グラフ上の単純ランダムウォークの無限回衝突 について

On infinite collisions of random walks on graphs

渡辺 聡美京都大学 数理解析研究所

講演記録 / Summary of the talk

Background

Why do we study random walk on graphs?

Random walk and (discrete) heat equation

$$u(n+1,x)-u(n,x)=\Delta u(n,x)$$
 (Δ : discrete Laplacian)

- f: initial condition.
- X(n): n-th step of simple random walk started at x.
- $\mathbb{E}[\cdot]$: expectation
- $ightharpoonup u(n,x) = \mathbb{E}[f(X(n))]$ (continuous setting : Brownian motion)
- Random walk behavior \longleftrightarrow Characterization of the graph
- Natural phenomena → disordered media
 - · · · Analysis on fractals and random media

Mv works

Let us observe a random walker

e.g. Does the random walk return to the starting point within finite steps?

Definition 1

Introduction

We say that the random walk is **recurrent** if it returns with probability 1, transient otherwise.

```
Example: SRW on \mathbb{Z} and \mathbb{Z}^2 \cdots recurrent,
           SRW on \mathbb{Z}^d (d \geq 3) \cdots transient (Pólya)
```

"A drunk man will eventually find his way home, but a drunk bird may get lost forever."

Collisions of random walks

Pólya : How often do two walkers meet in the woods?

$$X=\{X_n\}$$
, $Y=\{Y_n\}$: independent SRWs on G .

$$Z\coloneqq \sum_{n=0}1\{X_n=Y_n\}$$
 : the number of collisions between X and Y .

Definition 2 (Infinite / finite collision property)

We say G has the infinite collision property if $Z=\infty$ a.s. and it has the **finite collision property** if $Z < \infty$ a.s.

Fact: Either of these holds (0-1 law).

On transitive graphs

- i.e. the graph looks the same from every vertex (e.g. \mathbb{Z}^d)
 - → reduces to recurrence / transience

Finite collisions on a recurrent graph

Example

 If the graph is not transitive e.g. Comb(Z)

: recurrent & finite collisions (Krishnapur-Peres, 2004)

Two walkers on different "teeth" are unlikely to meet

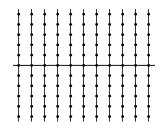


Figure: $Comb(\mathbb{Z})$ from Chen-Wei-Zhang

Remark: Collision property is not monotone

(e.g. $\mathbb{Z} \subset \mathsf{Comb}(\mathbb{Z}) \subset \mathbb{Z}^2$)

Comb with shorter "teeth" ?

ightarrow e.g. $\mathsf{Comb}(\mathbb{Z},f)$: truncate at height f(n)

Number of collisions

- $f(x) = |x|^{\alpha}$
 - $\rightarrow \alpha \leq 1 \text{: infinite } / \ \alpha > 1 \text{: finite a.s.}$ (Barlow-Peres-Sousi, 2012)
- $f(x) = |x| \log^{\beta}(|x| \vee 1)$
 - ightarrow $eta \leq$ 1: infinite / eta > 2: finite

(Chen-Chen, 2011)

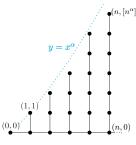


Figure: $\mathsf{Comb}(\mathbb{Z}, f)$ with $f(x) = |x|^{lpha}$

Backbone + short teeth → infinite collisions

Other examples?

RW on random graphs

Background

Anomalous diffusion in disordered media

Polymar ↔ self-avoiding walk

Porous media ← percolation cluster etc.

- Alexander-Orbach conjecture (1982)
 - : RW diffusion is essentially slower on critical percolation clusters
- Kesten (1986)
 - : First rigorous result in mathematics

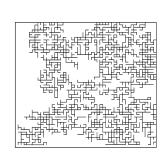


Figure: 2D percolation cluster (by Hunt-Ewing-Ghanbarian, 2014)

Aim : Typical behavior of RW on random graphs?

RW on random graphs

Example

- Critical Galton-Watson tree
- IIC of critical percolation on \mathbb{Z}^d
- Uniform spanning tree of Cayley graphs

Is the infinite collision property **typical** on these random graphs?

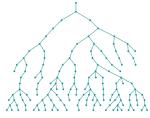


Figure: Garton-Watson tree (by Berglund)

Sufficient conditions: Barlow-Peres-Sousi (2012), Hutchcroft-Peres (2015)

Necessary condition is harder...

My work #1

- 1. Quantitative estimate?
 - → Collisions on the **three-dimensional**

uniform spanning tree (UST): W. (2023)

Related models of UST

Loop-erased random walk (LERW),

random cluster model,

2D UST: Schramm-Loewner Evolution (SLE)

- scaling limit of planar random process

Key points

- Effective resistance
- 3D UST is analizable via LERW

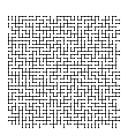


Figure: 2D UST (by Wilson)

Idea of the proof

Inspired by Barlow-Peres-Sousi (2012)

X: nonnegative random variable on (Ω, \mathcal{F}, P) with $E[X^2] < \infty$, $\theta \in (0,1)$.

Then,
$$P(X> heta E[X]) \geq (1- heta)^2 rac{E[X^2]}{E[X]^2}.$$
 (Cauchy-Schwarz inequality)

 $E[Z_{B_r}]$ and $E[Z_{B_r}^2]$ can be written with the effective resistance (regarding the graph as electrical network)

- $E[\#\text{collisions}] \asymp E[\#\text{visits}] = \text{Green's function}$ + potential theory
- UST is analyzable even in 3D (hardest in general) thanks to the connection with LERW

My work #2

- 2. Triple collisions?
 - → 4D SRW trace "looks like" a comb with short teeth

Previous results on triple collisions

- Comb graph with i.i.d. teeth of finite mean (Chen-Chen, 2011)
- Comb $(\mathbb{Z}, 0 \vee (\log |x|)^{\alpha}) \rightarrow 0 < \alpha < 1$ or $\alpha > 1$ (Croydon-De Ambroggio, 2024+)

Why do we expect infinite triple collisions on 4D SRW trace?

- 4D = critical dimension of SRW intersection
 - → Comb-like structure (long-range self intersection is rare)
- Volume growth is similar to $Comb(\mathbb{Z}, (\log n)^{1/2})$

Main theorem: Almost sure infinite triple collisions (Croydon-De Ambroggio-Shiraishi-W. in prep.) 11/12

Mv works

Conclusion and comment

- Future work : criterion of in/finite collisions?

Open problems

- Quadruple collisions → What kind of characterization?
 Bounded degree → finite collisions (Croydon-De Ambroggio)
- Stability of collision property
 - Does a small change of the graph affect collision property?
 Remark: Hard problem for 10+ years