The (co)homology of IA_n

イロト イタト イヨト イヨト

1/24

On the stable (co)homology of the IA-automorphism groups of free groups

Mai Katada (Kyushu University)

September 19, 2024 岡潔女性数学者セミナー

- Introduction
- The (co)homology of the IA-automorphism group IA_n
- The structure of the stable Albanese homology of IA_n

Introduction

<ロト < 合 > < 言 > < 言 > こ の < で 3/24

イロト イポト イヨト イヨト 一日

4 / 24

The IA-automorphism group IA_n of F_n

$$F_n = \langle x_1, \dots, x_n \rangle$$
: free group of rank n
Aut (F_n) : the automorphism group of F_n

$$F_n \twoheadrightarrow \mathbb{Z}^n$$
: the abelianization map
 $IA_n = ker(Aut(F_n) \twoheadrightarrow GL(n, \mathbb{Z}))$: the **IA-automorphism group** of F_n

$$1 \to \mathsf{IA}_n \to \mathsf{Aut}(F_n) \to \mathsf{GL}(n,\mathbb{Z}) \to 1$$

The (co)homology of IA

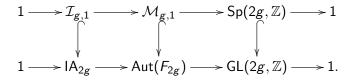
The stable Albanese homology of IA_n

Torelli groups of surfaces

 $\Sigma_{g,1}$: a surface of genus g with one boundary component $\mathcal{M}_{g,1} = \text{Homeo}_+(\Sigma_{g,1})/\text{isotopy}$: the mapping class group of $\Sigma_{g,1}$

$$\begin{split} \mathcal{M}_{g,1} \text{ acts on } & H_1(\Sigma_{g,1},\mathbb{Z}) \cong \mathbb{Z}^{\oplus 2g} \\ \mathcal{I}_{g,1} = \ker(\mathcal{M}_{g,1} \twoheadrightarrow \mathsf{Sp}(2g,\mathbb{Z})): \text{ the } \mathbf{Torelli \ group \ of } \Sigma_{g,1} \end{split}$$

Then we have



The stable (co)homology of $Aut(F_n)$ and $GL(n,\mathbb{Z})$. I

$$F_n \hookrightarrow F_{n+1}, \quad x_i \mapsto x_i \quad (1 \le i \le n)$$

induces

$$\cdots \rightarrow H_*(\operatorname{Aut}(F_n), \mathbb{Q}) \rightarrow H_*(\operatorname{Aut}(F_{n+1}), \mathbb{Q}) \rightarrow \cdots$$

Hatcher–Vogtmann:

 $H_*(\operatorname{Aut}(F_n), \mathbb{Q})$ stabilizes, i.e., $H_*(\operatorname{Aut}(F_n), \mathbb{Q}) \xrightarrow{\cong} H_*(\operatorname{Aut}(F_{n+1}), \mathbb{Q})$ for $n \gg *$.

Galatius:

$$\varinjlim_{n} H_{*}(\operatorname{Aut}(F_{n}), \mathbb{Q}) \cong \begin{cases} \mathbb{Q} & * = 0 \\ 0 & * \ge 1 \end{cases}$$

6 / 24

The stable (co)homology of $Aut(F_n)$ and $GL(n,\mathbb{Z})$. II

$$\mathsf{GL}(n,\mathbb{Z}) \hookrightarrow \mathsf{GL}(n+1,\mathbb{Z}), \quad A \mapsto A \oplus 1$$

induces

$$\cdots \leftarrow H^*(\mathsf{GL}(n,\mathbb{Z}),\mathbb{Q}) \leftarrow H^*(\mathsf{GL}(n+1,\mathbb{Z}),\mathbb{Q}) \leftarrow \cdots$$

Borel:

 $H^*(GL(n,\mathbb{Z}),\mathbb{Q})$ stabilizes,

$$\lim_{\stackrel{\leftarrow}{n}} H^*(\mathrm{GL}(n,\mathbb{Z}),\mathbb{Q}) \cong \bigwedge_{\mathbb{Q}} (x_1,x_2,\dots), \quad \deg x_i = 4i+1$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The (co)homology of IA_n

<ロト < 部 > < 言 > < 言 > 言 の < で 8/24

The first homology of IA_n . I

$$1 \to \mathsf{IA}_n \to \mathsf{Aut}(F_n) \to \mathsf{GL}(n,\mathbb{Z}) \to 1$$

