily get

III<C<1 +|)c_,;(—Q_>)cQ_|>—1_ﬂ<%>1-ﬁ’

and this completes the proof in the case /(P) <I(Q).

The case {(Q)<I(P) follows by symmetry; we apply the previous case
with P and Q interchanged and « replaced by —o+J —n. Alternatively, we
may give a direct proof, virtually the same as the one just completed. ||
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Proof of Theorem 9.1. We prove (i) first. If A= {app}pp, B=
{bor}o ready?, then by definition there are &,,£,>0 such that
lagp| < cwgpley) and |byp| < cwpp(eg). Since wyp(e) is a nonincreasing
function of ¢, we may assume that ¢,>¢y. By the definitions, we have
wop(e) =wgple, £) and wyp(e) < wgp(P, y) if B, 7 <e. Hence, Theorem D.2
implies that

|(AB)QP| =

Z aQRbRP <c Z wQR(gA) wrp(€p)
R R

<C Z wQR(EB9 €4) Wrp(€p, Ep)
R

< Cwgplep, £5) = Cwgp(Ep).

This proves (i).

It remains to show (ii) Let A=(I—A). Suppose we have
|ZQP| < dwgp(e) for some ¢, 6 >0. Clearly, wgp(e) < wgplE, &) < wgp(E, £)
for any fixed 0 <& <¢. The proof of (i), with 4 replaced by 4, B by 4"~ 1,
e, by & and g5 by & shows that [(4"),p| <(6C)" wyplE, &) for any
nonnegative integer #n and some constant C independent of n and 6. For
a sufficiently small 6 >0 we have 8C <1, and, hence, the Neumann
series Y, 0 (A)" converges to (I—A4) '=4"'. Furthermore, (4~ ")y, <
(1-6C)"" wgp(€) and 4~ ' cad. |

We now turn to the proof of Lemma 9.14.

Proof of Lemma 9.14. To estimate |my(x)|, with [(Q)=2"9, write

Img(x) < Z wpole)l gp(x)| + Z wpgle) gp(x) =T +1L
IPYy< KQ) I(Py>1Q)

Then, in the notation of Lemma D.1, with /(R)=2"" replaced by
(P)y=2"",

w0 |X __xpl —J—¢€ l(P) (n+€)/2
I< (1 +—2 - ) (—)
,Eq ,(p,gﬂ IQ) I(Q)

—1/2 !x_xPI I
x | P /<1+-———1(P) )

o0
2 —pe/2
AL Z 2Pl gP,Q,J+E,p(x)
p=gq

—1/2 lx—xQ|>‘J~E
<clel (” 10) '
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Similarly, for II we have, by Lemma D.1,

g—1
—q(J +({e—n)/2 J+€/2)
27 remmm 50 2P g, 5 v sp(X)

. PRI
sclel <+ 10)
This yields
|mQ(x)|<C|Q|—‘/2(1+'il(ZQ—x)Q—')‘ (D2)

Now note that our proof of (D.2) shows that for |y| <[J—n],

f|x|?z lage!| |gp(x)] dx < + 0.
P

Therefore the vanishing moment condition

jxvmg(x) dx=0 if |y<[J—n]

is inherited by m,, from the corresponding condition on the g,’s.
It remains only to verify that

ImQ(x) - mQ(}’)l

e x—z—xo\ /¢
<C|o|~' 5/"|x—y|5 su <1+— . D3
rz|<|yp—x! Q) (D3)

To prove this, we may assume |x —y| </(Q), since otherwise (D.1) and the
trivial estimate |mg(x) —mg(p)| <|my(x)| + [my(p)| yield (D.3).
With |x — y] < (Q), we have

Imo(x)—mo(P)I < Y, wpoledlgo(x) +g4(»)])
(P)<|x—y|

+ > 0 () g p(x) — g p(¥)]

fx—pyI SUPYSUQ)
+ Z wpole)l gp(x) —gp(y)l
Q) <(P)
=MI+IV+V.
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To estimate III, let keZ be such that 2% <|x—y| <2 **! Then,
similarly to I above,

Z (UPQ(B)l gr(y)l

I(P)<|x—yl|
ly_xQ|>_J*E e
<c|l+ 24a(n +¢)/2 2—pef2
(1+°%) P
_ _ |y__x I —J—£
SCIQI 1/2 —¢/2n |x_y|e/2(1+ [ ,
Q)

which is dominated by the right-hand side of (D.3) since é < ¢/2. The same
estimate holds for 3, ) < . —,; @ pp(¢)| g#(x)|, and hence for III. For IV and
V we use the estimate

