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The IA-automorphism group IAn of Fn

Fn = hx1, . . . , xni: free group of rank n

Aut(Fn): the automorphism group of Fn

Fn ⇣ Zn: the abelianization map
IAn = ker(Aut(Fn) ⇣ GL(n,Z)): the IA-automorphism group of Fn

1! IAn ! Aut(Fn)! GL(n,Z)! 1
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Torelli groups of surfaces

⌃g ,1: a surface of genus g with one boundary component
Mg ,1 = Homeo+(⌃g ,1)/isotopy: the mapping class group of ⌃g ,1

Mg ,1 acts on H1(⌃g ,1,Z) ⇠= Z�2g

Ig ,1 = ker(Mg ,1 ⇣ Sp(2g ,Z)): the Torelli group of ⌃g ,1

Then we have

1 // Ig ,1 //
� _

✏✏

Mg ,1
//

� _

✏✏

Sp(2g ,Z) //
� _

✏✏

1

1 // IA2g
// Aut(F2g ) // GL(2g ,Z) // 1.
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The stable (co)homology of Aut(Fn) and GL(n,Z). I

Fn ,! Fn+1, xi 7! xi (1  i  n)

induces

· · ·! H⇤(Aut(Fn),Q)! H⇤(Aut(Fn+1),Q)! · · ·

Hatcher–Vogtmann:

H⇤(Aut(Fn),Q) stabilizes,

i.e., H⇤(Aut(Fn),Q)
⇠=�! H⇤(Aut(Fn+1),Q) for n� ⇤.

Galatius:

lim�!
n

H⇤(Aut(Fn),Q) ⇠=

(
Q ⇤ = 0

0 ⇤ � 1
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The stable (co)homology of Aut(Fn) and GL(n,Z). II

GL(n,Z) ,! GL(n + 1,Z), A 7! A� 1

induces

· · · H
⇤(GL(n,Z),Q) H

⇤(GL(n + 1,Z),Q) · · ·

Borel:

H
⇤(GL(n,Z),Q) stabilizes,

lim �
n

H
⇤(GL(n,Z),Q) ⇠=

^
Q
(x1, x2, . . . ), deg xi = 4i + 1
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The first homology of IAn. I

1! IAn ! Aut(Fn)! GL(n,Z)! 1

H⇤(IAn,Q): a GL(n,Z)-representation

H := H1(Fn,Q) ⇠= Q�n: the standard GL(n,Z)-representation

Theorem (Formanek 1990, Cohen–Pakianathan, Farb, Kawazumi 2005)

The Johnson homomorphism

⌧ : IAn ! Hom(H,
^2

H)

induces an isomorphism of GL(n,Z)-representations

⌧ : H1(IAn,Q)
⇠=�! Hom(H,

^2
H).
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The first homology of IAn. II

H1(IAn,Q) ⇠= Hom(H,
^2

H) ⇠= H
⇤ ⌦

^2
H,

dimQ H1(IAn,Q) =
n
2(n � 1)

2

H1(IAn,Q) does not stabilize as a vector space
but stabilizes as a GL(n,Z)-representation.
(cf. representation stable)

10 / 24



Introduction The (co)homology of IAn The stable Albanese homology of IAn

The second homology of IAn

Theorem (Bestvina–Bux–Margalit 2007)

For n = 3, H2(IA3,Q) is infinite dimensional.

For n � 4, it is not known whether H2(IAn,Q) is finite dimensional.

Theorem (Day–Putman 2017)

H2(IAn,Q) is finitely generated as a GL(n,Z)-representation.

11 / 24



Introduction The (co)homology of IAn The stable Albanese homology of IAn

Algebraic GL(n,Z)-representations. I

A finite-dimensional GL(n,Z)-representation (⇢,V ) is algebraic
if the group homomorphism ⇢ : GL(n,Z)! GL(V ) is described by
rational functions on entries of matrices of GL(n,Z).

Algebraic GL(n,Z)-representations have the following properties

Completely reducible;
For any algebraic GL(n,Z)-rep. V , we have V ⇠=

L
� V

�m�

�

{irreps V�} ⇠= {bipartitions � = (�+,��): pairs of partitions}
V� is realized in H

⌦p ⌦ (H⇤)⌦q
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Algebraic GL(n,Z)-representations. II

For example,

H = H1(Fn,Q) = V1,0,

H1(IAn,Q) ⇠= Hom(H,
^2

H) ⇠= H
⇤ ⌦

^2
H

⇠= V0,1 ⌦ V12,0
⇠= V12,1 � V1,0.

For n� ⇤, H⇤(IAn,Q) is conjectured to be algebraic and moreover
representation-stable,
i.e., H⇤(IAn,Q) ⇠= V

�m�

� , where m� is independent of n.
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Albanese homology of IAn

U := H1(IAn,Q) ⇠= Hom(H,
V2

H)

The Albanese homology of IAn is defined by

H
A
⇤ (IAn,Q) = im(H⇤(IAn,Q)

⌧⇤�! H⇤(U,Q)).

We have

⌧⇤ : H⇤(IAn,Q) ⇣ H
A
⇤ (IAn,Q) ,! H⇤(U,Q) ⇠=

^⇤
U.

The Albanese homology of IAn is algebraic.

H
A
1 (IAn,Q) ⇠= H1(IAn,Q).