 $H_*(IA_n, \mathbb{Q})$: a $GL(n, \mathbb{Z})$ -representation

 $H := H_1(F_n, \mathbb{Q}) \cong \mathbb{Q}^{\oplus n}$: the standard $GL(n, \mathbb{Z})$ -representation

Theorem (Formanek 1990, Cohen–Pakianathan, Farb, Kawazumi 2005)

The Johnson homomorphism

$$\tau: \mathsf{IA}_n \to \mathsf{Hom}(H, \bigwedge^2 H)$$

induces an isomorphism of $GL(n, \mathbb{Z})$ -representations

$$\tau: H_1(\mathsf{IA}_n, \mathbb{Q}) \xrightarrow{\cong} \mathsf{Hom}(H, \bigwedge^2 H).$$

The first homology of IA_n . II

$$H_1(\mathsf{IA}_n, \mathbb{Q}) \cong \mathsf{Hom}(H, \bigwedge^2 H) \cong H^* \otimes \bigwedge^2 H,$$
$$\dim_{\mathbb{Q}} H_1(\mathsf{IA}_n, \mathbb{Q}) = \frac{n^2(n-1)}{2}$$

 $H_1(IA_n, \mathbb{Q})$ does not stabilize as a vector space but stabilizes as a $GL(n, \mathbb{Z})$ -representation. (cf. representation stable)

The second homology of IA_n

Theorem (Bestvina–Bux–Margalit 2007)

For n = 3, $H_2(IA_3, \mathbb{Q})$ is infinite dimensional.

For $n \ge 4$, it is not known whether $H_2(IA_n, \mathbb{Q})$ is finite dimensional.

Theorem (Day–Putman 2017)

 $H_2(IA_n, \mathbb{Q})$ is finitely generated as a $GL(n, \mathbb{Z})$ -representation.

Algebraic $GL(n, \mathbb{Z})$ -representations. I

A finite-dimensional $GL(n, \mathbb{Z})$ -representation (ρ, V) is **algebraic** if the group homomorphism $\rho : GL(n, \mathbb{Z}) \to GL(V)$ is described by rational functions on entries of matrices of $GL(n, \mathbb{Z})$.

Algebraic $GL(n, \mathbb{Z})$ -representations have the following properties

• Completely reducible;

For any algebraic $\operatorname{GL}(n,\mathbb{Z})$ -rep. V, we have $V\cong \bigoplus_{\lambda} V_{\lambda}^{\oplus m_{\underline{\lambda}}}$

• {irreps $V_{\underline{\lambda}}$ } \cong {bipartitions $\underline{\lambda} = (\lambda^+, \lambda^-)$: pairs of partitions} $V_{\underline{\lambda}}$ is realized in $H^{\otimes p} \otimes (H^*)^{\otimes q}$ ex. partition of 2

(2)

 $\overline{(1,1)}$

Algebraic $GL(n, \mathbb{Z})$ -representations. II

For example,

$$H = H_1(F_n, \mathbb{Q}) = V_{1,0},$$

$$H_1(\mathsf{IA}_n, \mathbb{Q}) \cong \mathsf{Hom}(H, \bigwedge^2 H) \cong H^* \otimes \bigwedge^2 H$$

$$\cong V_{0,1} \otimes V_{1^2,0} \cong V_{1^2,1} \oplus V_{1,0}.$$

$$\bigcup \ \ \textcircled{P} \ \ \underbrace{\textcircled{P}} \ \ \underbrace{P} \ \ \underbrace{\textcircled{P}} \ \ \underbrace{P} \ \underbrace{P} \ \ \underbrace{P} \ \underbrace{$$

For $n \gg *$, $H_*(IA_n, \mathbb{Q})$ is conjectured to be algebraic and moreover **representation-stable**,

i.e., $H_*(IA_n, \mathbb{Q}) \cong \mathbb{A}^{\oplus m_{\underline{\lambda}}}$, where $m_{\underline{\lambda}}$ is independent of n.

The (co)homology of IA_n

The stable Albanese homology of IA_n

Albanese homology of IA_n

$$U:=H_1(\mathsf{IA}_n,\mathbb{Q})\cong\mathsf{Hom}(H,igwedge^2H)$$
 : algebraic

The **Albanese homology** of IA_n is defined by

$$H^{\mathcal{A}}_{*}(\mathrm{IA}_{n},\mathbb{Q}) = \mathrm{im}(H_{*}(\mathrm{IA}_{n},\mathbb{Q}) \xrightarrow{\tau_{*}} H_{*}(U,\mathbb{Q})).$$

We have

$$\tau_*: H_*(\mathsf{IA}_n, \mathbb{Q}) \twoheadrightarrow H^{\mathcal{A}}_*(\mathsf{IA}_n, \mathbb{Q}) \hookrightarrow H_*(U, \mathbb{Q}) \cong \underbrace{\bigwedge_{\mathsf{algebraic}}^* U}_{\mathsf{algebraic}}.$$

The Albanese homology of IA_n is algebraic.

