THE ALEXANDER POLYNOMIAL OF A TRIVALENT SPATIAL GRAPH AND ITS MOY-TYPE RELATIONS

YUANYUAN BAO (THE UNIVERSITY OF TOKYO)

Unlike the Alexander polynomial of a knot, there is no standard definition for the Alexander polynomial of a spatial graph. In this talk, we study a version of it. Let G be an oriented trivalent graph without source or sink embedded in S^3 , and c a positive balanced coloring of G. We define a topological invariant $\Delta_{(G,c)}(t)$ for G and study five interpretations for it. The contents of the talk come from our preprints [3, 2].

Here are five interpretations.

(i) The balanced coloring c of G naturally defines a homomorphism

$$\phi_c : \pi_1(S^3 \backslash G, x_0) \to H_1(S^3 \backslash G; \mathbb{Z}) \to \mathbb{Z} \langle t \rangle$$
oriented meridian of $e \mapsto t^{c(e)}$,

where $\mathbb{Z}\langle t \rangle$ is the abelian group generated by t. Let $X = S^3 \backslash G$. Then $\ker(\phi_c)$ corresponds to a regular covering space of X, which we call $p : \widetilde{X} \to X$. Consider the $\mathbb{Z}[t^{-1}, t]$ -module $H_1(\widetilde{X}, p^{-1}(\partial_{in}(X)))$, where $\partial_{in}(X) := \bigcup_{v \in V} \partial_{in}(v) \subset \partial(X)$ and $\partial_{in}(v)$ is a subsurface around vertex v bounded by meridians of the edges pointing toward v and the "meridian" circle around v. The polynomial $\Delta_{(G,c)}(t)$ is defined to be the 0-th characteristic polynomial of a presentation matrix of the module. It is a topological invariant of G modulo $\pm \mathbb{Z}\langle t^{1/2} \rangle$.

- (ii) We studied the Heegaard Floer homology for a balanced bipartite graph with a balanced orientation ([1]). If we deform a trivalent graph into a bipartite graph by inserting an edge on each vertex, the Euler characteristic of the Heegaard Floer homology for the resulting bipartite graph is $\Delta_{(G,c)}(t)$.
- (iii) Kauffman ([4]) studied a state sum model for the Alexander polynomial of a knot, where a state is a one-one correspondence between the set of crossings and the set of unmarked regions on a knot diagram. We extend his idea and provide a state sum model for $\Delta_{(G,c)}(t)$, where new types of crossings and regions around a vertex are introduced.
- (iv) $\Delta_{(G,c)}(t)$ satisfies a series of relations, which we call MOY-type relations. These relations are inspired by Murakami-Ohtsuki-Yamada's relations in [5], where they provided a graphical definition for the $U_q(\mathfrak{sl}_n)$ -polynomial invariants of a link for all $n \geq 2$. We show that these relations also provide a graphical definition for the Alexander polynomial of a link, thus extending MOY's graphical calculus to the case n = 0. In addition, these relations characterize $\Delta_{(G,c)}(t)$ for a framed trivalent graph G.
- (v) Viro [6] defined a functor from the category of colored framed trivalent graph to the category of finite dimensional modules over the q-deformed universal enveloping algebra $U_q(gl(1|1))$, and constructed the gl(1|1)-Alexander polynomial

of a graph from the functor. We show that Viro's Alexander polynomial satisfies an adapted version of MOY-type relations, and thus coincides with $\Delta_{(G,c)}$.

References

- [1] Y. BAO, Heegaard floer homology for embedded bipartite graphs, arXiv:1401.6608v3, (2016).
- [2] <u>, A topological interpretation of Viro's gl(1|1)-Alexander polynomial of a graph, arXiv:1801.06301, (2018).</u>
- [3] Y. BAO AND Z. WU, The Alexander polynomial for a balanced bipartite graph and its MOY-type relations, arXiv:1708.09092v1, (2017).
- [4] L. H. KAUFFMAN, Formal knot theory, vol. 30 of Mathematical Notes, Princeton University Press, Princeton, NJ, 1983.
- [5] H. MURAKAMI, T. OHTSUKI, AND S. YAMADA, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2), 44 (1998), pp. 325–360.
- [6] O. Y. VIRO, Quantum relatives of the Alexander polynomial, Algebra i Analiz, 18 (2006), pp. 63– 157.