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We consider the flow of compressible nematic liquid crystal in an infinite layer, which
is governed by the following system based on simplified Ericksen-Leslie system:

∂tρ+ div (ρu) = 0, (1)

∂t(ρu) + div (ρu⊗ u) = div SC , (2)

∂t(ρθ) + div (ρθu) + div q = SC : ∇u, (3)

∂td+ u · ∇d = τ∗(∆d+ |∇d|2d). (4)

Here the unknown variables ρ, u, θ denote the density, velocity and temperature of
fluid, respectively, d the orientation field for averaged macroscopic molecular directions
of nematic liquid crystal, and hence, |d| = 1. q is the heat flux given by q = −κ∗∇θ.
Moreover, SC = SN −η∗(∇d⊙∇d− 1

2 |∇d|2I)−P I, where P = P (ρ, θ) is pressure which
satisfies ∂ρP ≥ 0, ∂θP ≥ 0, and SN = µ(∇u + (∇u)⊤) + µ′(divu)I. η∗, µ, µ′, κ∗ and
τ∗ describe some positive constants. I is the identity matrix. We set (u ⊗ u)ij = uiuj ,
(∇d ⊙ ∇d)ij = ∂xid · ∂xjd and SC : ∇u =

∑
i,j(SC)ij∂xiu

j . (1)–(4) is considered in
Ωh = {x = (x′, x3); x

′ = (x1, x2), 0 < x3 < h}. The boundary condition is

u|x3=0,h = 0, θ|x3=0 = θ∗0, θ|x3=h = θ∗1,
∂d

∂x3
|x3=0,h = 0, (5)

for given positive constants θ∗0, θ
∗
1. We consider density ρ and temperature θ around ρ∗

and θ∗0, respectively, where ρ∗ is given positive constant.
The Ericksen-Leslie system is produced by Ericksen [1, 2, 3] and Leslie [4, 5]. The

isothermal simplified model is first proposed by Lin [6] and many works have done for
this isothermal model. On the other hand, there are few results for non-isothermal model
of nematic liquid crystals for global classical solutions.
The problem (1)–(5) has a stationary solution us =

⊤(ρs,us, θs,ds) =
⊤(ρs,0, θs,d

∗).
Here ρs and θs are smooth function of x3 satisfying |ρs − ρ∗| ≪ 1 and |θs − θ∗0| ≪ 1.
The perturbation equation from this motionless state us is written in the following non-
dimensionalized form:

∂tϕ+ div ((ρs − 1)u) + divu = f, (6)

∂tu− ν∆u− (ν + ν ′)∇divu+∇θ +∇ϕ = g, (7)

∂tθ − κ∆θ + β(P (ρs, θs)− 1)divu+ βdivu = h, (8)

∂td− τ∆d = k, (9)

u|x3=0,1 = θ|x3=0,1 = 0,
∂d

∂x3
|x3=0,1 = 0, (10)

u|t=0 = u0, (11)

where u0 =
⊤(ϕ0,u0, θ0,d0) and f, g, h, k are nonlinear terms.



Theorem 1. There exist positive constants δ1, δ2, δ3 and ϵ0 such that if u0 ∈ (H3(Ω))3×
H4(Ω) satisfies some compatibility conditions and if ∥u0∥H3 , ∥d0∥H4 ≤ ϵ0, ∥ρs−1∥2H6 ≤
δ1, ∥ρsθs− 1∥2H6 ≤ δ2 and ∥θs− 1∥2H6 ≤ δ3, then (6)–(11) has a unique solution u(t) and
it satisfies the estimates

∥u(t)∥(H3(Ω))3×H4(Ω) ≤ C∥u0∥(H3(Ω))3×H4(Ω).

We also consider the asymptotic behavior for this model.

Theorem 2. In addition to the assumption of Theorem 1, we assume that u0 ∈ (L1(Ω))4,
then the solution u(t) satisfies the following estimates:

(i)

∥∂l
x3
∂l′
x′u(t)∥L2(Ω) ≤ C(1 + t)−

1
2
− |l′|

2 ∥u0∥H3(Ω)∩L1(Ω),

for 0 ≤ l, |l′| ≤ 1. Furthermore,

∥∂l
x3
∂l′
x′(u, θ)(t)∥L2(Ω) ≤ C(1 + t)−1∥u0∥H3(Ω)∩L1(Ω),

∥∂l
x3
∂l′
x′d(t)∥L2(Ω) ≤ C(1 + t)−

1
2
− l+|l′|

2 ∥u0∥H3(Ω)∩L1(Ω)

for 0 ≤ l, |l′| ≤ 1, l + |l′| ≤ 1.

(ii)

∥u(t)− σ̃0(t)∥L2(Ω) = o(t−
1
2 ) as t → ∞,

where
σ̃0(t) =

⊤(ϕ̃low(t),0, 0, d̃low(t)),

ϕ̃low(t) = α0G0(x
′, t), d̃low = ⊤(β1G1(x

′, t), β2G2(x
′, t), β3G3(x

′, t)),

α0 =

(∫
Ω
ϕ0(y) dy

)
1

∂ρP (ρs, θs)
, βj =

∫
Ω
dj0(y) dy +

∫ ∞

0

∫
Ω
kj(u,d)(y, s) dyds,

Gj(t) = (4πκjt)
−1e

− |x′|2
4κjt (j = 0, 1, 2, 3, κj > 0).
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