. —J—F
|gp(x)—gp() <|P| 2% |x—y|° sup (Hu)
lzl < [y — x| l(P)

s e~ xp\ 7
<[p|712= |x—y|"<1+ )

since |z| < |y—x|<UP) gives 1+ |x—z—xp|/(P)=1+|x—xp|/l(P)
With this, the estimates for IV and V are almost the same as for I and II.
For IV we obtain Y5 _ 7 27 ~*? which converges, since & <¢/2. For V we
get Y9_1  270*%27D which is better than in II. These estimates yield
(D.3) and complete the proof. |

APPENDIX E. Proors or LEMMA 10.8, THEOREMS 10.11-10.12,
AND ProrosiTION 10.14

Proof of Lemma 10.8. Since T, is a Fourier multiplier operator,
agp=<TYp, ¢y) =0 unless 3</Q)/I(P)<2. When ayp#0 we have, as in
Example 9.19, agp=(2n) "2 ¥+ h, (xo—xp), where [(P)=27%
(Q)=27", and h,(x)=(27)" 2"(m(2"-) x,(-)) ¥ (2'x). With these nota-
tions, we will estimate

v+ 1

I=sup sup Y

v NQ)=27Y p=v—1 {P)=2"H
gfl”l
X((1+2F |XQ—xp,) 2 |h;4v(xQ_xP)|)r'

Now, supp ﬁuvc {&:1E1<2#*1}, so hy, is of exponential type. By the
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proof of (2.11) in [Fr-J1] (essentially the Plancherel-Polya theorem), we
have

2" g —xp <c, ¥ (+I)H[  Ih dx,  (B1)

lezZ" Sp.0.1

for each L, where S, ,,={xo+2 #*I—x:x€ P}, and h,(x)= (mg,)™ (x).
For xe S, o,

(142 |xo—xp|)m 1L 4+2¢ | x =27 <1T4+2* x|+ ||
0
L2(1+2% [x(1+{d]), (E.2)

for |u—v| < 1. Substituting (E.1) and (E.2) into I, taking the sum on / out-
side, noting that {J» Sp o ,=R" for each Q and /, and picking L sufficiently
large, we obtain

v+ 1
I<SCsup 3 27700 f (142" |x])° |, (x)])" dx.

Vo ou=v—1

By a change of variables this last expression is dominated by the right-hand
side in Lemma 10.8. |

Remark E.l. Suppose more generally that @(¢), >0, is a nondecreas-
ing function with @(2¢) < CP(t), and @(0) = 1. In Corollary 10.10, we need
the analogue of Lemma 10.8 for &(|x|)"? in place of (1 + |x|)°. The proof
in this more general case is almost the same. We first notice that there
is a >0 such that &(|tx]) < C(1 + 1)’ ®(|x|), t>0. To estimate
D(2" |xp—xp|) we argue as in the proof above. For x€ S, ,,, we have

D(2" |xp—x) S CO2"x =) < CD((1 42" |x|)(1 +11]))
SC+ 1 D(1+2 |x]) < C(1+1)? D(2” |x]).

Now the proof can be continued as before.

Proof of Theorem 10.11. We first show that (ii) and (iii) are equivalent.
Assume that (ii) holds. Given a function v(x)e L" we define the sequence
t={tg}o by tp=[olv(x)dx. We have |||y==[M],, where M*
denotes the “dyadic” maximal operator (i.., the supremum being taken
over averages only over dyadic cubes). Since r> 1, this and the maximal
theorem imply that ref?*. Now (ii) provides us with a sequence
1={19}o and we define w(x)=sup, o [1Q] ™" 1ox0(x)|. Clearly, v(x) <
M%(x) <w(x), and ||w|, = el o < c 2] =< ¢ o] .. Furthermore,

580/93/1-12
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/¢
451 = (0017 (451 1o

Q
l/q
<C (z Q1" 12 |sgl)* rg) <C sl sy
[

This is (iii) except for the fact that we now have different weights on the
left and right. However, using the inductive argument in the proof of
Theorem A’ in [RdF2], this gives us the full statement.

The proof that (ii) is a consequence of (iii) is similar. Given the sequence
t={to}o We put v(x)=supy |10~ 1ox0(x)| and ty= ], w(x)dx, and
obtain

1/q

/g
(Z(|Q|-“/"*”2(As)g)" tQ) <C<Z(IQI’°‘/"“”2 |sQ|)qu)
Q Q

Again the argument in [RdF2] shows that this implies (ii).

That either (ii) or (iii) implies (i) is a simple argument based on duality.
For instance, let us assume (ii). Since (f-7')* ~1#~ (Remark 5.11), there
is a nonnegative sequence ¢ = {t,}o€ff*, |1 o =1, such that

143 e = 1121 —H V2 |(As)o | Hl o

rlq
<S¢ (Z (1Q1 7"~ 2| (As)g ) tQ> :

o

By (ii) there is a sequence 7= {1,}, so that this is dominated by

p/q plq
(X(IQI-“/"‘/2|(As)gn‘frg) sc(z(an/"‘“\sanrQ) .
Q

0
Using the duality once more and that f|tfy-<c yields

||As||§’;qsc 1|s||;’;q.