- $H_1^A(IA_n, \mathbb{Q}) \cong H_1(IA_n, \mathbb{Q}).$
- $H_2^A(IA_n, \mathbb{Q})$ is determined by [Pettet 2005].
- $H_i^A(IA_n, \mathbb{Q})$ is determined for $n \ge 3i$ by [K. 2024].

The Albanese cohomology of IA_n

The **Albanese cohomology** of IA_n is defined by

$$H^*_A(IA_n, \mathbb{Q}) = \operatorname{im}(H^*(U, \mathbb{Q}) \xrightarrow{\tau^*} H^*(IA_n, \mathbb{Q})).$$

We have

$$\tau^*: H^*(U,\mathbb{Q}) \cong \bigwedge^*(U^*) \twoheadrightarrow H^*_A(\mathsf{IA}_n,\mathbb{Q}) \hookrightarrow H^*(\mathsf{IA}_n,\mathbb{Q}).$$

The Albanese cohomology of IA_n is dual to the Albanese homology:

$$H^*_A(IA_n,\mathbb{Q})\cong H^A_*(IA_n,\mathbb{Q})^*.$$

The stable rational cohomology of IA_n

Habiro–K. proposed a conjectural structure of $H^*(IA_n, \mathbb{Q})$ for $n \gg *$.

Conjecture (Habiro-K. 2022)

We have

$$\begin{split} H^*(\mathrm{IA}_n, \mathbb{Q}) &\cong H^*_A(\mathrm{IA}_n, \mathbb{Q}) \otimes H^*(\mathrm{IA}_n, \mathbb{Q})^{\mathrm{GL}(n, \mathbb{Z})}, \\ H^*(\mathrm{IA}_n, \mathbb{Q})^{\mathrm{GL}(n, \mathbb{Z})} &\cong \mathbb{Q}[y_1, \cdots], \quad \deg y_i = 4i \end{split}$$

for $n \gg *$.

We proved this conjecture under the assumption that $H^*(IA_n, \mathbb{Q})$ is stably algebraic.

cf. [Lindell 2024]

The stable Albanese homology of IA_n

The stable Albanese homology of IA_n

The main theorem is the following.

Theorem (K. 2024)

We have an isomorphism of $GL(n, \mathbb{Q})$ -representations

$$F_i: H_i^A(\mathsf{IA}_n, \mathbb{Q}) \xrightarrow{\cong} W_i$$

for $n \geq 3i$.

The Albanese homology of IA_n is **representation-stable** in $n \ge 3i$.

The (co)homology of IA

The stable Albanese homology of IA_n

Traceless part W_* . I

$$U_* := \bigoplus_{i \ge 1} U_i, \quad U_i = \operatorname{Hom}(H, \bigwedge^{i+1} H)$$

 $S^*(U_*)$: the graded-symmetric algebra of U_*
 $W_* := \widetilde{S}^*(U_*)$: the **traceless part** of $S^*(U_*)$

For example,

$$\begin{split} S^*(U_*)_1 &= U_1 = \mathcal{W}_1 \\ &\cong V_{1^2,1} \oplus V_{1,0}, \\ S^*(U_*)_2 &= U_2 \oplus (U_1 \wedge U_1) \\ &\cong V_{1^4,1^2} \oplus V_{21^2,2} \oplus V_{2^2,1^2} \oplus V_{1^3,1}^{\oplus 3} \oplus V_{21,1}^{\oplus 2} \oplus V_{1^2,0}^{\oplus 4}, \\ \mathcal{W}_2 &= U_2 \oplus (U_1 \wedge U_1) \\ &\cong V_{1^4,1^2} \oplus V_{21^2,2} \oplus V_{2^2,1^2} \oplus V_{1^3,1}^{\oplus 2} \oplus V_{21,1} \oplus V_{1^2,0}^{\oplus 2}. \end{split}$$

Traceless part W_* . II

The traceless part $T_{p,q}$ of $H^{p,q} = H^{\otimes p} \otimes (H^*)^{\otimes q}$ is defined by

$$T_{p,q} = \bigcap_{\substack{k \in \{1,...,p\}\\l \in \{1,...,q\}}} \ker(c_{k,l} : H^{p,q} \to H^{p-1,q-1}),$$

where $c_{k,l}$ denotes the contraction map for the k-th component of $H^{\otimes p}$ and the *l*-th component of $(H^*)^{\otimes q}$.