H
A
2 (IAn,Q) is determined by [Pettet 2005].

H
A
i (IAn,Q) is determined for n � 3i by [K. 2024].

14 / 24

: algebraic

~

gebraic



Introduction The (co)homology of IAn The stable Albanese homology of IAn

The Albanese cohomology of IAn

The Albanese cohomology of IAn is defined by

H
⇤
A(IAn,Q) = im(H⇤(U,Q)

⌧⇤�! H
⇤(IAn,Q)).

We have

⌧⇤ : H⇤(U,Q) ⇠=
^⇤

(U⇤) ⇣ H
⇤
A(IAn,Q) ,! H

⇤(IAn,Q).

The Albanese cohomology of IAn is dual to the Albanese homology:

H
⇤
A(IAn,Q) ⇠= H

A
⇤ (IAn,Q)⇤.
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The stable rational cohomology of IAn

Habiro–K. proposed a conjectural structure of H⇤(IAn,Q)
for n� ⇤.

Conjecture (Habiro–K. 2022)

We have

H
⇤(IAn,Q) ⇠= H

⇤
A(IAn,Q)⌦ H

⇤(IAn,Q)GL(n,Z),

H
⇤(IAn,Q)GL(n,Z) ⇠= Q[y1, · · · ], deg yi = 4i

for n� ⇤.

We proved this conjecture under the assumption that H⇤(IAn,Q) is
stably algebraic.

cf. [Lindell 2024]
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The stable Albanese homology of IAn
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The stable Albanese homology of IAn

The main theorem is the following.

Theorem (K. 2024)

We have an isomorphism of GL(n,Q)-representations

Fi : H
A
i (IAn,Q)

⇠=�!Wi

for n � 3i .

The Albanese homology of IAn is representation-stable in n � 3i .
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Traceless part W⇤. I

U⇤ :=
L

i�1 Ui , Ui = Hom(H,
Vi+1

H)
S
⇤(U⇤): the graded-symmetric algebra of U⇤

W⇤ := eS⇤(U⇤): the traceless part of S⇤(U⇤)

For example,

S
⇤(U⇤)1 = U1 = W1

⇠= V12,1 � V1,0,

S
⇤(U⇤)2 = U2 � (U1 ^ U1)

⇠= V14,12 � V212,2 � V22,12 � V
�3
13,1 � V

�2
21,1 � V

�4
12,0,

W2 = U2 � (U1 ê U1)

⇠= V14,12 � V212,2 � V22,12 � V
�2
13,1 � V21,1 � V

�2
12,0.
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Traceless part W⇤. II

The traceless part Tp,q of Hp,q = H
⌦p ⌦ (H⇤)⌦q is defined by

Tp,q =
\

k2{1,...,p}
l2{1,...,q}

ker(ck,l : H
p,q ! H

p�1,q�1),

where ck,l denotes the contraction map for the k-th component of
H

⌦p and the l-th component of (H⇤)⌦q.

The traceless tensor product V�e⌦Vµ is defined by

V�e⌦Vµ = (V� ⌦ Vµ) \ T|�+|+|µ+|,|��|+|µ�|

for � = (�+,��), µ = (µ+, µ�).
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Traceless part W⇤. III

Graphical interpretation:

S
⇤(U⇤)1 = U1 = W1

S
⇤(U⇤)2 = U2 � (U1 ^ U1), W2 = U2 � (U1 ê U1)
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The lower bound of the Albanese homology of IAn

To detect W⇤, we constructed abelian cycles.

�: an i-tuple of mutually commutative elements of IAn

� : Zi ! IAn: the group homomorphism induced by �

The abelian cycle corresponding to � is the image of the
fundamental class under

�⇤ : Hi (Zi ,Q)(⇠= Q)! Hi (IAn,Q).

Theorem (K. 2022)

We have a morphism of GL(n,Q)-representations

Fi : H
A
i (IAn,Q)! S

⇤(U⇤)i

such that Fi (HA
i (IAn,Q)) �Wi for n � 3i .
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The upper bound of the Albanese (co)homology of IAn

The Johnson homomorphism ⌧ : IAn ! U induces a surjective
GL(n,Q)-equivariant morphism of graded algebras

⌧⇤ : H⇤(U,Q)/hR2i⇣ H
⇤
A(IAn,Q),

where R2 := ker(⌧⇤ : H2(U,Q) ⇣ H
2
A(IAn,Q)).

Theorem (Pettet 2005)

For n � 3, we have

R2
⇠= V1,21 � V0,12 .
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Graphical interpretations

We need to prove that (Wi )⇤ ⇣ (H⇤(U,Q)/hR2i)i .
CP�

0
: the wheeled PROP constructed in [Kawazumi–Vespa]

Proposition (K.)

For n � max(3i , p + q), we have

[(Wi )
⇤ ⌦ H

p,q]GL(n,Z) ⇠= CP�
0
(p, q)i .

Proposition (Lindell 2024)

We have morphisms of graded vector spaces

CP�
0
(p, q) ⇣ [(H⇤(U,Q)/hR2i)⌦ H

p,q]GL(n,Z).

Therefore, we have for n � 3i ,

[(Wi )
⇤⌦H2i ,i ]GL(n,Z) ⇠= CP�

0
(2i , i)i ⇣ [(H⇤(U,Q)/hR2i)i⌦H2i ,i ]GL(n,Z).
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