The converse implication, that (i) implies (ii) or (iii), is harder. Here we
simply rely on Section 3 of [RdF2]. According to the results there, we only
have to check that the lattice f o is g-convex, which is trivial.

Theorem 10.12 follows by the duality ()* ~/* and Theorem 10.11, cf.
[RdF2].

Proof of Proposition 10.14. The proof proceeds as the proof of
Theorem 2.2 with two minor modifications. First, instead of the usual
Fefferman-Stein vector-valued maximal inequality (Theorem A.1) we use a
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version for doubling measures wdx. We let M,, be the weighted Hardy—
Littlewood maximal operator,

M, () =supw@) | 1 £(1)Iwly)d:
xeQ
When w=1, this is just the ordinary maximal operator M. Now for
1<p< +o and 1 <g< 400, we have

()

For a proof of this, see [AJ; or Ja-T1].

The second modification we need is a variant of Lemma A.2. It is easy
to see that w satisfies the doubling condition if and only if there is an « >0
such that

SCpq
Lo(w dx)

(Z | fi19)e

LP(w dx)

w(Q) |O\*
m“(m)

for each cube Q and each subcube E < Q. Using this and weighted averages
in the proof of Lemma A.2, we again get a geometric series, which this time
can be summed as long as 4> nor/a. In this way we obtain the inequality

1/r
( ) |Spl’/(1+1(P)_‘pr—xgl)">

I(Py=2"H

1/a
<c (M( ¥ lspl”xp> (x))

HP)=2-+

for each xeQ with [(Q)=2"" and u<v. Here 0<a<r<+o and
A > nar/a. With these two modifications, we can proceed as in the proof of
Theorem 2.2 (there is no difficulty in adapting the proof, since 4 may be
taken arbitrarily large in Appendix A). ||

APPENDIX F: NOTATION

We generally define our notation as it is introduced, but for convenience
we list here our more commonly used conventions. The Fourier transform
£ of a function on R” is defined by

J@=] rea
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The inverse Fourier transform is denoted Y. Here n always refers to the
Euclidean dimension, which is fixed.

& = F(R") is the Schwartz space of rapidly decreasing test functions, %"
its dual, and ¥ ={fe¥ :0¢supp 7 }. Throughout, supp f denotes the
closed support of /. 2 is the space of all polynomials.

For ke Z" and ve Z, Q,, is the dyadic cube

Qu=1{(xy, . x,): k; <2x; <k, +1fori=1,..,n}.

We let x,=27"k (for Q=0Q,) be the “lower left corner” of Q. The
sidelength of any cube Q is denoted /(Q), and for r>0, rQ is the cube
concentric with @ having sidelength rl(Q). We often let Q represent an
index set, as in Y, or {-},. This means that the index set is the collection
of all dyadic cubes in R". For veZ, f, is the 2 '-dilate of f, ie,
f{x)=2""f(2"x). §o is the L*-normalized characteristic function of Q, ie.,
To(x)=101 7" if xe Q and F,(x) =0 otherwise.

The pairing (f, g, is always linear in f and conjugate linear in g. In the
case when f is a distribution and g is a test function, this means that
(f,8>=/1(g) As usual, {f,g>={fg when f, ge L*.

For xeR, we let [x] be the greatest integer in x (the integer satisfying
x—1l<[x]<x), x*=x—[x], and x, =max(x, 0). In Section 3 we intro-
duce the quantities J, N, and M, which are referred to frequently. Here

J=n/min(1, p, q), N=max([J—-n—a], —1),

and M is some fixed real number greater than J. (Only N is necessarily an
integer.)

We use the standard multi-index notation. For y=(y, .., 7,), where
y;€Z, y;,20 for each i=1,..,n, we have x"=x}'...x¥ ¢'=
a"/0xit---amfox ) yl=y!---p,), and [y| =y, + - +7,.

In general, the notation || f ||y~ || f ||y (or just ||| x= |-l y) means that
the quasi-norms | -||x and |||, are equivalent; i.c., there exists a constant
csuch that ¢ ™' || flly < || f ly<c |l fllx for all fwith || f |l x or || f ||y finite.
As usual, ¢ and C will in general represent various constants at various
times.

The weighted Lebesgue space L”(wdx) is equipped with the norm
([ | f(x)]” w(x) dx)"”. For a measurable subset E < R", |E]| is the Lebesgue
measure of E.
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