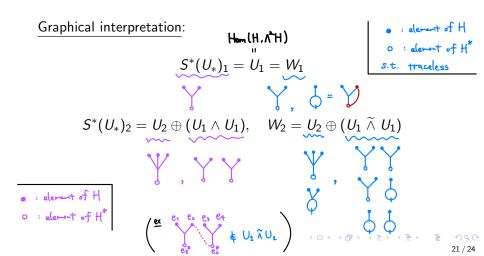
The traceless tensor product $V_{\underline{\lambda}} \widetilde{\otimes} V_{\mu}$ is defined by

$$V_{\underline{\lambda}} \widetilde{\otimes} V_{\underline{\mu}} = (V_{\underline{\lambda}} \otimes V_{\underline{\mu}}) \cap T_{|\lambda^+| + |\mu^+|, |\lambda^-| + |\mu^-|}$$

for $\underline{\lambda} = (\lambda^+, \lambda^-), \underline{\mu} = (\mu^+, \mu^-).$

Introduction

Traceless part W_* . III



The lower bound of the Albanese homology of IA_n

To detect W_* , we constructed **abelian cycles**.

 ϕ : an *i*-tuple of mutually commutative elements of IA_n $\Phi : \mathbb{Z}^i \to IA_n$: the group homomorphism induced by ϕ

The abelian cycle corresponding to ϕ is the image of the fundamental class under

$$\Phi_*: H_i(\mathbb{Z}^i, \mathbb{Q}) \cong \mathbb{Q}) \to H_i(\mathsf{IA}_n, \mathbb{Q}).$$

Theorem (K. 2022)

We have a morphism of $GL(n, \mathbb{Q})$ -representations

$$F_i: H_i^A(IA_n, \mathbb{Q}) \to S^*(U_*)_i$$

such that $F_i(H_i^A(IA_n, \mathbb{Q})) \supset W_i$ for $n \ge 3i$.

The upper bound of the Albanese (co)homology of IA_n

The Johnson homomorphism $\tau : IA_n \to U$ induces a surjective $GL(n, \mathbb{Q})$ -equivariant morphism of graded algebras

 $au^*: H^*(U,\mathbb{Q})/\langle R_2
angle woheadrightarrow H^*_A(\mathsf{IA}_n,\mathbb{Q}),$

where $R_2 := \ker(\tau^* : H^2(U, \mathbb{Q}) \twoheadrightarrow H^2_A(IA_n, \mathbb{Q})).$

Theorem (Pettet 2005)

For $n \geq 3$, we have

 $R_2 \cong V_{1,21} \oplus V_{0,1^2}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The (co)homology of IA_n

The stable Albanese homology of IA_n

Graphical interpretations

We need to prove that $(W_i)^* \rightarrow (H^*(U, \mathbb{Q})/\langle R_2 \rangle)_i$. $\mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}$: the wheeled PROP constructed in [Kawazumi–Vespa]

Proposition (K.)

For
$$n \ge \max(3i, p+q)$$
, we have

$$\bigvee \bigotimes [(W_i)^* \otimes H^{p,q}]^{\operatorname{GL}(n,\mathbb{Z})} \cong \mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}(p,q)_i.$$

Proposition (Lindell 2024)

We have morphisms of graded vector spaces

$$\mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}(p,q) \twoheadrightarrow [\overline{(H^*(U,\mathbb{Q})/\langle R_2 \rangle)} \otimes H^{p,q}]^{\mathsf{GL}(n,\mathbb{Z})}.$$

Therefore, we have for $n \ge 3i$, $[(W_i)^* \otimes H^{2i,i}]^{\operatorname{GL}(n,\mathbb{Z})} \cong \mathcal{C}_{\mathcal{P}_0^{\circlearrowright}}(2i,i)_i \twoheadrightarrow [(H^*(U,\mathbb{Q})/\langle R_2 \rangle)_i \otimes H^{2i,i}]^{\operatorname{GL}(n,\mathbb{Z})}.$