![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() |
Probability Theory
Percolation, Fractals, Phase Transition, Mathematical Games, Combinatorial Game Theory
M.Shinoda, E.Teufl and S.Wagner, Uniform spanning trees on Sierpinski graphs, Latin American Journal of Probability and Mathematical Statistics Vol.11 (2014), 737-780.
H.Oginuma, M.Shinoda, Shrinking Circular Nim, To appear in Journal of Information Processing Vol.33 Dec. (2025).
M.Shinoda, Y.Sakurai and S.Oyama, Sample Complexity of Learning Multi-value Opinions in Social Networks, PRIMA 2022: Principles and Practice of Multi-Agent Systems, the series Lecture Notes in Computer Science 13753 (2023), 192-207.
Y.Sakurai, M.Matsuda, M.Shinoda, S.Oyama, Crowdsourcing Mechanism Design, PRIMA 2017: Principles and Practice of Multi-Agent Systems, the series Lecture Notes in Computer Science 10621 (2017), 495-503.
Y.Sakurai, T.Okimoto, M.Oka, H.Hyodo, M.Shinoda and M.Yokoo, Quality-Control Mechanism utilizing Worker's Confidence for Crowdsourced Tasks Proceedings of the Twelfth International Conference on Autonomous Agents and Multiagent Systems (AAMAS2013).
M.Shinoda, Existence of phase transition of percolation on fractal lattices, COE Lecture Note Series, Instisute of Mathematics for Industry, Kyushu University Vol.39 (2012), 12-21.
T.Abuku, K.Sakai, M.Shinoda, K.Suetsugu, Some extensions of Delete Nim, arXiv:2301.12964 (2023).
M.Shinoda, Single-delete Nim, arXiv:2411.19453 (2024).
H.Oginuma, M.Shinoda, Scoring Nim, arXiv: 2502.10971 (2025).
Self-contacting fractal tree in three dimensions, joint work with M.NAKAYAMA.